Skip to main content

Attractors for Nonautonomous Navier–Stokes System and Other Partial Differential Equations

  • Chapter
Instability in Models Connected with Fluid Flows I

Part of the book series: International Mathematical Series ((IMAT,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Amerio and G. Prouse, Abstract Almost Periodic Functions and Functional Equations, Van Nostrand, New York, 1971.

    Google Scholar 

  2. J. Arrieta, A. N. Carvalho, and J. K. Hale, A damped hyperbolic equation with critical exponent, Commun. Partial Differ. Equations 17 (1992), 841–866.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. V. Babin, Attractors of Navier–Stokes equations In: Handbook of Mathematical Fluid Dynamics. Vol. II. Amsterdam, North-Holland, 2003, pp. 169–222.

    Book  Google Scholar 

  4. A. V. Babin and M. I. Vishik, Attractors of evolutionary partial differential equations and estimates of their dimensions, Russian Math. Surv. 38 (1983), no. 4, 151–213.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl. 62 (1983), no. 4, 441–491.

    MATH  MathSciNet  Google Scholar 

  6. A. V. Babin and M. I. Vishik, Maximal attractors of semigroups corresponding to evolution differential equations, Math. USSR Sbornik 54 (1986), no. 2, 387–408.

    Article  MATH  Google Scholar 

  7. A. V. Babin and M. I. Vishik, Unstable invariant sets of semigroups of non-linear operators and their perturbations, Russian Math. Surv. 41 (1986), 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. V. Babin and M. I. Vishik, Uniform finite-parameter asymptotics of solutions of nonlinear evolutionary equations, J. Math. Pures Appl. 68 (1989), 399–455.

    MATH  MathSciNet  Google Scholar 

  9. A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, 1992.

    Google Scholar 

  10. M. V. Bartucelli, P. Constantin, C. R. Doering, J. D. Gibbon, and M. Gisselfält, On the possibility of soft and hard turbulence in the complex Ginzburg–Landau equation, Physica D 44 (1990), 412–444.

    Google Scholar 

  11. J. E. Billotti and J. P. LaSalle, Dissipative periodic processes, Bull. Amer. Math. Soc. 77 (1971), 1082–1088.

    MATH  MathSciNet  Google Scholar 

  12. M. A. Blinchevskaya and Yu. S. Ilyashenko, Estimate for the entropy dimension of the maximal attractor for k-contracting systems in an infinite-dimensional space, Russian J. Math. Phys. 6 (1999), no. 1, 20–26.

    MATH  Google Scholar 

  13. S. M. Borodich, On the behavior as t → +∞ of solutions of some nonautonomous equations, Moscow Univ. Math. Bull. 45 (1990), no. 6, 19–21.

    Google Scholar 

  14. D. N. Cheban and D. S. Fakeeh, Global Attractors of the Dynamical Systems without Uniqueness [in Russian], Sigma, Kishinev, 1994.

    Google Scholar 

  15. V. V. Chepyzhov and A. A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems, Nonlinear Anal., Theory Methods Appl. 44 (2001), no. 6, 811–819.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. V. Chepyzhov and A. A. Ilyin, On the fractal dimension of invariant sets; applications to Navier–Stokes equations, Discr. Cont. Dyn. Syst. 10 (2004), no. 1-2, 117-135.

    Google Scholar 

  17. V. V. Chepyzhov, A. Yu. Goritsky, and M. I. Vishik, Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation, Russian J. Math. Phys. 12 (2005), no. 1, 17–39.

    MATH  Google Scholar 

  18. V. V. Chepyzhov and M. I. Vishik, Nonautonomous dynamical systems and their attractors, Appendix in: M. I. Vishik, Asymptotic Behavior of Solutions of Evolutionary Equations, Cambridge Univ. Press, Cambridge, 1992.

    Google Scholar 

  19. V. V. Chepyzhov and M. I. Vishik, Nonautonomous evolution equations with almost periodic symbols, Rend. Semin. Mat. Fis. Milano LXXII (1992), 185–213.

    MathSciNet  Google Scholar 

  20. V. V. Chepyzhov and M. I. Vishik, Attractors for nonautonomous evolution equations with almost periodic symbols, C. R. Acad. Sci. Paris Sér. I 316 (1993), 357–361.

    MATH  MathSciNet  Google Scholar 

  21. V. V. Chepyzhov and M. I. Vishik, Families of semiprocesses and their attractors, C. R. Acad. Sci. Paris Sér. I 316 (1993), 441–445.

    MATH  MathSciNet  Google Scholar 

  22. V. V. Chepyzhov and M. I. Vishik, Dimension estimates for attractors and kernel sections of nonautonomous evolution equations, C. R. Acad. Sci. Paris Sér. I 317 (1993), 367–370.

    MathSciNet  Google Scholar 

  23. V. V. Chepyzhov and M. I. Vishik, Nonautonomous evolution equations and their attractors, Russian J. Math. Phys. 1, (1993), no. 2, 165–190.

    MATH  MathSciNet  Google Scholar 

  24. V. V. Chepyzhov and M. I. Vishik, A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations, Indiana Univ. Math. J. 42 (1993), no. 3, 1057–1076.

    Article  MATH  MathSciNet  Google Scholar 

  25. V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), no. 3, 279–333.

    MATH  MathSciNet  Google Scholar 

  26. V. V. Chepyzhov and M. I. Vishik, Periodic processes and nonautonomous evolution equations with time-periodic terms, Topol. Meth. Nonl. Anal. J. Juliusz Schauder Center 4 (1994), no. 1, 1–17.

    MATH  MathSciNet  Google Scholar 

  27. V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous evolution equations with translation-compact symbols, In: Operator Theory: Advances and Applications 78, Bikhäuser, 1995, pp. 49–60.

    Google Scholar 

  28. V. V. Chepyzhov and M. I. Vishik, Nonautonomous evolutionary equations with translation compact symbols and their attractors, C. R. Acad. Sci. Paris Sér. I 321 (1995), 153–158.

    MATH  MathSciNet  Google Scholar 

  29. V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous evolutionary equations of mathematical physics with translation compact symbols, Russian Math. Surv. 50 (1995), no. 4.

    Google Scholar 

  30. V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for evolution equations, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1309–1314.

    MATH  MathSciNet  Google Scholar 

  31. V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for reaction-diffusion systems, Topol. Meth. Nonl. Anal. J. Juliusz Schauder Center 7 (1996), no. 1, 49–76.

    MATH  MathSciNet  Google Scholar 

  32. V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for 2D Navier–Stokes systems and some generalizations, Topol. Meth. Nonl. Anal. J. Juliusz Schauder Center 8 (1996), 217–243.

    MATH  MathSciNet  Google Scholar 

  33. V. V. Chepyzhov and M. I. Vishik, Evolution equations and their trajectory attractors, J. Math. Pures Appl. 76 (1997), no. 10, 913–964.

    MATH  MathSciNet  Google Scholar 

  34. V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Am. Math. Soc., Providence RI, 2002.

    Google Scholar 

  35. V. V. Chepyzhov and M. I. Vishik, Nonautonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems, El. J. ESAIM: COCV 8 (2002), 467–487.

    Article  MATH  MathSciNet  Google Scholar 

  36. V. V. Chepyzhov, M. I. Vishik, and W. L. Wendland, On Nonautonomous sine-Gordon type equations with a simple global attractor and some averaging, Discr. Cont. Dyn. Syst. 12 (2005), no. 1, 27–38.

    MATH  MathSciNet  Google Scholar 

  37. I. D. Chueshov, Global attractors of nonlinear problems of mathematical physics, Russian Math. Surv. 48 (1993), no. 3, 133–161.

    Article  MathSciNet  Google Scholar 

  38. I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems [in Russian] Acta, Kharkov, 1999.

    Google Scholar 

  39. P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for 2D Navier–Stokes equations, Commun. Pure Appl. Math. 38 (1985), 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  40. P. Constantin and C. Foias, Navier–Stokes Equations, Univ. Chicago Press, Chicago– London, 1989.

    Google Scholar 

  41. P. Constantin, C. Foias, and R. Temam, Attractors representing turbulent flows, Mem. Am. Math. Soc. 53, 1985.

    Google Scholar 

  42. P. Constantin, C. Foias, and R. Temam, On the dimension of the attractors in two-dimensional turbulence, Physica D 30 (1988), 284–296.

    Article  MATH  MathSciNet  Google Scholar 

  43. J. H. Conway and N. J. A. Sloan, Sphere Packing, Lattices and Groups, Springer-Verlag, New York, etc., 1988.

    Google Scholar 

  44. C. M. Dafermos, Semiflows generated by compact and uniform processes, Math. Syst. Theory 8 (1975), 142–149.

    Article  MATH  MathSciNet  Google Scholar 

  45. C. M. Dafermos, Almost periodic processes and almost periodic solutions of evolutional equations, In: Proc. Univ. Florida, Intern. Symp., New York Acad. Press, 1977, pp. 43–57.

    Google Scholar 

  46. C. R. Doering, J. D. Gibbon, D. D. Holm, and B. Nicolaenco, Low-dimensional behavior in the complex Ginzburg–Landau equation, Nonlinearity 1 (1988), 279–309.

    Article  MATH  MathSciNet  Google Scholar 

  47. C. R. Doering, J. D. Gibbon, and C. D. Levermore, Weak and strong solutions of the complex Ginzburg–Landau equation, Physica D 71 (1994), 285–318.

    Article  MATH  MathSciNet  Google Scholar 

  48. A. Douady and J. Oesterlé, Dimension de Hausdorff des attracteurs [in French], C. R. Acad. Sci. Paris Sér. I textbf290, (1980), 1135–1138.

    Google Scholar 

  49. A. Eden, C. Foias, and R. Temam, Local and global Lyapunov exponents, J. Dyn. Differ. Equations 3 (1991), no. 1, 133–177.

    Article  MATH  MathSciNet  Google Scholar 

  50. A. Eden, C. Foias, B. Nicolaenco, and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons, New York, 1995.

    Google Scholar 

  51. M. Efendiev, A. Miranville, and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in3, C. R. Acad. Sci. Paris Sér. I 330 (2000), 713–718.

    Google Scholar 

  52. M. Efendiev, S. Zelik, and A. Miranville, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems, Proc. R. Soc. Edinb., Sect. A, Math. 135 (2005), no. 4, 703–730.

    Article  MATH  MathSciNet  Google Scholar 

  53. M. Efendiev and S. Zelik, Attractors of the reaction–diffusion systems with rapidly oscillating coefficients and their homogenization, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19 (2002), no. 6, 961–989.

    Article  MATH  MathSciNet  Google Scholar 

  54. P. Fabrie and A. Miranville, Exponential attractors for nonautonomous first-order evolution equations, Discr. Cont. Dyn. Syst. 4 (1998), no. 2, 225–240.

    MATH  MathSciNet  Google Scholar 

  55. E. Feireisl, Attractors for wave equations with nonlinear dissipation and critical exponent, C. R. Acad. Sci. Paris Sér. I 315 (1992), 551–555.

    MATH  MathSciNet  Google Scholar 

  56. E. Feireisl, Exponentially attracting finite-dimensional sets for the processes generated by nonautonomous semilinear wave equations, Funk. Ekv. 36 (1993), 1–10.

    MATH  MathSciNet  Google Scholar 

  57. E. Feireisl, Finite-dimensional behavior of a nonautonomous partial differential equation: Forced oscillations of an extensible beam, J. Differ. Equations 101 (1993), 302–312.

    Article  MATH  MathSciNet  Google Scholar 

  58. C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the Navier–Stokes equations, J. Math. Pures Appl. 58, 3 (1979), 339–368.

    MATH  MathSciNet  Google Scholar 

  59. C. Foias and R. Temam, Finite parameter approximative structure of actual flows, In Nonlinear Problems: Problems and Future (A. R. Bishop, D. K. Campbell, and B. Nicolaenco, Eds.), North-Holland, Amsterdam, 1982.

    Google Scholar 

  60. C. Foias and R. Temam, Asymptotic numerical analysis for the Navier–Stokes equations, InL Nonlinear Dynamics and Turbulence (G. I. Barenblatt, G. Iooss, D. D. Joseph, Eds.), Pitman, London, 1983, pp. 139–155.

    Google Scholar 

  61. C. Foias, O. Manley, R. Rosa, and R. Temam, Navier–Stokes Equations and Turbulence, Cambridge Univ. Press, Cambridge, 2001.

    MATH  Google Scholar 

  62. F. Gazzola and M. Sardella, Attractors for families of processes in weak topologies of Banach spaces, Discr. Cont. Dyn. Syst. 4 (1998), no. 3, 455–466.

    Google Scholar 

  63. J. M. Ghidaglia and B. Héron, Dimension of the attractors associated to the Ginzburg–Landau partial differential equation, Physica 28D (1987), 282–304.

    Google Scholar 

  64. J. M. Ghidaglia and R. Temam, Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl. 66 (1987), 273–319.

    MATH  MathSciNet  Google Scholar 

  65. A. Yu. Goritsky and M. I. Vishik, Integral manifolds for nonautonomous equations, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 115ˆ 21 (1997), 109–146.

    Google Scholar 

  66. M. Grasselli and V. Pata, On the damped semilinear wave equation with critical exponent, Discr. Cont. Dyn. Syst. (2003), 351–358.

    Google Scholar 

  67. J. K. Hale, Asymptotic behavior and dynamics in infinite dimensions, Research Notes Math. 132 (1985), 1–42.

    MathSciNet  Google Scholar 

  68. J. K. Hale, Asymptotic behavior of dissipative systems, %Math. Surveys and Mon., 25, Am. Math. Soc., Providence RI, 1988.

    Google Scholar 

  69. J. K. Hale and J. Kato, Phase space of retarded equations with infinite delay, Tohôku Math. J. 21 (1978), 11–41.

    MATH  MathSciNet  Google Scholar 

  70. J. K. Hale and S. M. Verduyn-Lunel, Averaging in infinite dimensions, J. Int. Eq. Appl. 2 (1990), no. 4, 463–494.

    Article  MATH  MathSciNet  Google Scholar 

  71. A. Haraux, Two remarks on dissipative hyperbolic problems, In: Nonlinear Partial Differential Equations and Their Applications (H. Brezis and J. L. Lions, Eds.) Pitman, 1985, pp.161–179.

    Google Scholar 

  72. A. Haraux, Attractors of asymptotically compact processes and applications to nonlinear partial differential equations, Commun. Partial Differ. Equations 13 (1988), 1383–1414.

    Article  MATH  MathSciNet  Google Scholar 

  73. A. Haraux, Systèmes Dynamiques Dissipatifs et Applications [in French], Masson, Paris etc., 1991.

    Google Scholar 

  74. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. 840, Springer-Verlag, 1981.

    Google Scholar 

  75. B. Hunt, Maximal local Lyapunov dimension bounds the box dimension of chaotic attractors, Nonlinearity 9 (1996), 845–852.

    Article  MATH  MathSciNet  Google Scholar 

  76. Yu. S. Ilyashenko, Weakly contracting systems and attractors of Galerkin approximation for the Navier–Stokes equations on a two-dimensional torus, Sel. Math. Sov. 11 (1992), no. 3, 203–239.

    Google Scholar 

  77. A. A. Ilyin, Lieb–Thirring inequalities on the N-sphere and in the plane and some applications, Proc. London Math. Soc. (3) 67 (1993), 159–182.

    Article  MATH  MathSciNet  Google Scholar 

  78. A. A. Ilyin, Attractors for Navier–Stokes equations in domain with finite measure, Nonlinear Anal., Theory Methods Appl. 27 (1996), no. 5, 605–616.

    Article  MATH  MathSciNet  Google Scholar 

  79. A. A. Ilyin, Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides, Sb. Math. 187 (1996), 5, 635-677.

    Article  MATH  MathSciNet  Google Scholar 

  80. A. A. Ilyin, Global averaging of dissipative dynamical systems, Rend. Acad. Naz. Sci. XL, Mem. Mat. Appl. 116ˆ 22 (1998), 167–191.

    Google Scholar 

  81. L. V. Kapitanskii, Minimal compact global attractor for a damped semilinear wave equations, Commun. Partial Differ. Equations 20 (1995), no. 7–8, 1303–1323.

    Article  MathSciNet  Google Scholar 

  82. J. L. Kaplan and J. A. Yorke, Chaotic behavior of multi-dimensional difference equations, In: Functional Differential Equations and Approximations of Fixed Points (H. O. Peitgen and H. O. Walter Eds.), Lect. Notes Math. 730 (1979), p. 219.

    Google Scholar 

  83. A. Kolmogorov and V. Tikhomirov, ε -entropy and ε -capacity of sets in functional spaces, [in Russian], Uspekhi Mat. Nauk 14 (1959), 3–86; English transl.: Selected Works of A. N. Kolmogorov. III, Dordrecht, Kluwer, 1993.

    MATH  Google Scholar 

  84. N. Kopell and L. N. Howard, Plane wave solutions to reaction-diffusion equations, Stud. Appl. Math. 52 (1973), no. 5, 291–328; 3–86.

    MathSciNet  Google Scholar 

  85. I. P. Kornfeld, Ya.G. Sinai, and S. V. Fomin, % Ergodic Theory [in Russian], Nauka, Moscow, 1980.

    Google Scholar 

  86. Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Reduction Perturbation Approach, Progr. Theor. Phys. 54 (1975), 687–699.

    Google Scholar 

  87. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, 1969.

    MATH  Google Scholar 

  88. O. A. Ladyzhenskaya, On the dynamical system generated by the Navier–Stokes equations, J. Soviet Math. 34 (1975), 458–479.

    Article  Google Scholar 

  89. O. A. Ladyzhenskaya, On finite dimension of bounded invariant sets for the Navier–Stokes system and other dynamical systems, J. Soviet Math. 28 (1982), no. 5, 714–725.

    Article  Google Scholar 

  90. O. A. Ladyzhenskaya, On finding the minimal global attractors for the Navier–Stokes equations and other PDEs, Russian Math. Surv. 42 (1987), no. 6, 27-73.

    Article  MATH  Google Scholar 

  91. O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge Univ. Press, Cambridge–New York, 1991.

    MATH  Google Scholar 

  92. B. Levitan and V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982.

    MATH  Google Scholar 

  93. P. Li and S.–T. Yau, On the Schrödinger equation and the eigenvalue problem, Commun. Math. Phys. 8 (1983), 309–318.

    Google Scholar 

  94. E. Lieb and W. Thirring, Inequalities for the moments of the eigenvalues of Schrödinger equations and their relations to Sobolev inequalities, In: Studies in Mathematical Physics, essays in honour of Valentine Bargmann, Princeton Univ. Press, 1976, pp. 269–303.

    Google Scholar 

  95. J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications. Vol. 1, Dunod, Paris, 1968.

    Google Scholar 

  96. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.

    Google Scholar 

  97. V. X. Liu, A sharp lower bound for the Hausdorff dimension of the global attractor of the 2D Navier–Stokes equations, Commun. Math. Phys. 158 (1993), 327–339.

    Article  MATH  Google Scholar 

  98. S. Lu, Attractors for nonautonomous 2D Navier–Stokes equations with less regular normal forces, J. Differ. Equations 230 (2006), 196–212.

    Article  MATH  Google Scholar 

  99. S. Lu, H. Wu, and C. Zhong, Attractors for nonautonomous 2D Navier–Stokes equations with normal external forces, Discr. Cont. Dyn. Syst. 13 (2005), no. 3, 701–719.

    Article  MATH  MathSciNet  Google Scholar 

  100. G. Métivier, Valeurs propres d’opérateurs définis sur la restriction de systèmes variationnels à des sous-espaces, J. Math. Pures Appl. 57 (1978), 133–156.

    MATH  MathSciNet  Google Scholar 

  101. A. Mielke, The Ginzburg–Landau equation and its role as a modulation equation, In: Handbook of Dynamical Systems, Vol.2, North-Holland, Amsterdam, 2002, pp. 759–834.

    Google Scholar 

  102. A. Mielke, Bounds for the solutions of the complex Ginzburg–Landau equation in terms of the dispersion parameters, Physica D 117 (1998), no. 1-4, 106–116.

    Article  MATH  MathSciNet  Google Scholar 

  103. A. Mielke, The complex Ginzburg–Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity 10 (1997), 199–222.

    Article  MATH  MathSciNet  Google Scholar 

  104. R. K. Miller, Almost periodic differential equations as dynamical systems with applications to the existence of almost periodic solutions, J. Differ. Equations 1 (1965), 337–395.

    Article  MATH  Google Scholar 

  105. R. K. Miller and G. R. Sell, Topological dynamics and its relation to integral and nonautonomous systems. In: International Symposium. Vol. I, 1976, Academic Press, New York, 223–249.

    Google Scholar 

  106. A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci. Paris Sér. I 328 (1999), 145–150.

    MATH  MathSciNet  Google Scholar 

  107. A. Miranville and X. Wang, Attractors for nonautonomous nonhomogeneous Navier–Stokes equations, Nonlinearity 10 (1997), 1047–1061.

    Article  MATH  MathSciNet  Google Scholar 

  108. X. Mora and J. Sola Morales, Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, In: Dynamics of Infinite-Dimensional Systems (ed. N. S. Chow and J. K. Hale), Springer-Verlag, 1987, 187–210.

    Google Scholar 

  109. Sh. M. Nasibov, On optimal constants in some Sobolev inequalities and their applications to a nonlinear Schrödinger equation, Soviet Math. Dokl. 40 (1990), 110–115.

    Google Scholar 

  110. V. Pata, G. Prouse, and M. I. Vishik, Travelling waves of dissipative nonautonomous hyperbolic equations in a strip, Adv. Differ. Equ. 3 (1998), 249–270.

    MATH  MathSciNet  Google Scholar 

  111. V. Pata and S. Zelik, A remark on the weakly damped wave equation, Commun. Pure Appl. Math. 5 (2006), 609–614.

    MathSciNet  Google Scholar 

  112. J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge–New York, 2001.

    Google Scholar 

  113. G. R. Sell, Nonautonomous differential equations and topological dynamics I, II Trans. Am. Math. Soc. 127 (1967), 241–262; 263–283.

    Google Scholar 

  114. G. R. Sell, Lectures on Topological Dynamics and Differential Equations, Princeton, New York, 1971.

    Google Scholar 

  115. G. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.

    MATH  Google Scholar 

  116. M. W. Smiley, Regularity and asymptotic behavior of solutions of nonautonomous differential equations, J. Dyn. Differ. Equations 7 (1995), no. 2, 237–262.

    Article  MATH  MathSciNet  Google Scholar 

  117. R. Temam, On the Theory and Numerical Analysis of the Navier–Stokes Equations, North-Holland, 1979.

    Google Scholar 

  118. R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, Philadelphia, 1995.

    Google Scholar 

  119. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  120. P. Thieullen, Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems, J. Dyn. Differ. Equations 4 (1992), no. 1, 127–159.

    Article  MATH  MathSciNet  Google Scholar 

  121. H. Triebel, Interpolation Theory, Functional Spaces, Differential Operators, North-Holland, Amsterdam-New York, 1978.

    Google Scholar 

  122. M. I. Vishik, Asymptotic Behavior of Solutions of Evolutionary Equations, Cambridge Univ. Press, Cambridge, 1992.

    Google Scholar 

  123. M. I. Vishik and V. V. Chepyzhov, Attractors of nonautonomous dynamical systems and estimations of their dimension, Math. Notes 51 (1992), no. 6, 622–624.

    Article  MathSciNet  Google Scholar 

  124. M. I. Vishik and V. V. Chepyzhov, Attractors of periodic processes and estimates of their dimensions, Math. Notes 57 (1995), no. 2, 127–140.

    Article  MATH  MathSciNet  Google Scholar 

  125. M. I. Vishik and V. V. Chepyzhov, Kolmogorov ε -entropy estimates for the uniform attractors of nonautonomous reaction-diffusion systems, Sb. Math. 189 (1998), no. 2, 235–263.

    Article  MathSciNet  Google Scholar 

  126. M. I. Vishik and V. V. Chepyzhov, Averaging of trajectory attractors of evolution equations with rapidly oscillating terms, Sb. Math. 192 (2001), no. 1, 11-47.

    Article  MATH  MathSciNet  Google Scholar 

  127. M. I. Vishik and V. V. Chepyzhov, Kolmogorov epsilon-entropy in the problems on global attractors for evolution equations of mathematical physics, Probl. Inf. Transm. 39 (2003), no. 1, 2-20.

    Article  MATH  MathSciNet  Google Scholar 

  128. M. I. Vishik and V. V. Chepyzhov, Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time, Sb. Math. 194 (2003), no. 9, 1273–1300.

    Article  MATH  MathSciNet  Google Scholar 

  129. M. I. Vishik and V. V. Chepyzhov, Nonautonomous Ginzburg–Landau equation and its attractors, Sb. Math. 196 (2005), no. 6, 17–42.

    Article  MathSciNet  Google Scholar 

  130. M. I. Vishik and V. V. Chepyzhov, Attractors of dissipative hyperbolic equation with singularly oscillating external forces, Math. Notes 79 (2006), no. 3, 483-504.

    Google Scholar 

  131. M. I. Vishik and B. Fiedler, Quantitative homogenization of global attractors for hyperbolic wave equations with rapidly oscillating terms, Russian Math. Surv. 57 (2002), no. 4, 709–728.

    Article  MATH  MathSciNet  Google Scholar 

  132. M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Acad. Publ., Dortrecht–Boston–London, 1988.

    MATH  Google Scholar 

  133. M. I. Vishik and S. V. Zelik, The trajectory attractor of a nonlinear elliptic system in a cylindrical domain, Sb. Math. 187 (1996), no. 12, 1755–1789.

    Article  MATH  MathSciNet  Google Scholar 

  134. M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87 (1983), 567–576.

    Article  MATH  MathSciNet  Google Scholar 

  135. M. Ziane, Optimal bounds on the dimension of the attractor of the Navier–Stokes equations, Physica D 105 (1997), 1–19.

    Article  MATH  MathSciNet  Google Scholar 

  136. S. V. Zelik, The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it’s dimension, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 24 (2000), 1–25.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chepyzhov, V., Vishik, M. (2008). Attractors for Nonautonomous Navier–Stokes System and Other Partial Differential Equations. In: Bardos, C., Fursikov, A. (eds) Instability in Models Connected with Fluid Flows I. International Mathematical Series, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75217-4_4

Download citation

Publish with us

Policies and ethics