Skip to main content

Involvement of Guanylate Cyclases in Transport of Photoreceptor Peripheral Membrane Proteins

  • Chapter
Recent Advances in Retinal Degeneration

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 613))

Guanylate cyclase 1 (GC1) is present in mouse rod and cone outer segments while guanylate cyclase 2 (GC2) is present only in rods. Accordingly, deletion of GC1 (gene symbol Gucy2e) affects predominantly cones while knockout of GC2 (gene symbol Gucy2f) has no major effect on rod and cone physiology since GC1 can substitute for the loss of GC2. Simultaneous inactivation of GC1 and GC2 abolishes rod and cone phototransduction, generating a phenotype affecting viability of both rods and cones, and resembling human Leber Congenital Amaurosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baehr, W., Karan, S., Maeda, T., Luo, D. G., Li, S., Bronson, J. D., Watt, C. B., Yau, K.-W., Frederick J. M., and Palczewski, K., 2007, The function of Guanylate Cyclase 1 (GC1) and Guanylate Cyclase 2 (GC2) in rod and cone photoreceptors, J. Biol. Chem. 282:8837–8847.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, J. E., Zhang, Y., Brown, G. A., and Semple-Rowland, S. L., 2004, Cone cell survival and downregulation of GCAP1 protein in the retinas of GC1 knockout mice, Invest Ophthalmol. Vis. Sci. 45:3397–3403.

    Article  PubMed  Google Scholar 

  • Coleman, J. E., and Semple-Rowland, S. L., 2005, GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells, Invest Ophthalmol. Vis. Sci. 46:12–16.

    Article  PubMed  Google Scholar 

  • Concepcion, F., Mendez, A., and Chen, J., 2002, The carboxyl-terminal domain is essential for rhodopsin transport in rod photoreceptors, Vision Res. 42:417–426.

    Article  PubMed  CAS  Google Scholar 

  • Deretic, D., 1998, Post-Golgi trafficking of rhodopsin in retinal photoreceptors Eye 12 (Pt 3b): 526–530.

    PubMed  Google Scholar 

  • Deretic, D., Williams, A. H., Ransom, N., Morel, V., Hargrave, P. A., and Arendt, A., 2005, Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4), Proc. Natl. Acad. Sci U.S.A. 102:3301–3306.

    Article  PubMed  CAS  Google Scholar 

  • Duda, T., and Koch, K. W., 2002, Calcium-modulated membrane guanylate cyclase in synaptic transmission? Mol. Cell Biochem. 230:107–116.

    Article  PubMed  CAS  Google Scholar 

  • Elias, R. V., Sezate, S. S., Cao, W., and McGinnis, J. F., 2004, Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells, Mol. Vis. 10:672–681.

    PubMed  CAS  Google Scholar 

  • Frederick, J. M., Krasnoperova, N. V., Hoffmann, K., Church-Kopish, J., Ruether, K., Howes, K. A., Lem, J., and Baehr, W., 2001, A P23H-containing mutant rhodopsin transgene expressed on a null background forms a non-functional, cytotoxic product and accelerates retinal degeneration, Invest Ophthalmol. Vis. Sci. 42:826–833.

    PubMed  CAS  Google Scholar 

  • Hanein, S., Perrault, I., Gerber, S., Tanguy, G., Barbet, F., Ducroq, D., Calvas, P., Dollfus, H., Hamel, C., Lopponen, T., Munier, F., Santos, L., Shalev, S., Zafeiriou, D., Dufier, J. L., Munnich, A., Rozet, J. M., and Kaplan, J., 2004, Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis, Hum. Mutat. 23:306–317.

    Article  PubMed  CAS  Google Scholar 

  • Humphries, M. M., Rancourt, D., Farrar, G. J., Kenna, P., Hazel, M., Bush, R. A., Sieving, P. A., Sheils, D. M., McNally, N., Creighton, P., Erven, A., Boros, A., Gulya, K., Capecchi, M. R., and Humphries, P., 1997, Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nature Genet. 15:216–219.

    Article  PubMed  CAS  Google Scholar 

  • Imanishi, Y., Li, N., Sowa, M. E., Lichtarge, O., Wensel, T. G., Saperstein, D. A., Baehr, W., and Palczewski, K., 2002, Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man, Eur. J. Neurosci. 15:63–78.

    Article  PubMed  Google Scholar 

  • Kerov, V., Chen, D., Moussaif, M., Chen, Y. J., Chen, C. K., and Artemyev, N. O., 2005, Transducin activation state controls its light-dependent translocation in rod photoreceptors, J. Biol. Chem. 280:41069–41076.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, T. D., and Pugh, E. N. Jr., 2006, Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture, Invest Ophthalmol. Vis. Sci. 47:5138–5152.

    Article  Google Scholar 

  • Lem, J., Krasnoperova, N. V., Calvert, P. D., Kosaras, B., Cameron, D. A., Nicol. O, M., Makino, C. L., and Sidman, R. L., 1999, Morphological, physiological, and biochemical changes in rhodopsin knockout mice, Proc. Natl. Acad. Sci. U.S.A. 96:736–741.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, D. G., Dizhoor, A. M., Liu, K., Gu, Q., Spencer, M., Laura, R., Lu, L., and. Hurley, J. B., 1995, Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2, Proc. Natl. Acad. Sci. U.S.A. 92:5535–5539.

    Article  PubMed  CAS  Google Scholar 

  • Marszalek, J. R., Liu, X., Roberts, E. A., Chui, D., Marth, J. D., Williams, D. S., and Goldstein, L. S., 2000, Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors, Cell. 102:175–187.

    Article  PubMed  CAS  Google Scholar 

  • McNally, N., Kenna, P., Humphries, M. M., Hobson, A. H., Khan, N. W., Bush, R. A., Sieving, P. A., Humphries, P., and Farrar, G. J., 1999, Structural and functional rescue of murine rod photoreceptors by human rhodopsin transgene, Hum. Mol. Genet. 8: 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Mou, H., and Cote, R. H., 2001, The catalytic and GAF domains of the rod cGMP phosphodiesterase (PDE6) heterodimer are regulated by distinct regions of its inhibitory gamma subunit, J Biol. Chem. 276:27527–27534.

    Article  PubMed  CAS  Google Scholar 

  • Palczewski, K., Sokal, I., and Baehr, W., 2004, Guanylate cyclase-activating proteins: structure, function, and diversity, Biochem. Biophys. Res. Commun. 322:1123–1130.

    Article  PubMed  CAS  Google Scholar 

  • Qin, N., and Baehr, W., 1994, Expression and mutagenesis of mouse rod photoreceptor cGMP phosphodiesterase, J. Biol. Chem. 269:3265–3271.

    PubMed  CAS  Google Scholar 

  • Raport, C. J., Lem, J., Makino, C., Chen, C.-K., Fitch, C. L., Hobson, A., Baylor, D., Simon, M. I., and Hurley, J. B., 1994, Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors, Invest. Ophthalmol. Vis. Sci. 35: 2932–2947.

    PubMed  CAS  Google Scholar 

  • Rosenbaum, J. L., and Witman, G. B., 2002, Intraflagellar transport, Nat. Rev. Mol. Cell Biol. 3:813–825.

    Article  PubMed  CAS  Google Scholar 

  • Rudnicka-Nawrot, M., Surgucheva, I., Hulmes, J. D., Haeseleer, F., Sokal, I., Crabb, J. W., Baehr, W., and Palczewski, K., 1998, Changes in biological activity and folding of guanylate cyclase-activating protein 1 as a function of calcium, Biochemistry 37:248–257.

    Article  PubMed  CAS  Google Scholar 

  • Seebacher, T., Beitz, E., Kumagami, H., Wild, K., Ruppersberg, J. P., and Schultz, J. E., 1999, Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear, Hear. Res. 127:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Semple-Rowland, S. L., Lee, N. R., Van Hooser, J. P., Palczewski, K., and Baehr, W., 1998, A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype, Proc. Natl. Acad. Sci. U.S.A. 95:1271–1276.

    Article  PubMed  CAS  Google Scholar 

  • Shyjan, A. W., de Sauvage, F. J., Gillett, N. A., Goeddel, D. V., and Lowe, D. G., 1992, Molecular cloning of a retina-specific membrane guanylyl cyclase, Neuron. 9:727–737.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, C. L., Ramamurthy, V., Pina, A. L., Loyer, M., Dharmaraj, S., Li, Y., Maumenee, I. H., Hurley, J. B., and Koenekoop, R. K., 2004, Functional analyses of mutant recessive GUCY2D alleles identified in Leber congenital amaurosis patients: protein domain comparisons and dominant negative effects, Mol. Vis. 10:297–303.

    PubMed  CAS  Google Scholar 

  • Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U., and Sung, C. H., 1999, Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1, Cell. 97:877–887.

    Article  PubMed  CAS  Google Scholar 

  • Tai, A. W., Chuang, J. Z., Sung, C. H., 2001, Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport, J. Cell Biol. 153:1499–1509.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, C. L., Woodcock, S. C., Kelsell, R. E., Ramamurthy, V., Hunt, D. M., and Hurley, J. B., 1999, Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy, Proc. Natl. Acad. Sci. U.S.A. 96:9039–9044

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, D. K., Fisher, S. K., Bernstein, S. A., Hale, I. L., Linberg, K. A., Matsumoto, B., 1989, Evidence that microtubules do not mediate opsin vesicle transport in photoreceptors, J. Cell Biol. 109:3053–3062.

    Article  PubMed  CAS  Google Scholar 

  • Yang, R. B., Robinson, S. W., Xiong, W. H., Yau, K. W., Birch, D. G., and Garbers, D. L., 1999, Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior, J. Neurosci. 19:5889–5897.

    PubMed  CAS  Google Scholar 

  • Zhang, H., Li, S., Doan, T., Rieke, F., Detwiler, P. B., Frederick, J. M., and Baehr, W., 2007, Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments, Proc. Natl. Acad. Sci U.S.A. 104: 8857–8862.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanya Karan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Karan, S., Frederick, J.M., Baehr, W. (2008). Involvement of Guanylate Cyclases in Transport of Photoreceptor Peripheral Membrane Proteins. In: Anderson, R.E., LaVail, M.M., Hollyfield, J.G. (eds) Recent Advances in Retinal Degeneration. Advances in Experimental Medicine and Biology, vol 613. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74904-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74904-4_41

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-74902-0

  • Online ISBN: 978-0-387-74904-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics