Skip to main content

The Lateral Carbon Pump, and the European Carbon Balance

  • Chapter
The Continental-Scale Greenhouse Gas Balance of Europe

Comparing atmospheric inversion estimates of the carbon fluxes of continents with bottom-up estimates (Pacala et al. 2001; Janssens et al. 2003; Peylin et al. 2005) is no easy task because (1) inversion fluxes always contain a certain amount of a priori information from bottom-up studies, so that the two approaches are not independent, (2) the time period for which inversion models and bottom-up estimates are produced is generally not the same, in the presence of substantial interannual variability, and (3) lateral carbon displacement makes some bottom-up estimates differ from inversions. Lateral displacement processes form a “carbon pump” which moves carbon away from the area where CO2 was fixed from the atmosphere by photosynthesis with a very small additional sink from rock weathering. Lateral pumping of carbon implies that regional changes in carbon storage must differ from regional mean CO2 fluxes (Tans et al. 1995; Sarmiento and Sundquist 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abril G. and Borges A.V. (2004). Carbon dioxide and methane emissions from estuaries. In Greenhouse Gas Emissions: Fluxes and Processes. Hydroelectric Reservoirs and Natural Environments. A. Tremblay, L. Varfalvy, C. Roehm and M. Garneau (Eds.), Environmental Science Series, Springer-Verlag, Berlin, Heidelberg, New York. 187-207.

    Google Scholar 

  • Abril G., Etcheber H., Borges A.V., and Frankignoulle M. (2000). Excess atmospheric carbon dioxide transported by rivers into the Scheldt Estuary. Comptes Rendus de l’Académie des Sciences. Série IIA 330: 761-768.

    CAS  Google Scholar 

  • Abril G., Nogueira M., Etcheber H., Cabeçadas G., Lemaire E., and Brogueira M.J. (2002). Behaviour of organic carbon in nine contrasting European estuaries. Estuarine, Coastal and Shelf Science. 54: 241-262.

    Article  CAS  Google Scholar 

  • Anthoni P., Freibauer A., Kolle O., and Schulze E.-D. (2004). Winter wheat carbon exchange in Thuringia, Germany. Agricultural and Forest Meteorology. 121: 55-67.

    Article  Google Scholar 

  • Aucour M.-A., Sheppard S.M.F., Guyomar O., and Wattelet J. (1999). Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chemical Geology. 159: 87-105.

    Article  CAS  Google Scholar 

  • Aumont O., Orr J.C., Monfray P., Ludwig W., Amiotte-Suchet P., and Probst J.L. (2001). Riverine-driven interhemispheric transport of carbon. Global Biogeochemical Cycle. 15: 393-405.

    Article  CAS  Google Scholar 

  • Billett M.F., Palmer S.M., Hope D., Deacon C., Storeton-West R., Hargreaves K.J., Flechard C., and Fowler D. (2004). Linking land-atmosphere-stream carbon fluxes. Global Biogeochemical Cycles. 18(1): 1-12.

    Article  CAS  Google Scholar 

  • Borges A.V., Delille B., Schiettecatte L.S., Gazeau F., Abril A., and Frankignoulle M. (2004). Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt and Thames). Limnology and Oceanography. 49(5): 1630-1641.

    CAS  Google Scholar 

  • Borges A.V. (2005). Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the Coastal Ocean ? Estuaries. 28(1): 3-27.

    Article  CAS  Google Scholar 

  • Borges A.V., Delille B., and Frankignoulle M. (2005). Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters. 32: L14601 (doi:10.1029/2005GL023053).

    Article  CAS  Google Scholar 

  • Borges A.V., Schiettecatte L.S., Abril G., Delille B., and Gazeau F. (2006). Carbon dioxide in European coastal waters. Estuarine Coastal and Shelf Science. 70: 375-387.

    Article  CAS  Google Scholar 

  • Ciais P., Bousquet P., Freibauer A., and Naegler T. (2006). On the horizontal displacement of car-bon associated to agriculture and how it impacts atmospheric CO2 gradients. Global Biogeochemical Cycles, in revisions.

    Google Scholar 

  • Cole J.J. and Caraco N.F. (2001). Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research. 52: 101-110.

    Article  CAS  Google Scholar 

  • Cole J.J., Caraco N.F., Kling G.W., and Kratz T.W. (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science. 265: 1568-1570.

    Article  CAS  Google Scholar 

  • CORINE Land cover (2000). EEA online publications: http://reports.eea.eu.int/COR0- landcover/ en., edited.

  • Enting, I. G., and Mansbridge J. V.: Latitudinal Distribution of Sources and Sinks of CO2 - Results of an Inversion Study, Tellus, 43B, 156-170, 1991.

    CAS  Google Scholar 

  • FAO (2004). Food and Agriculture Organization database, in http://faostat.fao.org/faostat/ collections?subset = agriculture, edited.

  • Folberth G., Hauglustaine D., Ciais P., and Lathière J. (2005). On the role of atmospheric chemis-try in the global CO2 budget. Geophysical Research Letters. doi:10.1029.

    Google Scholar 

  • Frankignoulle M., Abril G., Borges A., Bourge I., Canon C., Delille B., Libert E., and Théate J.M. (1998). Carbon dioxide emission from European estuaries. Science. 282: 434-436.

    Article  CAS  Google Scholar 

  • Gazeau F., Gattuso J.-P., Middelburg J.J., Brion N., Schiettecatte L.-S., Frankignoulle M., and Borges A.V. (2005). Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt Estuary). Estuaries. 28(6): 868-883.

    Article  CAS  Google Scholar 

  • Graneli W., Lindell M., and Tranvik L. (1996). Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnology and Oceanography. 41: 698-706.

    Article  CAS  Google Scholar 

  • Grosbois C., Négrel P., Fouillac C., and Grimaud D. (2000). Dissolved load of the Loire River: Chemical and isotopic characterization. Chemical Geology. 170: 179-201.

    Article  CAS  Google Scholar 

  • Hauglustaine D.A., Hourdin F., Jourdain L., Filiberti M.A., Walters S., Lamarque J.F., and Holland E.A. (2004). Interactive chemistry in the laboratoire de météorologie dynamique gen-eral circulation model: Description and background tropospheric chemistry evaluation. Journal of Geophysical Research. 109.

    Google Scholar 

  • Hope D., Palmer S., Billet M., and Dawson J.J.C. (2001). Carbon dioxide and methane evasion from a temperate peatland stream. Limnology and Oceanography. 46: 847-857.

    CAS  Google Scholar 

  • Huthnance J.M. (2006). North-East Atlantic margins. In Carbon and Nutrient Fluxes in Global Continental Margins.Atkinson L., Liu K.K., Quinones R., and Talaue-McManus L. (Eds.), Springer, New York.

    Google Scholar 

  • Imhoff M.L., Bounoua L., Ricketts T., Loucks C., Harriss R., and Lawrence W.T. (2004). Global patterns in human consumption of net primary production. Nature. 429: 870-873.

    Article  CAS  Google Scholar 

  • Janssens I.A., et al. (2003). Europe’s terrestrial biosphere absorbs 7 to 12% of European Anthropogenic emissions. Science. 300: 1538-1542.

    Article  CAS  Google Scholar 

  • Janssens I.A., et al. (2005). The carbon budget of terrestrial ecosystems at country-scale A European case study. Biogeosciences. 2: 15-26.

    Article  CAS  Google Scholar 

  • Jones J.B. and Mulholland P.J. (1998). Carbon dioxide variation in a hardwood forest stream: An integrative measure of whole catchment soil respiration. Ecosystems. 1: 183-196.

    Article  CAS  Google Scholar 

  • Kempe S. (1982). Long term record of CO2 pressure fluctuations in freshwaters. Mitteilungen aus dem Geologish-Paläontologishen Institut der Universität Hamburg. 52: 91-332.

    CAS  Google Scholar 

  • Kempe S. (1984). Sinks of the anthropogenically enhanced carbon cycle in surface fresh waters. Journal of Geophysical Research. 89: 4657-4676.

    Article  CAS  Google Scholar 

  • Kesselmeier J. (2005). Volatile organic carbon compound emissions in relation to plant carbon fixation and the terrestrial carbon budget, Global Biogeochemical Cycles. 16: 11.

    Google Scholar 

  • Lafont S., Kergoat L., Dedieu G., Chevillard A., Karstens U., and Kolle O. (2002). Spatial and temporal variability of land CO2 fluxes estimated with remote sensing and analysis data over western Eurasia. Tellus. 54B: 820-833.

    CAS  Google Scholar 

  • Ludwig W., Meybeck M., and Abousamra F. (2003). Riverine transport of water, sediments and pollutants to the Mediterranean Sea. Medit. Action Technical Report Series #141, UNEP/MAP Athens, 111 pp.

    Google Scholar 

  • Meybeck M. (1993). Riverine transport of atmospheric carbon: Sources, global typology and budget. Water, Air Soil Pollution, 70: 443-464.

    Article  CAS  Google Scholar 

  • Meybeck M. (2005). Global distribution and behaviour of carbon species in world rivers. In Soil Erosion and Carbon dynamics. Roose E., Lal R., Feller C., Barthès B., Stewart B.A. (Eds.), Advances in Soil Science Series, CRC Boca Raton, FL, 209-238.

    Google Scholar 

  • Meybeck M. and Ragu A. (1996). River discharges to the oceans. An assessment of suspended solids, major ions, and nutrients. Environment Information and Assessment Report. UNEP, Nairobi, 250 pp.

    Google Scholar 

  • Meybeck M., Cauwet G., Dessery S., Somville M., Gouleau D., and Billen G. (1988). Nutrients (Organic C, P, N, Si) in the eutrophic river Loire and its estuary. East Coast Shelf Science. 27: 595-624.

    Article  CAS  Google Scholar 

  • Myneni R., Dong J., Tucker C., Kaufmann R.K., Kauppi P.E., Uski J., Zhou L., Alexeyev V., and Hughes M.K. (2001). A large carbon sink in the woody biomass of Northern forests. PNAS. 9: 14784-14789.

    Article  CAS  Google Scholar 

  • Neal C., House W.A., Jarvie H.P., and Eatherall A. (1998). The significance of dissolved carbon dioxide in major rivers entering the North Sea. The Science of the total Environment. 210/211: 187-203.

    Google Scholar 

  • Pacala S. W., et al. (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science. 292: 2316-2320.

    Article  CAS  Google Scholar 

  • Peylin P., Bousquet P., LeQuéré C., Sitch S., Friedlingstein P., McKinley G.A., Gruber N., Rayner P., and Ciais P. (2005). Multiple constraints on regional CO2 fluxes variations over land and oceans. Global Biogeochemical Cycles. 19: GB1011, doi:10.1029/2003GB002214.

    Google Scholar 

  • Ramankutty N. and Foley J. (1998). Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochemical Cycles. 12: 667-685.

    Article  CAS  Google Scholar 

  • Sarmiento J.L. and Sundquist E.T. (1992). Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature. 356: 589-593.

    Article  CAS  Google Scholar 

  • Schiettecatte, L.-S., Thomas, H., Bozec, Y., and Borges, A.V. (2007). High temporal coverage of carbon dioxide measurements in the Southern Bight of the North Sea., Marine Chemistry, submitted.

    Google Scholar 

  • Sobek S., Algesten G., Bergstrom A.-K., Jansson M., Tranvik L.J. (2003). The catchment and cli-mate regulation of pCO2 in boreal lakes. Global Change Biology, 9: 630-41.

    Article  Google Scholar 

  • Takahashi T., Sutherland S.C., Sweeney C., Poisson A., Metzl N., Tilbrook B., Bates N.R., Wanninkhof R., Feely R.A., Sabine C., Olafsson J., and Nojiri Y. (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research. II 49(9-10): 1601-1622.

    Article  CAS  Google Scholar 

  • Tans P.P., Fung I.Y., and Enting I.G. (1995). Storage versus flux budgets: The terrestrial uptake of CO2 during the 1980s. In Biotic Feedbacks in the Global System. Woodwell G.M. and Mackensie F.T. (Eds.), Oxford University Press, New York. 351-366.

    Google Scholar 

  • Thomas H., Bozec Y., De Baar H.J.W., Elkalay K., Frankignoulle M., Schiettecatte L.-S., and Borges A.V. (2005). The carbon budget of the North Sea. Biogeosciences. 2(1): 87-96.

    Article  CAS  Google Scholar 

  • Tranvik L. (2005). Terrestrial dissolved organic matter A huge but not unlimited subsidy to aquatic ecosystems. ASLO summer meeting, Santiago de Compostella. 19-24 June 2005.

    Google Scholar 

  • Vörösmarty C.J., Meybeck M., Fekete B., Sharma K., Green P., and Syvitski J. (2003). Anthropogenic sediment retention: Major global-scale impact from the population of registered impoundments. Global Planetary Changes. 39: 169-190.

    Article  Google Scholar 

  • Wanninkhof R., Mulholland P.J., and Elwood J.W. (1990). Gas exchange rates for a first order stream determined with deliberate and natural tracers. Water Resources Research 26: 1621-1630.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Ciais, P. et al. (2008). The Lateral Carbon Pump, and the European Carbon Balance. In: Dolman, A.J., Valentini, R., Freibauer, A. (eds) The Continental-Scale Greenhouse Gas Balance of Europe. Ecological Studies, vol 203. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76570-9_16

Download citation

Publish with us

Policies and ethics