Skip to main content

Imaging of Malignant Skeletal Tumors

  • Chapter
Imaging in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 143))

Malignant tumors of the skeleton represent a diverse group of primary and secondary neoplasms, each with unique imaging and clinical features. The radiologist encountering a lesion of the skeleton must apply a methodical approach to the analysis of imaging features to distinguish benign from malignant entities. This methodical approach can provide invaluable insight into the nature of the lesion, and will ultimately guide the final diagnosis; indeed, concordance between the imaging appearance and a preliminary histologic diagnosis is absolutely necessary to ensure that each lesion is appropriately diagnosed and managed. For the clinician, there is an ever-expanding array of potential imaging modalities that can characterize a lesion and evaluate its extent. Imaging will guide treatment, monitor response to therapy and facilitate discussions of prognosis. The purpose of this chapter is to familiarize the practicing clinician and radiologist with the most common malignant lesions of the skeleton. The chapter describes the major primary lesions of bone (osteosarcoma, chondrosarcoma, myeloma, Ewing’s Sarcoma and primary lymphoma of bone), as well as metastasis. Our goal is to familiarize the reader with the key imaging characteristics of each lesion, as well as the clinical features that may guide the differential diagnosis. The discussion incorporates all imaging modalities, including radiographs, magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET) and bone scintigraphy, with a particular focus on the appropriate use of each modality in the diagnosis and staging of a newly detected lesion. Recent evidence, particularly focused on the newer modalities (MRI and PET), is presented to provide an evidence-based foundation for the imaging work-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lodwick G S, Wilson A J, Farrell C, Virtama P, and Dittrich F. Determining growth rates of focal lesions of bone from radiographs. Radiology, 134: 577–583, 1980.

    PubMed  CAS  Google Scholar 

  2. Lodwick G S, Wilson A J, Farrell C, Virtama P, Smeltzer F M, and Dittrich F. Estimating rate of growth in bone lesions: observer performance and error. Radiology, 134: 585–590, 1980.

    PubMed  CAS  Google Scholar 

  3. Arndt C A and Crist W M. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med, 341: 342–352, 1999.

    PubMed  CAS  Google Scholar 

  4. Murphey M D, Robbin M R, McRae G A, Flemming D J, Temple H T, and Kransdorf M J. The many faces of osteosarcoma. Radiographics, 17: 1205–1231, 1997.

    PubMed  CAS  Google Scholar 

  5. Miller S L and Hoffer F A. Malignant and benign bone tumors. Radiol Clin North Am, 39: 673–699, 2001.

    PubMed  CAS  Google Scholar 

  6. Sajadi K R, Heck R K, Neel M D, et al. The incidence and prognosis of osteosarcoma skip metastases. Clin Orthop Relat Res: 92–96, 2004.

    Google Scholar 

  7. Brenner W, Bohuslavizki K H, and Eary J F. PET imaging of osteosarcoma. J Nucl Med, 44: 930–942, 2003.

    PubMed  Google Scholar 

  8. Huvos A G, Rosen G, Bretsky S S, and Butler A. Telangiectatic osteogenic sarcoma: a clinicopathologic study of 124 patients. Cancer, 49: 1679–1689, 1982.

    PubMed  CAS  Google Scholar 

  9. Murphey M D, wan Jaovisidha S, Temple H T, Gannon F H, Jelinek J S, and Malawer M M. Telangiectatic osteosarcoma: radiologic-pathologic comparison. Radiology, 229: 545–553, 2003.

    PubMed  Google Scholar 

  10. Klein M J and Siegal G P. Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol, 125: 555–581, 2006.

    PubMed  Google Scholar 

  11. Nakajima H, Sim F H, Bond J R, and Unni K K. Small cell osteosarcoma of bone. Review of 72 cases. Cancer, 79: 2095–2106, 1997.

    PubMed  CAS  Google Scholar 

  12. Jaffe H L. Intracortical osteogenic sarcoma. Bull Hosp Joint Dis, 21: 189–197, 1960.

    PubMed  CAS  Google Scholar 

  13. Smith J, Botet J F, and Yeh S D. Bone sarcomas in Paget disease: a study of 85 patients. Radiology, 152: 583–590, 1984.

    PubMed  CAS  Google Scholar 

  14. McCarville M B, Christie R, Daw N C, Spunt S L, and Kaste S C. PET/CT in the evaluation of childhood sarcomas. AJR Am J Roentgenol, 184: 1293–1304, 2005.

    PubMed  Google Scholar 

  15. Rodriguez-Galindo C, Shah N, McCarville M B, et al. Outcome after local recurrence of osteosarcoma: the St. Jude Children’s Research Hospital experience (1970–2000). Cancer, 100: 1928–1935, 2004.

    PubMed  Google Scholar 

  16. Wittig J C, Bickels J, Priebat D, et al. Osteosarcoma: a multidisciplinary approach to diagnosis and treatment. Am Fam Physician, 65: 1123–1132, 2002.

    PubMed  Google Scholar 

  17. Imbriaco M, Yeh S D, Yeung H, et al. Thallium-201 scintigraphy for the evaluation of tumor response to preoperative chemotherapy in patients with osteosarcoma. Cancer, 80: 1507–1512, 1997.

    PubMed  CAS  Google Scholar 

  18. Menendez L R, Fideler B M, and Mirra J. Thallium-201 scanning for the evaluation of osteosarcoma and soft tissue sarcoma. A study of the evaluation and predictability of the histological response to chemotherapy. J Bone Joint Surg Am, 75: 526–531, 1993.

    PubMed  CAS  Google Scholar 

  19. Bredella M A, Caputo G R, and Steinbach L S. Value of FDG positron emission tomography in conjunction with MR imaging for evaluating therapy response in patients with musculoskeletal sarcomas. AJR Am J Roentgenol, 179: 1145–1150, 2002.

    PubMed  Google Scholar 

  20. Hawkins D S, Rajendran J G, Conrad E U, 3rd, Bruckner J D, and Eary J F. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer, 94: 3277–3284, 2002.

    PubMed  CAS  Google Scholar 

  21. Murphey M D, Walker E A, Wilson A J, Kransdorf M J, Temple H T, and Gannon F H. From the archives of the AFIP: imaging of primary chondrosarcoma: radiologic-pathologic correlation. Radiographics, 23: 1245–1278, 2003.

    PubMed  Google Scholar 

  22. Feldman F, Van Heertum R, Saxena C, and Parisien M. 18FDG-PET applications for cartilage neoplasms. Skeletal Radiol, 34: 367–374, 2005.

    PubMed  Google Scholar 

  23. Murphey M D, Flemming D J, Boyea S R, Bojescul J A, Sweet D E, and Temple H T. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics, 18: 1213–1237; quiz 1244–1215, 1998.

    PubMed  CAS  Google Scholar 

  24. Lee F Y, Yu J, Chang S S, Fawwaz R, and Parisien M V. Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Joint Surg Am, 86-A: 2677–2685, 2004

    PubMed  Google Scholar 

  25. Evans H L, Ayala A G, and Romsdahl M M. Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading. Cancer, 40: 818–831, 1977.

    PubMed  CAS  Google Scholar 

  26. Arsos G, Venizelos I, Karatzas N, Koukoulidis A, and Karakatsanis C. Low-grade chondrosarcomas: a difficult target for radionuclide imaging. Case report and review of the literature. Eur J Radiol, 43: 66–72, 2002.

    PubMed  Google Scholar 

  27. Tallini G, Dorfman H, Brys P, et al. Correlation between clinicopathological features and karyotype in 100 cartilaginous and chordoid tumors. A report from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. J Pathol, 196: 194–203, 2002.

    PubMed  Google Scholar 

  28. Janzen L, Logan P M, O’Connell J X, Connell D G, and Munk P L. Intramedullary chondroid tumors of bone: correlation of abnormal peritumoral marrow and soft tissue MRI signal with tumor type. Skeletal Radiol, 26: 100–106, 1997.

