Skip to main content

Production of Monoclonal Antibodies in E. coli

  • Chapter
  • First Online:
Current Trends in Monoclonal Antibody Development and Manufacturing

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume XI))

Abstract

The number of monoclonal antibodies approved for use as therapeutic agents by regulatory agencies has increased in the past several years. Monoclonal antibodies are predicted to become an increasingly larger part of biopharmaceutical products, and perhaps dominate the market share by the end of the decade (Walsh 2006). Mammalian expression systems, such as Chinese Hamster Ovary cells (CHO), are currently the preferred system for producing full-length monoclonal antibodies. Fungal systems could become more of a contender for the production of antibodies if titers can be increased (Andersen and Reilly 2004). However, with fungal production systems, there may be concerns about potential non-native mammalian N-linked or O-linked glycosylation that could result in immunogenic responses in humans. Technology developed in recent years (Hamilton et al. 2003) could help to alleviate this concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody dependent cellular cytotoxicity

bp:

Base pairs

C1q:

Subcomponent of C1, a complement activator

CDC:

Complement dependent cytotoxicity

CHO:

Chinese hamster ovary

E. coli :

Escherichia coli

ELISA:

Enzyme-linked immunosorbent assay

FcRn:

Neonatal Fc receptor

IPTG:

Isopropyl β-D-thiogalactopyranoside

IV:

Intravenous

kDa:

Kilodaltons

PBS:

Phosphate buffered saline

SEC:

Size-exclusion chromatography

TIR:

Translation initiation region

References

  • Andersen D, Reilly DE (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15:456–462

    Article  PubMed  CAS  Google Scholar 

  • Andersen DC, and Simmons LC (2004) A system for antibody expression and assembly. European Patent: EP1427744

    Google Scholar 

  • Baneyx F, Palumbo JL (2003) Improving heterologous protein folding via molecular chaperone and foldase co-expression. In: Vaillancourt PE (ed) Methods in molecular biology, vol 205, E. coli gene expression protocols. Humana press, Totawa, N J, pp 171–197

    Google Scholar 

  • Battersby JE, Snedecor B, Chen C, Champion KM, Riddle L, Vanderlaan M (2001) Affinity-reversed-phase liquid chromatography assay to quantitate recombinant antibodies and antibody fragments in fermentation broth. J Chromatogr A 927:61–76

    Article  PubMed  CAS  Google Scholar 

  • Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96:13703–13708

    Article  PubMed  CAS  Google Scholar 

  • Bessette PH, Qiu JI, Bardwell JCA, Swartz JR, Georgiou G (2001) Effect of sequences of the active-site dipeptides of DsbA and DsbC on in vivo folding of multidisulfide proteins in Escherichia coli. J Bacteriol 183(3):980–988

    Article  PubMed  CAS  Google Scholar 

  • Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicles. Gene 2:95–113

    Article  PubMed  CAS  Google Scholar 

  • Bothmann H, Pluckthun A (1998) Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat Biotechnol 16:376–380

    Article  PubMed  CAS  Google Scholar 

  • Bothmann H, Pluckthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA. J Biol Chem 275(22):17100–17105

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, Battersby JE, Champion KM (2004) High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol Bioeng 85(5):463–474

    Article  PubMed  CAS  Google Scholar 

  • De Boer HA, Comstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci USA 80:21–25

    Article  PubMed  Google Scholar 

  • De Smit MH, van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci USA 87:7668–7672

    Article  PubMed  Google Scholar 

  • Derman AI, Prinz WA, Belin D, Beckwith J (1993) Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262:1744–1747

    Article  PubMed  CAS  Google Scholar 

  • Friend PJ, Hale G, Chatenoud L, Rebello P, Bradley J, Thiru S, Phillips JM, Waldmann H (1999) Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation 68(11):1632–1637

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246

    Article  PubMed  CAS  Google Scholar 

  • Hayhurst A, Harris WJ (1999) Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr and Purif 15:336–343

    Article  CAS  Google Scholar 

  • Humphreys DP (2007) Periplasmic Expression of Antibody Fragments. In: Ehrmann M (ed) The periplasm. ASM press, Washington DC, pp 361–388

    Google Scholar 

  • Jeong KJ, Lee SY (2000) Secretory production of human leptin in Escherichia coli. Biotechnol Bioeng 67(4):398–407

    Article  PubMed  CAS  Google Scholar 

  • Joly JC, Laird MW (2007) Practical applications for periplasmic protein accumulation. In: Ehrmann M (ed) The periplasm. ASM Press, Washington DC, pp 345–360

    Google Scholar 

  • Joly JC, Leung WS, Schwartz JR (1998) Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci USA 95:2773–2777

    Article  PubMed  CAS  Google Scholar 

  • Makrides SC (1996) Strategies for Achieving High-Level Expression of Genes in Escherichia coli. Microbiol. Rev. 60 (3):512–538

    Google Scholar 

  • Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, Schwall R, Westphal M, Lamszus K (2006) A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 12:6144–6152

    Article  PubMed  CAS  Google Scholar 

  • Mazor Y, Blarcom TV, Mabry R, Iverson BL, Georgiou G (2007) Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nat Biotechnol 25:563–565

    Article  PubMed  CAS  Google Scholar 

  • McCarthy JEG, Gualerzi C (1990) Translational control of prokaryotic gene expression. Trends Genet 6(3):78–85

    Article  PubMed  CAS  Google Scholar 

  • Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG, Carter P (1998) An efficient route to human bispecific IgG. Nat Biotechnol 16:677–681

    Article  PubMed  CAS  Google Scholar 

  • Pluckthun A, Krebber A, Krebber C, Horn U, Knupfer U, Wenderoth R, Nieba L, Proba K, Riesenberg D (1996) Producing antibodies in Escherichia coli: from PCR to fermentation. In: McCafferty J, Hoogenboom HR, Chiswell DJ (eds) Antibody engineering: a practical approach. Oxford university press, New York, N Y, pp 203–251

    Google Scholar 

  • Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathway in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272(25):15661–15667

    Article  PubMed  CAS  Google Scholar 

  • Qiu JI, Schwartz JR, Georgiou G (1998) Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl Environ Microbiol 64(12):4891–4896

    PubMed  CAS  Google Scholar 

  • Routledge EG, Falconer ME, Pope H, Lloyd IS, Waldmann H (1995) The effect of aglycosylation on the immunogenicity of a humanized therapeutic CD3 monoclonal antibody. Transplantation 60:847–853

    PubMed  CAS  Google Scholar 

  • Simmons LC, Yansura DG (1996) Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat Biotechnol 14:629–634

    Article  PubMed  CAS  Google Scholar 

  • Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P, Yansura DG (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147

    Article  PubMed  CAS  Google Scholar 

  • Tao MH, Morrison SL (1989) Studies of aglycosylated chimeric mouse-human IgG. J Immunol 143:2595–2601

    PubMed  CAS  Google Scholar 

  • Thome BM, Muller M (1991) Skp is a periplasmic Escherichia coli protein requiring SecA and SecY for export. Mol Microbiol 5(11):2815–2821

    Article  PubMed  CAS  Google Scholar 

  • Walsh G (2006) Biopharmaceutical Benchmarks 2006. Nat Biotechnol 24:769–776

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments:

The authors would like to thank Lisa A. Damico, Sean Kelley, and David Xie for the use of unpublished data on the pharmacokinetic analyses of the antibodies, Ralph Schwall for efficacy studies, Gloria Meng and An Song for binding studies, Amy Lim for SEC data, and Michael W. Laird for help with the manuscript preparation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Reilly, D.E., Yansura, D.G. (2010). Production of Monoclonal Antibodies in E. coli . In: Shire, S., Gombotz, W., Bechtold-Peters, K., Andya, J. (eds) Current Trends in Monoclonal Antibody Development and Manufacturing. Biotechnology: Pharmaceutical Aspects, vol XI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76643-0_17

Download citation

Publish with us

Policies and ethics