Skip to main content

Involvement of Transcriptional Factor TonEBP in the Regulation of the Taurine Transporter in the Cardiomyocyte

  • Conference paper
Taurine 7

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 643))

Abstract

Taurine is found in high concentrations in heart where it exerts several actions that could potentially benefit the diseased heart. The taurine transporter (TauT) is crucial for the maintenance of high taurine levels in the heart. Although cardiac taurine content is altered in various pathological conditions, little is known about the regulatory mechanisms governing TauT expression in cardiac myocytes. In the present study, we found that treatment with the antineoplastic drug doxorubicin (DOX), which is also known as a cardiotoxic agent, decreases the expression of the TauT gene in cultured cardiomyocytes isolated from the neonatal rat heart. Based on data obtained using a luciferase assay, DOX significantly reduced transcriptional activity driven by the TauT promoter, while deletion or mutation of a tonicity-response element (TonE) in this promoter eliminated the change of promoter activity. The protein level of the TonE-binding protein (TonEBP) was reduced by DOX treatment. In addition, the reduction in TonEBP protein content was suppressed by proteasome inhibitors. In conclusion, the DOX-enhanced degradation of TonEBP resulting in reduced TauT expression in the cardiomyocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai M, Tomaru K, Takizawa T, Sekiguchi K, Yokoyama T, Suzuki T, Nagai R (1998) Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. J Mol Cell Cardiol 30:243–254

    Article  PubMed  CAS  Google Scholar 

  • Chapman RA, Suleiman MS, Earm YE (1993) Taurine and the heart. Cardiovasc Res 27:358–363

    Article  PubMed  CAS  Google Scholar 

  • Chesney RW (1985) Taurine: its biological role and clinical implications. Adv Pediatr 32:1–42

    PubMed  CAS  Google Scholar 

  • Hamaguchi T, Azuma J, Harada H, Takahashi K, Kishimoto S, Schaffer SW (1989) Protective effect of taurine against doxorubicin-induced cardiotoxicity in perfused chick hearts. Pharmacol Res 21:729–734

    Article  PubMed  CAS  Google Scholar 

  • Han X, Chesney RW (2003) Regulation of taurine transporter gene (TauT) by WT1. FEBS Lett 540:71–76

    Article  PubMed  CAS  Google Scholar 

  • Han X, Patters AB, Chesney RW (2002) Transcriptional repression of taurine transporter gene (TauT) by p53 in renal cells. J Biol Chem 277:39266–39273

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Cusack BJ, Olson RD, Stroo W, Azuma J, Hamaguchi T, Schaffer SW (1990) Taurine deficiency and doxorubicin: interaction with the cardiac sarcolemmal calcium pump. Biochem Pharmacol 39:745–751

    Article  PubMed  CAS  Google Scholar 

  • Heller-Stilb B, van Roeyen C, Rascher K, Hartwig HG, Huth A, Seeliger MW, Warskulat U, Haussinger D (2002) Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. Faseb J 16:231–233

    PubMed  CAS  Google Scholar 

  • Ho SN (2003) The role of NFAT5/TonEBP in establishing an optimal intracellular environment. Arch Biochem Biophys 413:151–157

    Article  PubMed  CAS  Google Scholar 

  • Huxtable R, Bressler R (1974) Taurine concentrations in congestive heart failure. Science 184:1187–1188

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Ito H, Miller SC, Billingham ME, Akimoto H, Torti SV, Wade R, Gahlmann R, Lyons G, Kedes L, Torti FM (1990) Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proc Natl Acad Sci USA 87:4275–4279

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Fujio Y, Hirata M, Takatani T, Matsuda T, Muraoka S, Takahashi K, Azuma J (2004) Expression of taurine transporter is regulated through the TonE (tonicity-responsive element)/TonEBP (TonE-binding protein) pathway and contributes to cytoprotection in HepG2 cells. Biochem J 382:177–182

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Fujio Y, Takahashi K, Azuma J (2007) Degradation of NFAT5, a transcriptional regulator of osmotic stress-related genes, is a critical event for doxorubicin-induced cytotoxicity in cardiac myocytes. J Biol Chem 282:1152–1160

    Article  PubMed  CAS  Google Scholar 

  • Ko BC, Turck CW, Lee KW, Yang Y, Chung SS (2000) Purification, identification, and characterization of an osmotic response element binding protein. Biochem Biophys Res Commun 270:52–61

    Article  PubMed  CAS  Google Scholar 

  • Kumarapeli AR, Horak KM, Glasford JW, Li J, Chen Q, Liu J, Zheng H, Wang X (2005) A novel transgenic mouse model reveals deregulation of the ubiquitin-proteasome system in the heart by doxorubicin. Faseb J 19:2051–2053

    PubMed  Google Scholar 

  • Lopez-Rodriguez C, Antos CL, Shelton JM, Richardson JA, Lin F, Novobrantseva TI, Bronson RT, Igarashi P, Rao A, Olson EN (2004) Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proc Natl Acad Sci USA 101:2392–2397

    Article  PubMed  CAS  Google Scholar 

  • Maouyo D, Kim JY, Lee SD, Wu Y, Woo SK, Kwon HM (2002) Mouse TonEBP-NFAT5: expression in early development and alternative splicing. Am J Physiol Renal Physiol 282:F802–F809

    PubMed  CAS  Google Scholar 

  • Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa H, Woo SK, Chen CP, Dahl SC, Handler JS, Kwon HM (1998) Cis- and trans-acting factors regulating transcription of the BGT1 gene in response to hypertonicity. Am J Physiol 274:F753–F761

    PubMed  CAS  Google Scholar 

  • Moise NS, Pacioretty LM, Kallfelz FA, Stipanuk MH, King JM, Gilmour RF, Jr. (1991) Dietary taurine deficiency and dilated cardiomyopathy in the fox. Am Heart J 121:541–547

    Article  PubMed  CAS  Google Scholar 

  • Oudit GY, Trivieri MG, Khaper N, Husain T, Wilson GJ, Liu P, Sole MJ, Backx PH (2004) Taurine supplementation reduces oxidative stress and improves cardiovascular function in an iron-overload murine model. Circulation 109:1877–1885

    Article  PubMed  CAS  Google Scholar 

  • Pion PD, Kittleson MD, Rogers QR, Morris JG (1987) Myocardial failure in cats associated with low plasma taurine: a reversible cardiomyopathy. Science 237:764–768

    Article  PubMed  CAS  Google Scholar 

  • Poizat C, Sartorelli V, Chung G, Kloner RA, Kedes L (2000) Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription. Mol Cell Biol 20:8643–8654

    Article  PubMed  CAS  Google Scholar 

  • Rim JS, Atta MG, Dahl SC, Berry GT, Handler JS, Kwon HM (1998) Transcription of the sodium/myo-inositol cotransporter gene is regulated by multiple tonicity-responsive enhancers spread over 50 kilobase pairs in the 5’-flanking region. J Biol Chem 273:20615–20621

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Sperelakis N (1998) Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol 30:451–463

    Article  PubMed  CAS  Google Scholar 

  • Schaffer SW, Azuma J, Takahashi K, Mozaffari M (2003) Why is taurine cytoprotective? Adv Exp Med Biol 526:307–321

    PubMed  CAS  Google Scholar 

  • Schaffer SW, Solodushko V, Azuma J (2000a) Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. Adv Exp Med Biol 483:57–69

    Article  CAS  Google Scholar 

  • Schaffer SW, Takahashi K, Azuma J (2000b) Role of osmoregulation in the actions of taurine. Amino Acids 19:527–546

    Article  CAS  Google Scholar 

  • Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Ohyabu Y, Solodushko V, Takatani T, Itoh T, Schaffer SW,Azuma J (2003) Taurine renders the cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 41:726–733

    Article  PubMed  CAS  Google Scholar 

  • Takatani T, Takahashi K, Uozumi Y, Matsuda T, Ito T, Schaffer SW, Fujio Y, Azuma J (2004) Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biophys Res Commun 316:484–489

    Article  PubMed  CAS  Google Scholar 

  • Takihara K, Azuma J, Awata N, Ohta H, Hamaguchi T, Sawamura A, Tanaka Y, Kishimoto S, Sperelakis N (1986) Beneficial effect of taurine in rabbits with chronic congestive heart failure. Am Heart J 112:1278–1284

    Article  PubMed  CAS  Google Scholar 

  • Trama J, Go WY, Ho SN (2002) The osmoprotective function of the NFAT5 transcription factor in T cell development and activation. J Immunol 169:5477–5488

    PubMed  CAS  Google Scholar 

  • Trama J, Lu Q, Hawley RG, Ho SN (2000) The NFAT-related protein NFATL1 (TonEBP/NFAT5) is induced upon T cell activation in a calcineurin-dependent manner. J Immunol 165:4884–4894

    PubMed  CAS  Google Scholar 

  • Uchida S, Kwon HM, Yamauchi A, Preston AS, Marumo F, Handler JS (1992) Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(-)-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci USA 89:8230–8234

    Article  PubMed  CAS  Google Scholar 

  • Uozumi Y, Ito T, Hoshino Y, Mohri T, Maeda M, Takahashi K, Fujio Y, Azuma J (2006) Myogenic differentiation induces taurine transporter in association with taurine-mediated cytoprotection in skeletal muscles. Biochem J 394:699–706

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ko BC, Yang JY, Lam TT, Jiang Z, Zhang J, Chung SK, Chung SS (2005) Transgenic mice expressing dominant-negative osmotic-response element-binding protein (OREBP) in lens exhibit fiber cell elongation defect associated with increased DNA breaks. J Biol Chem 280:19986–19991

    Article  PubMed  CAS  Google Scholar 

  • Woo SK, Lee SD, Kwon HM (2002) TonEBP transcriptional activator in the cellular response to increased osmolality. Pflugers Arch 444:579–585

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Ito, T., Fujio, Y., Schaffer, S.W., Azuma, J. (2009). Involvement of Transcriptional Factor TonEBP in the Regulation of the Taurine Transporter in the Cardiomyocyte. In: Azuma, J., Schaffer, S.W., Ito, T. (eds) Taurine 7. Advances in Experimental Medicine and Biology, vol 643. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75681-3_54

Download citation

Publish with us

Policies and ethics