Skip to main content

The Effects of Taurine, Taurine Homologs and Hypotaurine on Cell and Membrane Antioxidative System Alterations Caused by Type 2 Diabetes in Rat Erythrocytes

  • Conference paper
Taurine 7

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 643))

abstract

This study compared taurine, aminomethanesulfonic acid, homotaurine and hypotaurine for the ability to modify indices of oxidative stress and membrane damage associated with type 2 diabetes. In the study, male Goto-Kakizaki and Wistar-Kyoto rats were allowed free access to a high fat and normal diet, respectively, for 9 weeks. At the end of week 8, half of the animals in each group received a daily intraperitoneal dose of a sulfur compound (0.612 M/kg) for 5 days and, 24 hr after the last treatment, blood samples were withdrawn by cardiac puncture to obtain plasma and erythrocyte fractions for biochemical analyses. Relative to control values, taurine and its congeners reduced membrane damage, the formation of intracellular malondialdehyde and oxidized glutathione, and the decreases in reduced glutathione and antioxidative enzyme activities in diabetic erythrocytes. Except for a few isolated instances, all test compounds were equiprotective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM, Butler J (1988) The antioxidant action of taurine, hypotaurine and their metabolic precursors Biochem J 256:251–255

    CAS  Google Scholar 

  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications. A new perspective on an old paradigm. Diabetes 48:1–9

    Article  PubMed  CAS  Google Scholar 

  • Beard KM, Shangari N, Wu B, O’Brien PJ (2003) Metabolism, not autoxidation plays a role in α-oxoaldehyde- and reducing sugar-induced erythrocyte GSH depletion: relevance for diabetes mellitus. Mol Cell Biochem 252:331–338

    Article  PubMed  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  • Ceriello A (2003) New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 26:1589–1596

    Article  PubMed  CAS  Google Scholar 

  • Da Ros R, Assaloni R, Ceriello A (2004) Antioxidant therapy in diabetic complications:what is new? Curr Vasc Pharmacol 2:335–341

    Article  PubMed  Google Scholar 

  • Donma O, Yorulmaz E, Pekel H, Suyugul N (2002) Blood and lens lipid peroxidation and antioxidant status in normal individuals, senile and diabetic cataractous patients. Curr Eye Res 25:9–16

    Article  PubMed  Google Scholar 

  • Djordjevic A, Spasic S, Jovanovic-Galovic A, Djordjevic R, Grubor-Lajsic G (2004) Oxidative stress in diabetic pregnancy: SOD, CAT and GSH-Px activity and lipid peroxidation. J Matern Fetal Neonatal Med 16:367–372

    Article  PubMed  CAS  Google Scholar 

  • Evans JL (2007) Antioxidants: do they have a role in the treatment of insulin resistance? Indian J Med Res 125:355–372

    PubMed  CAS  Google Scholar 

  • Fellman JH, Roth ES (1985) The biological oxidation of hypotaurine to taurine: hypotaurine as an antioxidant. In: Oja SS, Ahtee L, Kontro P, Paasonen MK (eds) Taurine: biological actions and clinical perspectives, Alan R. Liss, New York, pp 71–82

    Google Scholar 

  • Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  Google Scholar 

  • Gallou G, Ruelland A, Campion L, Maugendre D, Le Moullec N, Legras B, Allannic H, Cloarec L (1994) Increase in thiobarbituric acid-reactive substances and vascular complications in type 2 diabetes mellitus Diabetes Metab 20:258–264

    CAS  Google Scholar 

  • Goodman HO, Shihabi ZK (1990) Supplemental taurine in diabetic rats: effects on plasma glucose and triglycerides. Biochem Med Metab Biol 43:1–9

    Article  PubMed  CAS  Google Scholar 

  • Gürler B, Vural H, Yilmaz N, Oguz H, Satici A, Aksoy N (2000) The role of oxidative stress in diabetic retinopathy. Eye 14 (Pt 5):730–735

    PubMed  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ, Sebring LA (1986) Towards a unifying theory for the actions of taurine. Trends Pharmacol Sci 7:481–485

    Article  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Pharmacol Rev 72:101–163

    CAS  Google Scholar 

  • Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka T (2004) Involvement of oxidative stress and the JNK pathway in glucose toxicity. Rev Diabet Stud 1:165–174

    Article  PubMed  Google Scholar 

  • Kesavulu MM, Giri R, Kameswara R.B, Apparao C (2000) Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab 26:387–392

    PubMed  CAS  Google Scholar 

  • Kulakowski EC, Maturo J (1984) Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol 33:2835–2838

    Article  PubMed  CAS  Google Scholar 

  • Maiese K, Morhan SD, Chong ZZ (2007) Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr Neurovasc Res 4:63–71

    Article  PubMed  CAS  Google Scholar 

  • Memisogullari R, Taysi S, Bakan E, Capoglu I (2003) Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell Biochem Funct 21:291–296

    Article  PubMed  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    PubMed  CAS  Google Scholar 

  • Ogasawara M, Nakamura T, Koyama I, Nemoto M, Yoshida T (1994) Reactivity of taurine with aldehydes and its physiological role. In: Huxtable R, Michalk DV (eds) Taurine in health and disease, Plenum Press, New York, pp 71–78

    Google Scholar 

  • Pitari G,Dupre S, Sprinto A, Antoni G (2000) Hypotaurine protection on cell damage by singlet oxygen. In: Della Corte L, Huxtable RJ, Sgaragli G, Tipton KF (eds) Taurine 4: taurine and excitable tissues, Kluwer Academic/Plenum Publishers, New York, pp 157–162

    Google Scholar 

  • Pokhrel KP, Lau-Cam C.A (2000) In vitro and in vivo effects of taurine and structurally related sulfur-containing compounds against phenylhydrazine-induced oxidative damage to erythrocytes. In: Della Corte L, Huxtable RJ, Sgaragli G, Tipton KF (eds) Taurine 4: taurine and excitable tissues, Kluwer Academic/Plenum Publishers, New York, pp 503–522

    Google Scholar 

  • Schaffer SW, Azuma J (1992) Myocardial physiological effects of taurine and their significance. In: Lombardini JB, Schaffer SW, Azuma J (eds) Taurine: nutritional value and mechanisms of action, Plenum Press, New York, pp 105–120

    Google Scholar 

  • Tadolini B, Pintus G, Pinna GG, Bennardini F, Franconi F (1995) Effects of taurine and hypotaurine on lipid peroxidation. Biochem Biophys Res Commun 213:820–826

    Article  PubMed  CAS  Google Scholar 

  • Tas S, Sarandol, E, Ayvalik SZ, Serdar Z, Dirican M (2007) Vanadyl sulfate, taurine, and combined vanadyl sulfate and taurine treatments in diabetic rats: effects on the oxidative and antioxidative systems. Arch Med Res 38:276–283

    Article  PubMed  CAS  Google Scholar 

  • Trachtman H, Futterweit D, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan AA, Rao PS, Sturman JA, Boles TH et al. (1995) Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats Am J Physiol 269:F429–F438

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Gossai, D., Lau-Cam, C.A. (2009). The Effects of Taurine, Taurine Homologs and Hypotaurine on Cell and Membrane Antioxidative System Alterations Caused by Type 2 Diabetes in Rat Erythrocytes. In: Azuma, J., Schaffer, S.W., Ito, T. (eds) Taurine 7. Advances in Experimental Medicine and Biology, vol 643. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75681-3_37

Download citation

Publish with us

Policies and ethics