Skip to main content

Zirconia is a very important industrial ceramic for structural applications because of its high toughness, which has proven to be superior to other ceramics. In addition, it has applications making use of its high ionic conductivity. The thermodynamically stable, room temperature form of zirconia is baddeleyite. However, this mineral is not used for the great majority of industrial applications of zirconia. The intermediate-temperature phase of zirconia, which has a tetragonal structure, can be stabilized at room temperature by the addition of modest amounts (below ∼8 mol%) of dopants such as Y3+ and Ca2+. This doped zirconia has mechanical toughness values as high as 17MPa·m1/2. On the other hand, the high-temperature phase of zirconia, which has a cubic structure, can be stabilized at room temperature by the addition of significant amounts (above ∼8 mol%) of dopants. This form of zirconia has one of the highest ionic conductivity values associated with ceramics, allowing the use of the material in oxygen sensors and solid-oxide fuel cells. Research on this material actively continues and many improvements can be expected in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Stapper, M. Bernasconi, N. Nicoloso, and M. Parrinello, Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia, Phys. Rev. B, 59(2), 797–810 (1999).

    Article  CAS  ADS  Google Scholar 

  2. J.K. Dewhurst and J.E. Lowther, Relative stability, structure, and elastic properties of several phases of pure zirconia, Phys. Rev. B, 57(2), 741–747 (1998).

    Article  CAS  ADS  Google Scholar 

  3. P. Li, I.-W. Chen, and J.E. Penner-Hahn, Effect of dopants on zirconia stabilization – An X-ray absorption study: I, trivalent dopants, J. Am. Ceram. Soc. 77(1) 118–128 (1994).

    Article  CAS  Google Scholar 

  4. D.W. Richerson, Modern Ceramic Engineering Properties, Processing, and Use in Design 3/e, Taylor and Francis Group, Boca Raton, 2006, p 30.

    Google Scholar 

  5. S.-M. Ho, On the structural chemistry of zirconium oxide, Mater. Sci. Eng. 54, 23–29 (1982).

    Article  CAS  Google Scholar 

  6. P. Aldebert and J.-P. Traverse, Structure and ionic mobility of zirconia at high temperature, J. Am. Ceram. Soc. 68(1), 34–40 (1985).

    Article  CAS  Google Scholar 

  7. P. Bouvier, E. Djurado, G. Lucazeau, and T. Le Bihan, High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia, Phys. Rev. B 62(13), 8731–8737 (2000).

    Article  CAS  ADS  Google Scholar 

  8. N. Igawa and Y. Ishii, Crystal structure of metastable tetragonal zirconia up to 1473 K, J. Am. Ceram. Soc. 84(5), 1169–1171 (2001).

    Article  CAS  Google Scholar 

  9. G. Teufer, The crystal structure of tetragonal ZrO2, Acta Crystallogr. 15, 1187 (1962).

    Article  CAS  Google Scholar 

  10. M. Winterer, Reverse Monte Carlo analysis of extended x-ray absorption fine structure spectra of monoclinic and amorphous zirconia, J. Appl. Phys. 88(10), 5635–5644 (2000).

    Article  CAS  ADS  Google Scholar 

  11. P. Li, I.-W. Chen, and J.E. Penner-Hahn, X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures, Phys. Rev. B, 48(14), 10063–10073 (1993).

    Article  CAS  ADS  Google Scholar 

  12. J.D. McCullough and K.N. Trueblood, The crystal structure of baddeleyite (monoclinic ZrO2), Acta Crystallogr. 12, 507–511 (1959).

    Article  CAS  Google Scholar 

  13. H. Arashi, T. Suzuki, ad S.-I. Akimoto, Non-destructive phase transformation of ZrO2 single crystal at high pressure, J. Mater. Sci. Lett. 6, 106–108 (1987).

    Article  CAS  Google Scholar 

  14. S. Kawasaki, T. Yamanaka, S. Kume, and T. Ashida, Crystallite size effect on the pressure-induced phase transformation of ZrO2, Solid State Commun. 76(4), 527–530 (1990).

    Article  CAS  ADS  Google Scholar 

  15. S. Desgreniers and K. Lagarec, High-density ZrO2 and HfO2: Crystalline structures and equations of state, Phys. Rev. B, 59(13), 8467–8472 (1999).

    Article  CAS  ADS  Google Scholar 

  16. C.J. Howard, E.H. Kisi, and O. Ohtaka, Crystal structures of two orthorhombic zirconias, J. Am. Ceram. Soc. 74(9), 2321–2323 (1991).

    Article  CAS  Google Scholar 

  17. E.H. Kisi, C.J. Howard, and R.J. Hill, Crystal structure of orthorhombic zirconia in partially stabilized zirconia, J. Am. Ceram. Soc. 72(9), 1757–1760 (1989).

    Article  CAS  Google Scholar 

  18. O. Ohtaka, T. Yamanaka, and T. Yagi, New high-pressure and –temperature phase of ZrO2 above 1000°C at 20 GPa, Phys. Rev. B, 49(14), 9295–9298 (1994).

    Article  ADS  Google Scholar 

  19. J. Livage, K. Doi, and C. Mazieres, Hydrated zirconium oxide, J. Am. Ceram. Soc. 51(6), 349–353 (1968).

    Article  CAS  Google Scholar 

  20. A. Clearfield, Crystalline hydrous zirconia, Inorg. Chem. 3(1), 146–148 (1964).

    Article  CAS  Google Scholar 

  21. C. Landron, A. Douy, and D. Bazin, From liquid to solid: residual disorder in the local environment of oxygen-coordinated zirconium, Phys. Status Solidi B, 184, 299–307 (1994).

    Article  CAS  Google Scholar 

  22. A. Corina Geiculescu and H.J. Rack, Atomic-scale structure of water-based zirconia xerogels by X-ray diffraction, J. Sol–Gel Sci. Technol. 20, 13–26 (2001).

    Article  Google Scholar 

  23. A.V. Chadwick, G. Mountjoy, V.M. Nield, I.J.F. Poplett, M.E. Smith, J.H. Strange, and M.G. Tucker, Solid-state NMR and X-ray studies of the structural evolution of nanocrystalline zirconia, Chem. Mater. 13, 1219–1229 (2001).

    Article  CAS  Google Scholar 

  24. A.S. Foster, V.B. Sulimov, F. Lopez Gejo, A.L. Shluger, and R.M. Nieminen, Structure and electrical levels of point defects in monoclinic zirconia, Phys. Rev. B, 64, 224108 (2001).

    Article  ADS  CAS  Google Scholar 

  25. A. Eichler, Tetragonal Y-doped zirconia: structure and ion conductivity, Phys. Rev. B, 64, 174103 (2001).

    Article  ADS  CAS  Google Scholar 

  26. R.W. Vest, N.M. Tallan, and W.C. Tripp, Electrical properties and defect structure of zirconia: I, monoclinic phase, J. Am. Ceram. Soc. 47(12), 635–640 (1964).

    Article  CAS  Google Scholar 

  27. A.H. Heuer, Transformation toughening in ZrO2-containing ceramics, J. Am. Ceram. Soc. 70(10), 689–698 (1987).

    Article  CAS  Google Scholar 

  28. U. Messerschmidt, B. Baufeld, and D. Baither, Plastic deformation of cubic zirconia single crystals, Key Eng. Mater. 153–154, 143–182 (1998).

    Article  Google Scholar 

  29. R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc. 83(3), 461–487 (2000).

    Article  CAS  Google Scholar 

  30. S.-K. Chan, Y. Fang, M. Grimsditch, Z. Li, M.V. Nevitt, W.M. Robertson, and E.S. Zouboulis, Temperature dependence of the elastic moduli of monoclinic zirconia, J. Am. Ceram. Soc. 74(7), 1742–1744 (1991).

    Article  CAS  Google Scholar 

  31. A. Bravo-Leon, Y. Morikawa, M. Kawahara, and M.J. Mayo, Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content, Acta Mater. 50, 4555–4562 (2002).

    Article  CAS  Google Scholar 

  32. R.A. Cutler, J.R. Reynolds, and A. Jones, Sintering and characterization of polycrystalline monoclinic, tetragonal, and cubic zirconia, J. Am. Ceram. Soc. 75(8), 2173–2183 (1992).

    Article  CAS  Google Scholar 

  33. M. Levichkova, V. Mankov, N. Starbov, D. Karashanova, B. Mednikarov, and K. Starbova, Structure and properties of nanosized electron beam deposited zirconia thin films, Surf. Coat. Technol. 141, 70–77 (2001).

    Article  CAS  Google Scholar 

  34. T. Sakuma, Y.-I. Yoshizawa, and H. Suto, The microstructure and mechanical properties of yttria-stabilized zirconia prepared by arc-melting, J. Mater. Sci. 20, 2399–2407 (1985).

    Article  CAS  ADS  Google Scholar 

  35. G. Skandan, H. Hahn, M. Roddy, and W.R. Cannon, Ultrafine-grained dense monoclinic and tetragonal zirconia, J. Am. Ceram. Soc. 77(7), 1706–1710 (1994).

    Article  CAS  Google Scholar 

  36. J. Eichler, U. Eisele, and J. Rödel, Mechanical properties of monoclinic zirconia, J. Am. Ceram. Soc. 87(7), 1401–1403 (2004).

    Article  CAS  Google Scholar 

  37. Y.-M. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics Principles for Ceramic Science and Engineering, Wiley, New York, 1997, p. 484.

    Google Scholar 

  38. D.W. Richerson, Modern Ceramic Engineering Properties, Processing, and Use in Design 3/e Taylor and Francis Group, Boca Raton, 2006, pp. 275, 643.

    Google Scholar 

  39. G. Stefanic and S. Music, Factors influencing the stability of low temperature tetragonal ZrO2, Croat. Chem. Acta 75(3), 727–767 (2002).

    CAS  Google Scholar 

  40. H.S. Maiti, K.V.G.K. Gokhale, and E.C. Subbarao, Kinetics and burst phenomenon in ZrO2 transformation, J. Am. Ceram. Soc. 55(6), 317–322 (1972).

    Article  CAS  Google Scholar 

  41. A.H. Heuer, N. Claussen, W.M. Kriven, and M. Rühle, Stability of tetragonal ZrO2 particles in ceramic matrices, J. Am. Ceram. Soc. 65(12), 642–650 (1982).

    Article  CAS  Google Scholar 

  42. M.H. Bocanegra-Bernal and S. Diaz De La Torre, Review. Phase transitions in zirconium dioxide and related materials for high performance engineering materials, J. Mater. Sci. 37, 4947–4971 (2002).

    Article  CAS  Google Scholar 

  43. A.G. Evans, N. Burlingame, M. Drory, and W.M. Kriven, Martensitic transformations in zirconia–particle size effects and toughnening, Acta Metall. 29, 447–456 (1981).

    Article  CAS  Google Scholar 

  44. A.G. Evans and A.H. Heuer, Review – Transformation toughening in ceramics: Martensitic transformations in crack-tip stress fields, J. Am. Ceram. Soc. 63(5–6), 241–248 (1980).

    Article  CAS  Google Scholar 

  45. D.W. Richerson, Modern Ceramic Engineering Properties, Processing, and Use in Design Taylor and Francis Group, Boca Raton, 2006, pp. 635, 640–644.

    Google Scholar 

  46. T.K. Gupta, F.F. Lange, and J.H. Bechtold, Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase, J. Mater. Sci. 13(7), 1464–1470 (1978).

    Article  CAS  ADS  Google Scholar 

  47. Y.-M. Chiang, D. Birnie III, and W.D. Kingery, Physical Ceramics Principles for Ceramic Science and Engineering, Wiley, New York, 1997, pp. 488–492.

    Google Scholar 

  48. M.J. Roddy, W.R. Cannon, G. Skandan, and H. Hahn, Creep behavior of nanocrystalline monoclinic ZrO2, J. Eur. Ceram. Soc. 22, 2657–2662 (2002).

    Article  CAS  Google Scholar 

  49. M. Yoshida, Y. Shinoda, T. Akatsu, and F. Wakai, Superplasticity-like deformation of nanocrystalline monoclinic zirconia at elevated temperatures, J. Am. Ceram. Soc. 87(6), 1122–1125 (2004).

    Article  CAS  Google Scholar 

  50. J.D. Comins, P.E. Ngoepe, and C.R.A. Catlow, Brillouin-scattering and computer-simulation studies of fast-ion conductors. A review, J. Chem. Soc. Faraday Trans. 86(8), 1183–1192 (1990).

    Article  CAS  Google Scholar 

  51. R.W. Vest and N.M. Tallan, Electrical properties and defect structure of zirconia: II, tetragonal phase and inversion, J. Am. Ceram. Soc. 48(9), 472–475 (1965).

    Article  CAS  Google Scholar 

  52. A. Kumar, D. Rajdev, and D.L. Douglass, Effect of oxide defect structure on the electrical properties of ZrO2, J. Am. Ceram. Soc. 55(9), 439–445 (1972).

    Article  CAS  Google Scholar 

  53. R.W. Vest, N.M. Tallan, and W.C. Tripp, Electrical properties and defect structure of zirconia: I, monoclinic phase, J. Am. Ceram. Soc. 47(12), 635–640 (1964).

    Article  CAS  Google Scholar 

  54. P. Kofstad and D.J. Ruzicka, On the defect structure of ZrO2 and HfO2, J. Electrochem. Soc. 110(3), 181–184 (1963).

    Article  CAS  Google Scholar 

  55. E. Dow Whitney, Electrical resistivity and diffusionless phase transformation of zirconia at high temperatures and ultrahigh pressures, J. Electrochem. Soc. 112(1), 91–94 (1965).

    Article  Google Scholar 

  56. O. Ohtaka, S. Kume, and E. Ito, Stability field of cotunnite-type zirconia, J. Am. Ceram. Soc. 73(3), 744–745 (1990).

    Article  CAS  Google Scholar 

  57. A. Madeyski and W.W. Smeltzer, Oxygen diffusion in monoclinic zirconia, Mater. Res. Bull. 3, 369–376 (1968).

    Article  CAS  Google Scholar 

  58. F.J. Keneshea and D.L. Douglas, The diffusion of oxygen in zirconia as a function of oxygen pressure, Oxidation Met. 3(1), 1–14 (1971).

    Article  CAS  Google Scholar 

  59. Y. Ikuma, K. Komatsu, and W. Komatsu, Oxygen diffusion in monoclinic ZrO2, undoped and doped with Y2O3, Adv. Ceram. 24, 749–758 (1988).

    Google Scholar 

  60. C.A.J. Fisher and H. Matsubara, Molecular dynamics investigations of grain boundary phenomena in cubic zirconia, Comput. Mater. Sci. 14, 177–184 (1999).

    Article  CAS  Google Scholar 

  61. Y. Moriya and A. Navrotsky, High-temperature calorimetry of zirconia: heat capacity and thermodynamics of the monoclinic-tetragonal phase transition, J. Chem. Thermodyn. 38, 211–223 (2006).

    Article  CAS  Google Scholar 

  62. H. Boysen, F. Frey, and T. Vogt, Neutron powder investigation of the tetragonal to monoclinic phase transformation in undoped zirconia, Acta Crystallogr. B, 47, 881–886 (1991).

    Article  Google Scholar 

  63. R. Ruh, H.J. Garrett, R.F. Domagala, and N.M. Tallan, The system zirconia-hafnia, J. Am. Ceram. Soc. 51(1), 23–27 (1968).

    Article  CAS  Google Scholar 

  64. G.M. Wolten, Diffusionless phase transformations in zirconia and hafnia, J. Am. Ceram. Soc. 46(9), 418–422 (1963).

    Article  CAS  Google Scholar 

  65. W.L. Baun, Phase transformation at high temperatures in hafnia and zirconia, Science, 140(3573), 1330–1331 (1963).

    Article  CAS  PubMed  ADS  Google Scholar 

  66. A. Benyagoub, F. Levesque, F. Couvreur, C. Gibert-Mougel, C. Dufour, and E. Paumier, Evidence of a phase transition induced in zirconia by high energy heavy ions, Appl. Phys. Lett. 77(20), 3197–3199 (2000).

    Article  CAS  ADS  Google Scholar 

  67. K.E. Sickafus, H. Matzke, T. Hartmann, K. Yasuda, J.A. Valdez, P. Chodak III, M. Nastasi, and R.A. Verrall, Radiation damage effects in zirconia, J. Nucl. Mater. 274, 66–77 (1999).

    Article  CAS  ADS  Google Scholar 

  68. A. Navrotsky, L. Benoist, and H. Lefebvre, Direct calorimetric measurement of enthalpies of phase transitions at 2000–2400°C in yttria and zirconia, J. Am. Ceram. Soc. 88(10), 2942–2944 (2005).

    CAS  Google Scholar 

  69. J.E. Bailey, The monoclinic-tetragonal transformation and associated twinning in thin films of zirconia, Proc. Roy. Soc. Lon. Ser. A, Math. Phys. Sci. 279(1378), 395–412 (1964).

    Article  ADS  Google Scholar 

  70. S.T. Buljan, H.A. McKinstry, and V.S. Stubican, Optical and X-ray single crystal studies of the monoclinic tetragonal transition in ZrO2, J. Am. Ceram. Soc. 59(7–8), 351–354 (1976).

    Article  CAS  Google Scholar 

  71. R.N. Patil and E.C. Subbarao, Monoclinic-tetragonal phase transition in zirconia: Mechanism, pretransformation and coexistence, Acta Crystallogr. A 26, 535–542 (1970).

    Article  CAS  ADS  Google Scholar 

  72. F. Frey, H. Boysen, and T. Vogt, Neutron powder investigation of the monoclinic to tetragonal phase transformation in undoped zirconia, Acta Crystallogr. B 46, 724–730 (1990).

    Article  Google Scholar 

  73. E.C. Subbarao, H.S. Maiti, and K.K. Srivastava, Martensitic transformation in zirconia, Phys. Status Solidi A 21, 9–40 (1974).

    Article  CAS  Google Scholar 

  74. G.K. Bansal and A.H. Heuer, On a martensitic phase transformation in zirconia (ZrO2)-I. Metallographic evidence, Acta Metall. 20, 1281–1289 (1972).

    Article  CAS  Google Scholar 

  75. G.K. Bansal and A.H. Heuer, On a martensitic phase transformation in zirconia (ZrO2)-II. Crystallographic aspects, Acta Metall. 22, 409–417 (1974).

    Article  CAS  Google Scholar 

  76. P.M. Kelly, Martensitic transformations in ceramics, Mater. Sci. Forum, 56–58, 335–346 (1990).

    Article  Google Scholar 

  77. D. Huang, K.R. Venkatachari, and G.C. Stangle, Influence of yttria content on the preparation of nanocrystalline yttria-doped zirconia, J. Mater. Res. 10(3), 762–773 (1995).

    Article  CAS  ADS  Google Scholar 

  78. V.S. Stubican, R.C. Hink, and S.P. Ray, Phase equilibria and ordering in the system ZrO2–Y2O3, J. Am. Ceram. Soc. 61(1–2), 17–21 (1978).

    Article  CAS  Google Scholar 

  79. V.S. Stubican and S.P. Ray, Phase equilibria and ordering in the system ZrO2–CaO, J. Am. Ceram. Soc. 60(11–12), 534–537 (1977).

    Article  CAS  Google Scholar 

  80. C.F. Grain, Phase relations in the ZrO2–MgO system, J. Am. Ceram. Soc. 50(6), 288–290 (1967).

    Article  CAS  Google Scholar 

  81. I. Cohen and B.E. Schaner, A metallographic and x-ray study of the UO2–ZrO2 system, J. Nucl. Mater. 9(1), 18–52 (1963).

    Article  CAS  ADS  Google Scholar 

  82. F.A. Mumpton and R. Roy, Low-temperature equilibria among ZrO2, ThO2, and UO2, J. Am. Ceram. Soc. 43, 234–240 (1960).

    Article  CAS  Google Scholar 

  83. W.W. Barker, F.P. Bailey, and W. Garrett, A high-temperature neutron diffraction study of pure and scandia-stabilized zirconia, J. Solid State Chem. 7, 448–453 (1973).

    Article  CAS  ADS  Google Scholar 

  84. P. Duwez and F. Odell, Phase relationships in the system zirconia-ceria, J. Am. Ceram. Soc. 33(9), 274–283 (1950).

    Article  CAS  Google Scholar 

  85. T. Chraska, A.H. King, and C.C. Berndt, On the size-dependent phase transformation in nanoparticulate zirconia, Mater. Sci. Eng. A 286, 169–178 (2000).

    Article  Google Scholar 

  86. R.C. Garvie, Stabilization of the tetragonal structure in zirconia microcrystals, J. Phys. Chem. 82(2), 218–224 (1978).

    Article  CAS  Google Scholar 

  87. A. Suresh, M.J. Mayo, and W.D. Porter, Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders, J. Mater. Res. 18(12), 2912–2921 (2003).

    Article  CAS  ADS  Google Scholar 

  88. A. Suresh, M.J. Mayo, W.D. Porter, and C.J. Rawn, Crystallite and grain-size-dependent phase transformations in yttria-doped zirconia, J. Am. Ceram. Soc. 86(2), 360–362 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Graeve, O.A. (2008). Zirconia. In: Shackelford, J.F., Doremus, R.H. (eds) Ceramic and Glass Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73362-3_10

Download citation

Publish with us

Policies and ethics