    PubMed  CAS  Google Scholar 

  29. Geirnaerdt M J, Bloem J L, Eulderink F, Hogendoorn P C, and Taminiau A H. Cartilaginous tumors: correlation of gadolinium-enhanced MR imaging and histopathologic findings. Radiology, 186: 813–817, 1993.

    PubMed  CAS  Google Scholar 

  30. Aoki J, Sone S, Fujioka F, et al. MRI of enchondroma and chondrosarcoma: rings and arcs of Gd-DTPA enhancement. J Comput Assist Tomogr, 15: 1011–1016, 1991.

    PubMed  CAS  Google Scholar 

  31. Geirnaerdt M J, Hogendoorn P C, Bloem J L, Taminiau A H, and van der Woude H J. Cartilaginous tumors: fast contrast-enhanced MR imaging. Radiology, 214: 539–546, 2000.

    PubMed  CAS  Google Scholar 

  32. Brenner W, Conrad E U, and Eary J F. FDG PET imaging for grading and prediction of outcome in chondrosarcoma patients. Eur J Nucl Med Mol Imaging, 31: 189–195, 2004.

    PubMed  Google Scholar 

  33. Collins M S, Koyama T, Swee R G, and Inwards C Y. Clear cell chondrosarcoma: radiographic, computed tomographic, and magnetic resonance findings in 34 patients with pathologic correlation. Skeletal Radiol, 32: 687–694, 2003.

    PubMed  Google Scholar 

  34. Kaim A H, Hugli R, Bonel H M, and Jundt G. Chondroblastoma and clear cell chondrosarcoma: radiological and MRI characteristics with histopathological correlation. Skeletal Radiol, 31: 88–95, 2002.

    PubMed  Google Scholar 

  35. Davila J A, Amrami K K, Sundaram M, Adkins M C, and Unni K K. Chondroblastoma of the hands and feet. Skeletal Radiol, 33: 582–587, 2004.

    PubMed  Google Scholar 

  36. Aoki J, Tanikawa H, Ishii K, et al. MRI findings indicative of hemosiderin in giant-cell tumor of bone: frequency, cause, and diagnostic significance. AJR Am J Roentgenol, 166: 145–148, 1996.

    PubMed  CAS  Google Scholar 

  37. Kumta S M, Griffith J F, Chow L T, and Leung P C. Primary juxtacortical chondrosarcoma dedifferentiating after 20 years. Skeletal Radiol, 27: 569–573, 1998.

    PubMed  CAS  Google Scholar 

  38. Schajowicz F. Juxtacortical chondrosarcoma. J Bone Joint Surg Br, 59-B: 473–480, 1977.

    PubMed  CAS  Google Scholar 

  39. Robinson P, White L M, Sundaram M, et al. Periosteal chondroid tumors: radiologic evaluation with pathologic correlation. AJR Am J Roentgenol, 177: 1183–1188, 2001.

    PubMed  CAS  Google Scholar 

  40. Seeger L L, Yao L, and Eckardt J J. Surface lesions of bone. Radiology, 206: 17–33, 1998.

    PubMed  CAS  Google Scholar 

  41. Antonescu C R, Argani P, Erlandson R A, Healey J H, Ladanyi M, and Huvos A G. Skeletal and extraskeletal myxoid chondrosarcoma: a comparative clinicopathologic, ultrastructural, and molecular study. Cancer, 83: 1504–1521, 1998.

    PubMed  CAS  Google Scholar 

  42. Amukotuwa S A, Choong P F, Smith P J, Powell G J, Thomas D, and Schlicht S M. Femoral mesenchymal chondrosarcoma with secondary aneurysmal bone cysts mimicking a small-cell osteosarcoma. Skeletal Radiol, 35: 311–318, 2006.

    PubMed  Google Scholar 

  43. Nussbeck W, Neureiter D, Soder S, Inwards C, and Aigner T. Mesenchymal chondrosarcoma: an immunohistochemical study of 10 cases examining prognostic significance of proliferative activity and cellular differentiation. Pathology, 36: 230–233, 2004.

    PubMed  CAS  Google Scholar 

  44. Chidambaram A and Sanville P. Mesenchymal chondrosarcoma of the maxilla. J Laryngol Otol, 114: 536–539, 2000.

    PubMed  CAS  Google Scholar 

  45. Nguyen B D, Daffner R H, Dash N, Rothfus W E, Nathan G, and Toca A R, Jr. Case report 790. Mesenchymal chondrosarcoma of the sacrum. Skeletal Radiol, 22: 362–366, 1993.

    PubMed  CAS  Google Scholar 

  46. Frassica F J, Unni K K, Beabout J W, and Sim F H. Dedifferentiated chondrosarcoma. A report of the clinicopathological features and treatment of seventy-eight cases. J Bone Joint Surg Am, 68: 1197–1205, 1986.

    PubMed  CAS  Google Scholar 

  47. Staals E L, Bacchini P, and Bertoni F. Dedifferentiated central chondrosarcoma. Cancer, 106: 2682–2691, 2006.

    PubMed  Google Scholar 

  48. Bruns J, Fiedler W, Werner M, and Delling G. Dedifferentiated chondrosarcoma–a fatal disease. J Cancer Res Clin Oncol, 131: 333–339, 2005.

    PubMed  CAS  Google Scholar 

  49. Littrell L A, Wenger D E, Wold L E, et al. Radiographic, CT, and MR imaging features of dedifferentiated chondrosarcomas: a retrospective review of 174 de novo cases. Radiographics, 24: 1397–1409, 2004.

    PubMed  Google Scholar 

  50. MacSweeney F, Darby A, and Saifuddin A. Dedifferentiated chondrosarcoma of the appendicular skeleton: MRI-pathological correlation. Skeletal Radiol, 32: 671–678, 2003.

    PubMed  Google Scholar 

  51. Okada K, Hasegawa T, Tateishi U, Endo M, and Itoi E. Dedifferentiated chondrosarcoma with telangiectatic osteosarcoma-like features. J Clin Pathol, 59: 1200–1202, 2006.

    PubMed  CAS  Google Scholar 

  52. Saifuddin A, Mann B S, Mahroof S, Pringle J A, Briggs T W, and Cannon S R. Dedifferentiated chondrosarcoma: use of MRI to guide needle biopsy. Clin Radiol, 59: 268–272, 2004.

    PubMed  CAS  Google Scholar 

  53. Mulligan M E. Imaging techniques used in the diagnosis, staging, and follow-up of patients with myeloma. Acta Radiol, 46: 716–724, 2005.

    PubMed  CAS  Google Scholar 

  54. Angtuaco E J, Fassas A B, Walker R, Sethi R, and Barlogie B. Multiple myeloma: clinical review and diagnostic imaging. Radiology, 231: 11–23, 2004.

    PubMed  Google Scholar 

  55. Durie B G, Kyle R A, Belch A, et al. Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation. Hematol J, 4: 379–398, 2003.

    PubMed  Google Scholar 

  56. Vande Berg B C, Michaux L, Lecouvet F E, et al. Nonmyelomatous monoclonal gammopathy: correlation of bone marrow MR images with laboratory findings and spontaneous clinical outcome. Radiology, 202: 247–251, 1997.

    Google Scholar 

  57. Baur A, Stabler A, Nagel D, et al. Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer, 95: 1334–1345, 2002.

    PubMed  Google Scholar 

  58. Mulligan M E and Badros A Z. PET/CT and MR imaging in myeloma. Skeletal Radiol, 36: 5–16, 2007.

    PubMed  Google Scholar 

  59. Johnston C, Brennan S, Ford S, and Eustace S. Whole body MR imaging: applications in oncology. Eur J Surg Oncol, 32: 239–246, 2006.

    PubMed  CAS  Google Scholar 

  60. Lecouvet F E, Dechambre S, Malghem J, Ferrant A, Vande Berg B C, and Maldague B. Bone marrow transplantation in patients with multiple myeloma: prognostic significance of MR imaging. AJR Am J Roentgenol, 176: 91–96, 2001.

    PubMed  CAS  Google Scholar 

  61. Ghanem N, Lohrmann C, Engelhardt M, et al. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol, 16: 1005–1014, 2006.

    PubMed  Google Scholar 

  62. Hartman R P, Sundaram M, Okuno S H, and Sim F H. Effect of granulocyte-stimulating factors on marrow of adult patients with musculoskeletal malignancies: incidence and MRI findings. AJR Am J Roentgenol, 183: 645–653, 2004.

    PubMed  Google Scholar 

  63. Lecouvet F E, Vande Berg B C, Michaux L, et al. Stage III multiple myeloma: clinical and prognostic value of spinal bone marrow MR imaging. Radiology, 209: 653–660, 1998.

    PubMed  CAS  Google Scholar 

  64. Layton K F, Thielen K R, Cloft H J, and Kallmes D F. Acute vertebral compression fractures in patients with multiple myeloma: evaluation of vertebral body edema patterns on MR imaging and the implications for vertebroplasty. AJNR Am J Neuroradiol, 27: 1732–1734, 2006.

    PubMed  CAS  Google Scholar 

  65. Erly W K, Oh E S, and Outwater E K. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol, 27: 1183–1188, 2006.

    PubMed  CAS  Google Scholar 

  66. Horger M, Claussen C D, Bross-Bach U, et al. Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography. Eur J Radiol, 54: 289–297, 2005.

    PubMed  Google Scholar 

  67. Nandurkar D, Kalff V, Turlakow A, Spencer A, Bailey M J, and Kelly M J. Focal MIBI uptake is a better indicator of active myeloma than diffuse uptake. Eur J Haematol, 76: 141–146, 2006.

    PubMed  CAS  Google Scholar 

  68. Breyer R J, 3rd, Mulligan M E, Smith S E, Line B R, and Badros A Z. Comparison of imaging with FDG PET/CT with other imaging modalities in myeloma. Skeletal Radiol, 35: 632–640, 2006.

    PubMed  Google Scholar 

  69. Nanni C, Zamagni E, Farsad M, et al. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur J Nucl Med Mol Imaging, 33: 525–531, 2006.

    PubMed  Google Scholar 

  70. Bredella M A, Steinbach L, Caputo G, Segall G, and Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol, 184: 1199–1204, 2005.

    PubMed  Google Scholar 

  71. Moulopoulos L A, Gika D, Anagnostopoulos A, et al. Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol, 16: 1824–1828, 2005.

    PubMed  CAS  Google Scholar 

  72. Ghanem N, Uhl M, Brink I, et al. Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol, 55: 41–55, 2005.

    PubMed  CAS  Google Scholar 

  73. Roodman G D. Mechanisms of bone metastasis. N Engl J Med, 350: 1655–1664, 2004.

    PubMed  CAS  Google Scholar 

  74. Hamaoka T, Madewell J E, Podoloff D A, Hortobagyi G N, and Ueno N T. Bone imaging in metastatic breast cancer. J Clin Oncol, 22: 2942–2953, 2004.

    PubMed  Google Scholar 

  75. Schweitzer M E, Levine C, Mitchell D G, Gannon F H, and Gomella L G. Bull’s-eyes and halos: useful MRI discriminators of osseous metastases. Radiology, 188: 249–252, 1993.

    PubMed  CAS  Google Scholar 

  76. Spuentrup E, Buecker A, Adam G, van Vaals J J, and Guenther R W. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. AJR Am J Roentgenol, 176: 351–358, 2001.

    PubMed  CAS  Google Scholar 

  77. Lauenstein T C, Goehde S C, Herborn C U, et al. Whole-body MR imaging: evaluation of patients for metastases. Radiology, 233: 139–148, 2004.

    PubMed  Google Scholar 

  78. Schmidt G P, Haug A R, Schoenberg S O, and Reiser M F. Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol, 16: 1216–1225, 2006.

    PubMed  Google Scholar 

  79. Fogelman I, Cook G, Israel O, and Van der Wall H. Positron emission tomography and bone metastases. Semin Nucl Med, 35: 135–142, 2005.

    PubMed  Google Scholar 

  80. Nakamoto Y, Cohade C, Tatsumi M, Hammoud D, and Wahl R L. CT appearance of bone metastases detected with FDG PET as part of the same PET/CT examination. Radiology, 237: 627–634, 2005.

    PubMed  Google Scholar 

  81. Rougraff B T, Kneisl J S, and Simon M A. Skeletal metastases of unknown origin. A prospective study of a diagnostic strategy. J Bone Joint Surg Am, 75: 1276–1281, 1993.

    PubMed  CAS  Google Scholar 

  82. Mulligan M E, McRae G A, and Murphey M D. Imaging features of primary lymphoma of bone. AJR Am J Roentgenol, 173: 1691–1697, 1999.

    PubMed  CAS  Google Scholar 

  83. Krishnan A, Shirkhoda A, Tehranzadeh J, Armin A R, Irwin R, and Les K. Primary bone lymphoma: radiographic-MR imaging correlation. Radiographics, 23: 1371–1383; discussion 1384–1377, 2003.

    PubMed  Google Scholar 

  84. Mengiardi B, Honegger H, Hodler J, Exner U G, Csherhati M D, and Bruhlmann W. Primary lymphoma of bone: MRI and CT characteristics during and after successful treatment. AJR Am J Roentgenol, 184: 185–192, 2005.

    PubMed  Google Scholar 

  85. Bernstein M, Kovar H, Paulussen M, et al. Ewing’s sarcoma family of tumors: current management. Oncologist, 11: 503–519, 2006.

    PubMed  CAS  Google Scholar 

  86. Hatori M, Okada K, Nishida J, and Kokubun S. Periosteal Ewing’s sarcoma: radiological imaging and histological features. Arch Orthop Trauma Surg, 121: 594–597, 2001.

    PubMed  CAS  Google Scholar 

  87. Ilaslan H, Sundaram M, Unni K K, and Dekutoski M B. Primary Ewing’s sarcoma of the vertebral column. Skeletal Radiol, 33: 506–513, 2004.

    PubMed  Google Scholar 

  88. Li W Y, Brock P, and Saunders D E. Imaging characteristics of primary cranial Ewing sarcoma. Pediatr Radiol, 35: 612–618, 2005.

    PubMed  Google Scholar 

  89. Brisse H, Ollivier L, Edeline V, et al. Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol, 34: 595–605, 2004.

    PubMed  Google Scholar 

  90. Furth C, Amthauer H, Denecke T, Ruf J, Henze G, and Gutberlet M. Impact of whole-body MRI and FDG-PET on staging and assessment of therapy response in a patient with Ewing sarcoma. Pediatr Blood Cancer, 47: 607–611, 2006.

    PubMed  CAS  Google Scholar 

  91. Daldrup-Link H E, Franzius C, Link T M, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol, 177: 229–236, 2001.

    PubMed  CAS  Google Scholar 

  92. Hawkins D S, Schuetze S M, Butrynski J E, et al. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol, 23: 8828–8834, 2005.

    PubMed  Google Scholar 

  93. Dyke J P, Panicek D M, Healey J H, et al. Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology, 228: 271–278, 2003.

    PubMed  Google Scholar 

  94. Choi J J, Davis K W, and Blankenbaker D G. Percutaneous musculoskeletal biopsy. Semin Roentgenol, 39: 114–128, 2004.

    PubMed  Google Scholar 

  95. Ogilvie C M, Torbert J T, Finstein J L, Fox E J, and Lackman R D. Clinical utility of percutaneous biopsies of musculoskeletal tumors. Clin Orthop Relat Res, 450: 95–100, 2006.

    PubMed  Google Scholar 

  96. Puri A, Shingade V U, Agarwal M G, et al. CT-guided percutaneous core needle biopsy in deep seated musculoskeletal lesions: a prospective study of 128 cases. Skeletal Radiol, 35: 138–143, 2006.

    PubMed  CAS  Google Scholar 

  97. Jelinek J S, Murphey M D, Welker J A, et al. Diagnosis of primary bone tumors with image-guided percutaneous biopsy: experience with 110 tumors. Radiology, 223: 731–737, 2002.

    PubMed  Google Scholar 

  98. Mitsuyoshi G, Naito N, Kawai A, et al. Accurate diagnosis of musculoskeletal lesions by core needle biopsy. J Surg Oncol, 94: 21–27, 2006.

    PubMed  Google Scholar 

  99. Anderson M W, Temple H T, Dussault R G, and Kaplan P A. Compartmental anatomy: relevance to staging and biopsy of musculoskeletal tumors. AJR Am J Roentgenol, 173: 1663–1671, 1999.

    PubMed  CAS  Google Scholar 

  100. Liu P T, Valadez S D, Chivers F S, Roberts C C, and Beauchamp C P. Anatomically based guidelines for core needle biopsy of bone tumors: implications for limb-sparing surgery. Radiographics, 27: 189–205; discussion 206, 2007.

    PubMed  Google Scholar 

  101. Mankin H J, Mankin C J, and Simon M A. The hazards of the biopsy, revisited. Members of the Musculoskeletal Tumor Society. J Bone Joint Surg Am, 78: 656–663, 1996.

    PubMed  CAS  Google Scholar 

  102. Davies N M, Livesley P J, and Cannon S R. Recurrence of an osteosarcoma in a needle biopsy track. J Bone Joint Surg Br, 75: 977–978, 1993.

    PubMed  CAS  Google Scholar 

  103. Hau A, Kim I, Kattapuram S, et al. Accuracy of CT-guided biopsies in 359 patients with musculoskeletal lesions. Skeletal Radiol, 31: 349–353, 2002.

    PubMed  Google Scholar 

  104. Leffler S G and Chew F S. CT-guided percutaneous biopsy of sclerotic bone lesions: diagnostic yield and accuracy. AJR Am J Roentgenol, 172: 1389–1392, 1999.

    PubMed  CAS  Google Scholar 

  105. Stoker D J, Cobb J P, and Pringle J A. Needle biopsy of musculoskeletal lesions. A review of 208 procedures. J Bone Joint Surg Br, 73: 498–500, 1991.

    PubMed  CAS  Google Scholar 

  106. Tsukushi S, Katagiri H, Nakashima H, Shido Y, and Arai E. Application and utility of computed tomography-guided needle biopsy with musculoskeletal lesions. J Orthop Sci, 9: 122–125, 2004.

    PubMed  Google Scholar 

  107. Saifuddin A, Mitchell R, Burnett S J, Sandison A, and Pringle J A. Ultrasound-guided needle biopsy of primary bone tumours. J Bone Joint Surg Br, 82: 50–54, 2000.

    PubMed  CAS  Google Scholar 

  108. Yao L, Nelson S D, Seeger L L, Eckardt J J, and Eilber F R. Primary musculoskeletal neoplasms: effectiveness of core-needle biopsy. Radiology, 212: 682–686, 1999.

    PubMed  CAS  Google Scholar 

  109. Goetz M P, Callstrom M R, Charboneau J W, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol, 22: 300–306, 2004.

    PubMed  Google Scholar 

  110. Callstrom M R, Charboneau J W, Goetz M P, et al. Painful metastases involving bone: feasibility of percutaneous CT- and US-guided radio-frequency ablation. Radiology, 224: 87–97, 2002.

    PubMed  Google Scholar 

  111. Callstrom M R, Atwell T D, Charboneau J W, et al. Painful metastases involving bone: percutaneous image-guided cryoablation–prospective trial interim analysis. Radiology, 241: 572–580, 2006.

    PubMed  Google Scholar 

  112. Roberts C C, Morrison W B, Deely D M, Zoga A C, Koulouris G, and Winalski C S. Use of a novel percutaneous biopsy localization device: initial musculoskeletal experience. Skeletal Radiol, 36: 53–57, 2007.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pahade, J., Sekhar, A., Shetty, S.K. (2008). Imaging of Malignant Skeletal Tumors. In: Blake, M.A., Kalra, M.K. (eds) Imaging in Oncology. Cancer Treatment and Research, vol 143. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-75587-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75587-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-75586-1

  • Online ISBN: 978-0-387-75587-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics