Skip to main content

Reversible and Testable Circuits for Molecular QCA Design

  • Chapter
Emerging Nanotechnologies

Part of the book series: Frontiers in Electronic Testing ((FRET,volume 37))

Emerging technologies have been widely advocated to supersede the projected limitations of CMOS at the end of the roadmap [27]. Computation at nano regimes is substantially different from conventional VLSI. Extremely small feature size, high device density and low power are some of the attributes that emerging technologies must address, while implementing new computational paradigms [1]. One of these paradigm is reversible computing. Reversible computation is accomplished by establishing a one-to-one onto mapping between the input states and output states of the circuit [7]. This bijective property was initially investigated by Landauer who showed that kT ln 2 joules of energy are generated for each bit of information lost due to non reversible computation [6]. But,if computation is performed in a reversible manner, it has been shown that kT In 2 energy dissipation would not necessarily occur. Due to the bijective property, testing of reversible logic is generally simpler than conventional irreversible logic [31].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Muroga, “Threshold Logic and its Applications”, Wiley Interscience, New York, 1971.

    Google Scholar 

  2. T. Toffoli, “Reversible Computing”, Technical Report MIT LCSTM151, MIT Laboratory for Computer Science, 1980.

    Google Scholar 

  3. E. Fredkin and T. Toffoli, “Conservative Logic”, International Journal of Theoretical Physics, vol. 21, pp. 219-253, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  4. C.H. Bennett, “Logic Reversibilty of Computation”, IBM Journal of Research and Development, vol. 17, pp. 525-532, 1973.

    MATH  Google Scholar 

  5. D. Maslov, G.W. Dueck and D.M. Miller, “Synthesis of Fredkin-Toffoli Reversible Networks”, IEEE Transaction on VLSI, 2004.

    Google Scholar 

  6. R. Landauer, “Irreversibility and Heat Generation in the Computing Process”, IBM Journal of Research and Development, vol. 5, pp. 183-191, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Nielsen and I. Chuang, “Quantum Computation and Quantum Information”, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  8. W. Wang, R. Zhang, K. Walus and G.A. Jullien, “A Method of Majority Logic Reduction for Quantum Cellular Automata”, IEEE Transaction on Nanotechnology, vol. 3(4), pp. 443-450, 2004.

    Article  Google Scholar 

  9. C.S. Lent, P.D. Tougaw and W. Porod, “Quantum Cellular Automata: The Physics of Computing with Arrays of Quantum Dot Molecules”, Proceedings of the Workshop on Physics and Computing, pp. 5-13, 1994.

    Google Scholar 

  10. M.T. Niemier and P.M. Kogge, “Problems in designing with QCAs: lay- out=timing”, International Journal of Circuit Theory and Applications, vol. 29(1), pp. 49-62, 2001.

    Article  Google Scholar 

  11. M.T. Niemier and P.M. Kogge, “Logic-in-Wire: Using Quantum Dots to Imple- ment a Microprocessor”, International Conference on Electronics, Circuits, and Systems (ICECS ’99), vol. 3, pp. 1211-1215, 1999.

    Google Scholar 

  12. K. Hennessy and C.S. Lent, “Clocking of Molecular Quantum-Dot Cellular Au- tomata”, Journal of Vaccum Science and Technology, vol. 19(5), pp. 1752-1755, 2001.

    Article  Google Scholar 

  13. I. Amlani, A.O. Orlov, G. Toth, C.S. Lent, G.H. Bernstein and G.L. Snider, “Digital Logic Gate Using Quantum-Dot Cellular Automat”, Science, vol. 284(5412), pp. 289-291, 1999.

    Article  Google Scholar 

  14. S.E. Frost, A.F. Rodrigues, A.W. Janiszewski, R.T. Rausch and P.M. Kogge, “Memory in Motion: A Study of Storage Structures in QCA”, 1st Workshop on Non-Silicon Computation, 2002.

    Google Scholar 

  15. M.T. Niemier, A.F. Rodrigues and P.M. Kogge, “A Potentially Implementable FPGA for Quantum Dot Cellular Automata”, 1st Workshop on Non-Silicon Computation (NSC-1), held in conjunction with 8th Int. Symp. on High Performance Computer Architecture (HPCA-8), 2002.

    Google Scholar 

  16. P.D. Tougaw and C.S. Lent, “Logical Devices Implemented Using Quantum Cellular Automata”, Journal of Applied Physics, vol. 75(3), pp. 1818-1825, 1994.

    Article  Google Scholar 

  17. V.S. Dimitrov, G.A. Jullien and K. Walus, “Quantum-Dot Cellular Automata Carry-Look-Ahead Adder and Barrel Shifter”, IEEE Emerging Telecommunications Technologies Conference, pp. 2/1-2/4, 2002.

    Google Scholar 

  18. C.G. Smith, “Computation Without Current”, Science, vol. 284(2), p. 274, 1999.

    Article  Google Scholar 

  19. K. Walus, R.A. Budiman and G.A. Jullien, “Effects of morphological variations of self-assembled nanostructures on quantum-dot cellular automata (QCA) circuits”, Frontiers of Integration, An International Workshop on Integrating Nanotechnologies, 2002.

    Google Scholar 

  20. K. Walus, A. Vetteth, G.A. Jullien and V.S. Dimitrov, “RAM Design Using Quantum-Dot Cellular Automata”, NanoTechnology Conference, vol. 2, pp. 160-163, 2003.

    Google Scholar 

  21. M.B. Tahoori, M. Momenzadeh, J. Huang and F. Lombardi, “Testing of Quna- tum Cellular Automata”, IEEE Transaction on Nanotechnology, vol. 3(4), pp. 432-442, 2004.

    Article  Google Scholar 

  22. J. Huang, M. Momenzadeh, M.B. Tahoori and F. Lombardi, “Defect Characterization for Scaling of QCA Devices”, Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 30-38, 2004.

    Google Scholar 

  23. D.A. Antonelli, D.Z. Chen, T.J. Dysart, X.S. Hu, A.B. Kahng, P.M. Kogge, R.C. Murphy and M.T. Niemier, “Quantum-Dot Cellular Automata (QCA) Circuit Partitioning: Problem Modeling and Solutions”, Design Automation Conference (DAC), pp. 363-368, 2004.

    Google Scholar 

  24. K. Walus, G.A. Jullien and V.S. Dimitrov, “Computer arithmetic Structures for Quantum Cellular Automata”, Proceedings of Asimolar Conference, 2003.

    Google Scholar 

  25. J. Huang, M. Momenzadeh, M. Ottavi, L. Schiano and F. Lombardi, “A Predeposition Methodology for Tile-Based Design of QCA Combinational Circuits”, Internal report, 2004.

    Google Scholar 

  26. M. Momenzadeh, J. Huang, M. Ottavi, N. Park and F. Lombardi, “Computing with Grids of QCA Cells”, Internal report, 2004.

    Google Scholar 

  27. R. Compano, L. Molenkamp and D.J. Paul, “Technology Roadmap for Nanoelectroincs”, European Commission IST programme, Future and Emerging Technologies, 2000.

    Google Scholar 

  28. Reversible Logic Synthesis Benchmarks Page, available online: http://www.cs. uvic.ca/damslov

  29. Personal communication with Professor Marya Lieberman, Department of Chemistry and Biochemistry, University of Notre Dame, IN, USA.

    Google Scholar 

  30. V.D. Agrawal, “An Information Theoretic Approach to Digital Fault Testing”, IEEE Transaction on Computers, vol. 30, pp. 582-587, 1981.

    Article  Google Scholar 

  31. K.N. Patel, J.P. Hayes and I.L. Markov, “Fault Testing for Reversible Circuits”, IEEE Transaction on CAD, vol. 23(8), pp. 1220-1230, 2004.

    Google Scholar 

  32. J. Timer and C.S. Lent, “Maxwell’s Demon and Quantum-dot Cellular Automata”, Journal of Applied Physics, vol. 94(2), pp. 1050-1060, 2003.

    Article  Google Scholar 

  33. M. Liu, C.S. Lent, “Bennett and Landauer Clocking in Quantum-dot Cellular Automata”, International Workshop on Computational Electronics, Abstracts pp. 120-121, 2004.

    Google Scholar 

  34. T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, “Introduction to Algorithms, 2nd ed.”, McGraw-Hill, New York, 2001.

    Google Scholar 

  35. A. Chakraborty, “Synthesis of Reversible Circuits for Testing with Universal Test Set and C-Testability of Reversible Iterative Logic Arrays”, Proceedings of the 18th International Conference on VLSI Design, 2005.

    Google Scholar 

  36. QCADesigner Homepage, available online: www.qcadesigner.ca

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ma, X., Huang, J., Metra, C., Lombardi, F. (2008). Reversible and Testable Circuits for Molecular QCA Design. In: Tehranipoor, M. (eds) Emerging Nanotechnologies. Frontiers in Electronic Testing, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-74747-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-74747-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-74746-0

  • Online ISBN: 978-0-387-74747-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics