Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 203))

The carbon cycle and indeed the entire earth system are now inextricably linked with human activities (Global Carbon Project 2003; Steffen et al. 2004; Field and Raupach 2004), so that the ‘carbon—climate—human system’ constitutes a single, coupled entity in which interacting processes link all of its major components. Linking processes of primary significance include

  1. 1.

    The human drivers of energy consumption and land-use change, through increases in both population and per capita consumption

  2. 2.

    The role of human energy systems as sources of CO2 and other greenhouse gases (GHGs)

  3. 3.

    Land-use change (deforestation, increases in agricultural and urban land use) and its consequences for both GHG emissions and resource (water, land, ecosystem) condition

  4. 4.

    Climate forcing by CO2 and other GHGs, following from drivers 1, 2 and 3

  5. 5.

    The changing roles of the ocean and the terrestrial biosphere as sinks and sources of CO2 and other GHGs, driven by the disequilibrium of the earth system through human activities

  6. 6.

    Impacts of climate change through declines in resource condition and human well-being

  7. 7.

    Attempts by human societies to reduce their impact on the global environment, for example, through reductions in GHG emissions to avoid ‘dangerous climate change’ (Schellnhuber et al. 2006)

Through the first six of these processes humankind is unintentionally influencing the earth system, while the seventh is an effort to manage global-scale human impacts on the earth system by mitigating their causes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achard F., Eva H. D., Mayaux P., Stibig H. J., Belward A. 2004. Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochem. Cycles 18: doi:10.1029/2003GB002142.

    Google Scholar 

  • Allan W., Lowe D. C., Gomez A. J. 2005. Interannual variations of 13C in tropospheric methane: Implication for a possible atomic chlorine sink in the marine boundary layer. J. Geophys. Res. 110: doi:10.1029/ 2004JD005650.

    Google Scholar 

  • Angert A., Biraud S., Bonfils C. et al. 2005. Drier summers cancel out the CO2 uptake enhance-ment induced by warmer springs. Proc. Natl. Acad. Sci. U.S.A. 102: 10823-10827.

    Article  CAS  Google Scholar 

  • Anisimov O. A., Nelson F. E., Pavlov A. V. 1999. Predictive scenarios of permafrost development under conditions of global climate change in the XXI century. Earth Cryol. 3: 15-25.

    Google Scholar 

  • Arrhenius S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. J. Sci. 5: 239-276.

    Google Scholar 

  • Bogner J., Matthews E. 2003. Global methane emissions from landfills: New methodology and annual estimates 1980-1996. Global Biogeochem. Cycles 17: doi:10.1029/2002GB001913.

    Google Scholar 

  • Bousquet P., Ciais P., Miller J. B. et al. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443: 439-443.

    Article  CAS  Google Scholar 

  • Burrows W. H., Henry B. K., Back P. V. et al. 2002. Growth and carbon stock change in eucalypt woodlands in northeast Australia: Ecological and greenhouse sink implications. Global Change Biol. 8: 769-784.

    Article  Google Scholar 

  • Camill P. 2005. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim. Change 68: 135-152.

    Article  CAS  Google Scholar 

  • Canadell J. G., Le Quéré C., Raupach M. R., Field C. B., Buitenhuis E. T., Ciais P, Conway T. J., Gillette N. P., Houghton R. A., Marland G. 2007a. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, Early Edition 10.1073/pnas.0702737104.

    Google Scholar 

  • Canadell J. G., Pataki D., Gifford R. M. et al. 2007b. Saturation of the terrestrial carbon sink. In Terrestrial Ecosystems in a Changing World, eds. J. G. Canadell, D. Pataki, L. Pitelka, pp. 59-78. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Cao M. K., Gregson K., Marshall S. 1998. Global methane emission from wetlands and its sensi-tivity to climate change. Atmos. Environ. 32: 3293-3299.

    Article  CAS  Google Scholar 

  • Chen Y.-H., Prinn R. G. 2005. Atmospheric modeling of high- and low-frequency methane obser-vations: Importance of interannually varying transport. J. Geophys. Res. 110: D10303, doi:10.1029/ 2004JD005542.

    Google Scholar 

  • Christiansen T. R., Ekberg A., Ström L., Mastepanov M. 2003. Factors controlling large scale varia-tions in methane emission from wetlands. Geophys. Res. Lett. 30: doi: 10.1029/ 2002GL016848.

    Google Scholar 

  • Ciais P., Moore B. I., Steffen W. et al. 2004. Integrated global carbon observation theme: A strategy to realise a coordinated system of integrated global carbon cycle observations. Integrated Global Observing Strategy, Stockholm.

    Google Scholar 

  • Ciais P., Reichstein M., Viovy N. et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533.

    Article  CAS  Google Scholar 

  • Cramer W., Bondeau A., Woodward F. I. et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biol. 7: 357-373.

    Article  Google Scholar 

  • DeFries R. S., Field C. B., Fung I. Y., Collatz G. J., Bounoua L. 1999. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochem. Cycles 13: 803-815.

    Article  CAS  Google Scholar 

  • DeFries R. S., Houghton R. A., Hansen M. C., Field C. B., Skole D., Townshend J. 2002. Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc. Natl. Acad. Sci. U.S.A. 99: 14256-14261.

    Article  CAS  Google Scholar 

  • Etheridge D. M., Steele L. P., Francey R. J., Langenfelds R. L. 1998a. Atmospheric methane between 1000 AD and present: Evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. 103: 15979-15993.

    Article  CAS  Google Scholar 

  • Etheridge D. M., Steele L. P., Langenfelds R. L., Francey R. J., Barnola J. M., Morgan V. I. 1998b. Historical CO2 records from the Law Dome DE08, DE08-2, and DSS ice cores. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.

    Google Scholar 

  • Fang J. Y., Chen A. P., Peng C. H., Zhao S. Q., Ci L. 2001. Changes in forest biomass carbon stor-age in China between 1949 and 1998. Science 292: 2320-2322.

    Article  CAS  Google Scholar 

  • Fang C. M., Smith P., Moncrieff J. B., Smith J. U. 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433: 57-59.

    Article  CAS  Google Scholar 

  • Farquhar G. D., Sharkey T. D. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33: 317-345.

    Article  CAS  Google Scholar 

  • Farquhar G. D., Caemmerer von S., Berry J. A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78-90.

    Article  CAS  Google Scholar 

  • Field C. B., Raupach M. R. 2004. The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World. Island Press, Washington, p. 526.

    Google Scholar 

  • Field C. B., Chapin III F. S., Chiariello N. R., Holland E. A., Mooney H. A. 1996. The Jasper Ridge CO2 experiment: Design and motivation. In Carbon Dioxide and Terrestrial Ecosystems, eds. G. W. Koch, H. A. Mooney, pp. 121-145. Academic Press, San Diego.

    Google Scholar 

  • Friborg T., Soegaard H., Christensen T. R., Lloyd C. R., Panikov N. S. 2003. Siberian wetlands: Where a sink is a source. Geophys. Res. Lett. 30.

    Google Scholar 

  • Friedlingstein P., Cox P., Betts R. et al. 2006. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 19: 3337-3353.

    Article  Google Scholar 

  • Fung I. Y., John J., Lerner J., Mathews E., Prather M., Steele L. P., Fraser P. J. 1991. Three-dimen-sional model synthesis of the global methane cycle. J. Geophys. Res. 96: 13033-13065.

    Article  CAS  Google Scholar 

  • Giardina C. P., Ryan M. G. 2000. Biogeochemistry: Soil warming and organic carbon content -Reply. Nature 408: 790.

    Article  CAS  Google Scholar 

  • Gifford R. M., Howden M. 2001. Vegetation thickening in an ecological perspective: Significance to national greenhouse gas inventories. Environ. Sci. Policy 4: 59-72.

    Article  CAS  Google Scholar 

  • Global Carbon Project 2003. Science Framework and Implementation. Earth System Science Partnership (IGBP, IHDP, WCRP, Diversitas) Report No. 1; GCP Report No. 1, Global Carbon Project, Canberra.

    Google Scholar 

  • Goody R. M. 1964. Atmospheric Radiation. I. Theoretical Basis. Clarendon Press, Oxford, 436 pp.

    Google Scholar 

  • Greenblatt J. B., Sarmiento J. L. 2004. Variability and climate feedback mechanisms in ocean uptake of CO2. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. C. B. Field, M. R. Raupach, pp. 257-275. Island Press, Washington.

    Google Scholar 

  • Gruber N., Friedlingstein P., Field C. B. et al. 2004. The vulnerability of the carbon cycle in the 21st century: An assessment of carbon-climate-human interactions. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. C. B. Field, M. R. Raupach, pp. 45-76. Island Press, Washington.

    Google Scholar 

  • Hein R., Crutzen P. J., Heimann M. 1997. An inverse modelling approach to investigate the global atmospheric methane cycle. Global Biogeochem. Cycles 11: 43-76.

    Article  CAS  Google Scholar 

  • Holland E. A., Braswell B. H., Lamarque J. F. et al. 1997. Variations in the predicted spatial dis-tribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys. Res. Atmos. 102: 15849-15866.

    Article  CAS  Google Scholar 

  • Houghton R. A. 1998. Historic role of forests in the global carbon cycle. In Carbon Dioxide Mitigation in Forestry and Wood Industry, eds. G. H. Kohlmaier, M. Weber, R. A. Houghton, pp. 1-24. Springer-Verlag, Berlin.

    Google Scholar 

  • Houghton R. A. 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990. Tellus Ser. B 51: 298-313.

    Google Scholar 

  • Houghton R. A. 2003. Why are estimates of the terrestrial carbon balance so different? Global Change Biol. 9: 500-509.

    Article  Google Scholar 

  • Houghton R. A., Hackler J. L. 2000. Changes in terrestrial carbon storage in the United States. 1: The roles of agriculture and forestry. Global Ecol. Biogeog. 9: 125-144.

    Article  Google Scholar 

  • Houghton R. A., Hackler J. L., Lawrence K. T. 2000. Changes in terrestrial carbon storage in the United States. 2: The role of fire and fire management. Global Ecol. Biogeog. 9: 145-170.

    Article  Google Scholar 

  • Houweling S., Kaminski T., Dentener F. J., Lelieveld J., Heimann M. 1999. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res. 104: 26137-26160.

    Article  CAS  Google Scholar 

  • IPCC 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York.

    Google Scholar 

  • IPCC 2007. Climate change 2007: The physical science basis. Summary for policymakers. IPCC Secretariat, Geneva.

    Google Scholar 

  • Jacobson M., Charleson R. J., Rodhe H., Orians G. H. 2000. Earth System Science: From Biogeochemical Cycles to Global Change. Academic Press, New York, p. 527.

    Google Scholar 

  • Janssens I. A., Freibauer A., Schlamadinger B. et al. 2005. The carbon budget of terrestrial eco-systems at country-scale - a European case study. Biogeosciences 2: 15-26.

    Article  CAS  Google Scholar 

  • Jarvis P., Linder S. 2000. Botany: Constraints to growth of boreal forests. Nature 405: 904-905.

    Article  CAS  Google Scholar 

  • Jones P. D., Parker D. E., Osborn T. J., Briffa K. R. 2006. Global and hemispheric temperature anomalies - land and marine instrumental records. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.

    Google Scholar 

  • Jorgenson T. M., Shur Y. L., Pullman E. R. 2006. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33: doi:10. 1029/2005GL024960.

    Google Scholar 

  • Keeling C. D. and Whorf T. P. 2005. Atmospheric CO2 records from sites in the SIO air sampling network. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.

    Google Scholar 

  • Knorr W., Prentice I. C., House J. I., Holland E. A. 2005. Long-term sensitivity of soil carbon turnover to warming. Nature 433: 298-301.

    Article  CAS  Google Scholar 

  • Kurz W. A., Apps M. J. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 9: 526-547.

    Article  Google Scholar 

  • Langenfelds R. L., Francey R. J., Pak B. C., Steele L. P., Lloyd J., Trudinger C. M., Allison C. E. 2002. Interannual growth rate variations of atmospheric CO2 and its delta C-13, H-2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochem. Cycles 16.

    Google Scholar 

  • Le Quere C., Metzl N. 2004. Natural processes regulating the ocean uptake of CO2. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. C. B. Field, M. R. Raupach, pp. 243-255. Island Press, Washington.

    Google Scholar 

  • Lelieveld J., Crutzen P. J., Dentener F. J. 1998. Changing concentration, lifetime and climate forc-ing of atmospheric methane. Tellus Ser. B 50: 128-150.

    Article  Google Scholar 

  • Lloyd J., Taylor J. A. 1994. On the temperature dependence of soil respiration. Functional Ecology 8: 315-323.

    Article  Google Scholar 

  • Luger A. D., Moll E. J. 1993. Fire protection and afromontane forest expansion in Cape Fynbos. Biol. Conserv. 64: 51-56.

    Article  Google Scholar 

  • Luo Y. Q., Wan S. Q., Hui D. F., Wallace L. L. 2001. Acclimatization of soil respiration to warm-ing in a tall grass prairie. Nature 413: 622-625.

    Article  CAS  Google Scholar 

  • Luo Y., Su B., Currie W. S. et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54: 731-739.

    Article  Google Scholar 

  • Mack F., Hoffstadt J., Esser G., Goldammer J. G. 1996. Modeling the influence of vegetation fires on the global carbon cycle. In Biomass Burning and Global Change, ed. J. S. Levine. MIT Press, Cambridge, MA.

    Google Scholar 

  • Marland G., Boden T. A., Andres R. J. 2006. Global, regional, and national CO2 emissions. Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA.

    Google Scholar 

  • Mikaloff Fletcher S. E., Tans P. P., Bruhwiler L. M., Miller J. B., Heimann M. 2004a. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modelling of source processes. Global Biogeochem. Cycles 18: doi:10.1029/2004GB002223.

    Google Scholar 

  • Mikaloff Fletcher S. E., Tans P. P., Bruhwiler L. M., Miller J. B., Heimann M. 2004b. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 2. Inverse modelling of CH4 fluxes from geographical regions. Global Biogeochem. Cycles 18: doi:10.1029/2004GB002224.

    Google Scholar 

  • Mosier A. R., Duxbury J. M., Freney J. R., Heinemeyer O., Minami K., Johnson D. E. 1998. Mitigating agricultural emissions of methane. Clim. Change 40: 39-80.

    Article  CAS  Google Scholar 

  • Mouillot F., Field C. B. 2005. Fire history and the global carbon budget: A 1 degrees x 1 degrees fire history reconstruction for the 20th century. Global Change Biol. 11: 398-420.

    Article  Google Scholar 

  • Nadelhoffer K. J., Emmett B. A., Gundersen P. et al. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145-148.

    Article  CAS  Google Scholar 

  • Nakicenovic N., Alcamo J., Davis G. et al. 2000. IPCC Special Report on Emissions Scenarios. Cambridge University Press, Cambridge, U.K. and New York.

    Google Scholar 

  • Nemani R. R., Keeling C. D., Hashimoto H. et al. 2003. Climate-driven increases in global terres-trial net primary production from 1982 to 1999. Science 300: 1560-1563.

    Article  CAS  Google Scholar 

  • Norby R. J., DeLucia E. H., Gielen B. et al. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. U.S.A. 102: 18052-18056.

    Article  CAS  Google Scholar 

  • Nowak R. S., Ellsworth D. S., Smith S. D. 2004. Functional responses of plants to elevated atmos-pheric CO2: Do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol. 162: 253-280.

    Article  Google Scholar 

  • Olivier J. G. J., Bouwman A. F., Berdowski J. J. M. et al. 1999. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1x1. Environ. Sci. Policy 2: 241-263.

    Article  CAS  Google Scholar 

  • Oren R., Ellsworth D. S., Johnsen K. H. et al. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411: 469-472.

    Article  CAS  Google Scholar 

  • Owensby C. E., Ham J. M., Knapp A. K., Bremer D., Auen L. M. 1997. Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Global Change Biol. 3: 189-195.

    Article  Google Scholar 

  • Pacala S. W., Hurtt G. C., Baker D. et al. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science 292: 2316-2320.

    Article  CAS  Google Scholar 

  • Page S. E., Siegert F., Rieley J. O., Boehm H. D. V., Jaya A., Limin S. 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420: 61-65.

    Article  CAS  Google Scholar 

  • Page S. E., Wust R. A. J., Weiss D., Rieley J. O., Shotyk W., Limin S. H. 2004. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present and future carbon dynamics. J. Quat. Sci. 19: 625-635.

    Article  Google Scholar 

  • Pataki D. E., Huxman T. E., Jordan D. N. et al. 2000. Water use of two Mojave Desert shrubs under elevated CO2. Global Change Biol. 6: 889-897.

    Article  Google Scholar 

  • Raupach M. R., Marland G., Ciais P., LeQuere C., Canadell J. G., Field C. B. 2007. Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences 14: 10288-10293.

    Article  CAS  Google Scholar 

  • Raupach M. R., Rayner P. J., Barrett D. J. et al. 2005. Model-data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Global Change Biol. 11: 10.1111/j.1365-2486.2005.00917.x.

    Google Scholar 

  • Sabine C. L., Heimann M., Artaxo P. et al. 2004. Current status and past trends of the global car-bon cycle. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. C. B. Field, M. R. Raupach, pp. 17-44. Island Press, Washington.

    Google Scholar 

  • Schellnhuber H. J., Cramer W., Nakicenovic N., Wigley T. M. L., Yohe G. 2006. Avoiding Dangerous Climate Change. Cambridge University Press, Cambridge, 392 pp.

    Google Scholar 

  • Smith L. C., Sheng Y., MacDonald G. M., Hinzman L. D. 2005. Disappearing Arctic lakes. Science 308: 1429.

    Article  CAS  Google Scholar 

  • Steffen W. L., Sanderson A., Tyson P. D. et al. 2004. Global Change and the Earth System: A Planet Under Pressure. Springer, Berlin, 336 pp.

    Google Scholar 

  • Tarnocai C. 1999. The effect of climate warming on the carbon balance of cryosols in Canada. Permafrost Periglac. 10: 251-263.

    Article  Google Scholar 

  • Townsend A. R., Braswell B. H., Holland E. A., Penner J. E. 1996. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol. Appl. 6: 806-814.

    Article  Google Scholar 

  • Valentini R., Matteucci G., Dolman A. J. et al. 2000. Respiration as the main determinant of car-bon balance in European forests. Nature 404: 861-865.

    Article  CAS  Google Scholar 

  • van der Werf G. R., Randerson J. T., Collatz G. J., Giglio L. 2003. Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biol. 9: 547-562.

    Article  Google Scholar 

  • van der Werf G. R., Randerson J. T., Collatz G. J. et al. 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science 303: 73-76.

    Article  CAS  Google Scholar 

  • van der Werf G. R., Randerson J. T., Giglio L., Collatz G. J., Kasibhatla P. S., Arellano A. F. 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6: 3423-3441.

    CAS  Google Scholar 

  • Wang J. S., Logan J. A., McElroy M. B., Duncan B. N., Megretskaia I. A., Yantosca R. M. 2004. A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochem. Cycles 18: GB3011, doi:10.1029/2003GB002180.

    Google Scholar 

  • Wuebbles D. J., Hayhoe K. 2002. Atmospheric methane and global change. Earth-Sci. Rev. 57: 177-210.

    CAS  Google Scholar 

  • Zimov S. A., Schuur E. A. G., Chapin F. S. 2006. Permafrost and the global carbon budget. Science 312: 1612-1613.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Raupach, M.R., Canadell, J.G. (2008). Observing a Vulnerable Carbon Cycle. In: Dolman, A.J., Valentini, R., Freibauer, A. (eds) The Continental-Scale Greenhouse Gas Balance of Europe. Ecological Studies, vol 203. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76570-9_2

Download citation

Publish with us

Policies and ethics