Skip to main content

Magnesium and Its Alloys

  • Chapter
Magnesium Injection Molding

Magnesium belongs to alkaline earth metals, which occupy the second main group of the periodic table of elements. It was discovered in the eighteenth century and named after the ancient Greek district of Magnesia in Thessaly (Table 1.1). This silvery-white metal is the eighth most abundant element, comprising 2.7% of earth's crust. Due to high reactivity, magnesium is not found in elemental form in nature but only in chemical complexes, widely distributed in rock structures, seawater and lake brines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shukun M et al (2005) Uplift China’s Pidgeon magnesium reduction processing level and develop recycling economy – China magnesium report. In: 62nd Annual World Magnesium Conference, Berlin, Germany, IMA, pp 13–25

    Google Scholar 

  2. Watson K et al (2000) The Magnola demonstration plant: A valuable investment in technology development and improvement. In HI Kaplan (ed) Magnesium Technology 2000, TMS, Nashville, TN, 27–30

    Google Scholar 

  3. Schoukens A, Curr T, and Abdellatif M (2007) Thermal production of magnesium. MINTEK, Pyrometallurgy Division, Randburg, South Africa, personal communication

    Google Scholar 

  4. Krishnan A, Lu X, and Pal UB (2005) Solid oxide membrane (SOM) for cost effective and environmentally sound production of magnesium directly from magnesium oxide. In NR Neelaleggham HI Kaplan, and BR Powell (eds) Magnesium Technology 2005, TMS, Warrendale, PA, pp 7–15

    Google Scholar 

  5. Brooks G et al (2006) The carbothermic route to magnesium. Journal of Metals 57(5):51

    Google Scholar 

  6. Kramer DA (1998) Magnesium recycling in the United States in 1998. In Flow studies for recycling metal commodities in the United States, US Geological Survey, Reston, VA, USA

    Google Scholar 

  7. Shang S et al (2001) Innovative vacuum distillation for magnesium recycling. In J Hryn (ed) Magnesium Technology 2001, TMS, Warrendale, PA, USA, pp 55–60

    Google Scholar 

  8. Kimura K, Nishii K, Kawarada M (2003) Recycling magnesium alloy housings for notebook computers. Fujitsu Scientific Technical Journal 38(1): 102–111

    Google Scholar 

  9. Hanko G, Macher G (2003) Technologies for efficient Mg-scrap recycling. In HI Kaplan (ed) Magnesium Technology 2003, TMS, Warrendale, PA, USA, pp 29–32

    Google Scholar 

  10. Busk RS, Phillips CW (1945) Transactions AIME 161:266

    Google Scholar 

  11. Holdeman GE (1942) US Patent 2,304,093,8 Dec 1942

    Google Scholar 

  12. Cao P, Qian M, StJohn DH (2004) Grain coarsening of magnesium alloys by beryllium. Scripta Materialia 51:647–651

    Article  Google Scholar 

  13. Green W et al (1993) Method for producing high purity magnesium alloys. US Patent 5,248,477,28 Sept 28 1993

    Google Scholar 

  14. Dieter GE (1976) Mechanical Metallurgy. McGraw-Hill, New York

    Google Scholar 

  15. Caceres CH et al (2005) Section thickness, macrohardness and yield strength in high pressure die cast magnesium alloy AZ91. Materials Science and Engineering A 402:269–277

    Article  Google Scholar 

  16. Somekawa H, Mukai T (2005) Effect of grain refinement on fracture toughness in extruded pure magnesium. Scripta Materialia 53:1059–1064

    Article  Google Scholar 

  17. Emley EF (1966) Principles of magnesium technology. Pergamon Press, Oxford

    Google Scholar 

  18. Shaw C, Jones H (1997) The contribution of different alloying additions to hardening in rapidly solidified magnesium alloys. Materials Science and Engineering A 226–228:856–860

    Article  Google Scholar 

  19. Blake AH, Caceres CH (2005) Solid solution effects on the tensile behaviour of concentrated Mg-Zn alloys. In NR Neelaleggham (ed) Magnesium Technology 2005, TMS, Warrendale, PA, pp 403–407

    Google Scholar 

  20. Nie JF (2003) Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scripta Materialia 48:1009–1015

    Article  Google Scholar 

  21. Caceres CH et al (2002) Effects of solidification and aging on the microstructure and mechanical properties of AZ91 alloy. Materials Science and Engineering A 325:344–355

    Article  Google Scholar 

  22. Weiss D, Robison ST (2005) Magnesium driving to permanent mold. Modern Casting 95(9):26–29

    Google Scholar 

  23. Loughanne T et al (2005) The effect of grain refinement on the castability of magnesium permanent mould castings. In NR Neelaleggham (ed) Magnesium Technology 2005, TMS, Warrendale, PA, pp 309–314

    Google Scholar 

  24. Tukeda T et al (2003) Magnesium alloy excellent fluidity and materials thereof. US Patent 6,582,533 B2, 24 June 2003

    Google Scholar 

  25. Nakamura K et al (2004) High strength magnesium based alloy and Mg based casting alloy and article made of the alloy. US Patent 6,755,922 B2, 29 June 2004

    Google Scholar 

  26. Sweder TA et al (2006) AM-lite and AM-HP2 new magnesium alloys offer new opportunities. In SAE 2006 Congress, Detroit, USA, SAE, paper 06M–459

    Google Scholar 

  27. Klement W, Wilens R.H, Duwez P (1960) Nature 187:869

    Article  Google Scholar 

  28. Inoue A (1995) Japan Institute of Materials (JIM) 36 (7):866–875

    Google Scholar 

  29. Kim G, Inoue A, Matsumoto T (1991) Increase of mechanical strength of Mg85Zn12Ce3 amorphous alloy by dispersion of ultrafine hcp particles. Materials Transactions JIM 32:875–878

    Article  Google Scholar 

  30. Amiya K, Inoue A (2000) Materials Transactions JIM 41:1460

    Article  Google Scholar 

  31. Magde SV, Greer AL (2004) Effect of Ag addition on the glass-forming ability and thermal stability of Mg-Cu-Y alloys. Materials Science and Engineering A 375–377:759–762

    Google Scholar 

  32. Perez P et al (2002) Mechanical behaviour of amorphous Mg-23.5Ni ribbons. In VIII Congreso National de Propiedades Mecanicas en Solidos, Gandia

    Google Scholar 

  33. Xu YK et al (2005) Mg-based bulk metallic glass composites with plasticity and gigapaskals strength. Acta Materialia 53:1857–1866

    Article  Google Scholar 

  34. Inoue A et al (1991) Materials Transactions JIM 32:609

    Article  Google Scholar 

  35. Cullity BD (1978) Elements of X-ray Diffraction. Addison-Wesley, New York

    Google Scholar 

  36. Kelly EW, Hosford WF (1968) Trans.AIME 242:5

    Google Scholar 

  37. Staroselsky A, Anand L (2003) A constitutive model for hcp materials deforming by slip and twinning: Application to magnesium alloy AZ31B. International Journal of Plasticity 19(10):1843–1864

    Article  Google Scholar 

  38. Gehrmann R, Frommert MM, Gottstein G (2005) Texture effect on plastic deformation of magnesium. Materials Science and Engineering A 395:338–349

    Article  Google Scholar 

  39. Kaibyshev OA (2005) Superplasticity: Microstructural Refining and Superplastic Roll Forming. In ISTC, Science and Technology Series, vol 3. Futureplast, Arlington, USA

    Google Scholar 

  40. Kaibyshev OA, Salikhov RR (1981) Effect of superplastic deformation on the structure and properties of alloy MA21. Metal Science and Heat Treatment 23(3):188–192

    Article  Google Scholar 

  41. Watanabe H et al (2002) Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia 46:851–856

    Article  Google Scholar 

  42. Somekawa H et al (2003) Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy. Scripta Materialia 48:1249–1254

    Article  Google Scholar 

  43. Mabuchi M et al (1997) Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scripta Materialia 36:681–686

    Article  Google Scholar 

  44. Watanabe H et al (1999) Effect of temperature and grain size on the dominant diffusion process for superplastic flow in AZ61 magnesium alloy. Acta Materialia 47(14):3753–3758

    Article  Google Scholar 

  45. Caceres CH et al (1999) The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys. Scripta Materialia 40(5):631–637

    Article  Google Scholar 

  46. Ghosh AK (1977) Tensile instability and necking in materials with strain hardening and strain-rate hardening. Acta Metallurgica 25(12):1413–1424

    Article  Google Scholar 

  47. Lee SG et al (2005) Variability in the tensile ductility of high pressure die cast AM50 Mg alloy. Scripta Materialia 53:851–856

    Article  Google Scholar 

  48. Weiler JP et al (2005) Relationship between internal porosity and fracture strength of die cast magnesum alloy AM60B. Materials Science and Engineering A 395:315–322

    Article  Google Scholar 

  49. Ericksen SC (1988) Magnesium’s high damping capacity for automotive noise and vibration attenuation. In 45 World Magnesium Congress, Tokyo, 1998, IMA, pp 54–58

    Google Scholar 

  50. Jensen JW (1964) Magnesium damping capacity—causes and effects. In Magnesium Association Convention, 1964, pp 1–11

    Google Scholar 

  51. EMI shielding, Hydro Magnesium Brochure, 2005

    Google Scholar 

  52. Rudajevova A, Stanek M, Lukac P (2003) Determination of thermal diffusivity and thermal conductivity of Mg-Al alloys. Materials Science and Engineering A 341:152–157

    Article  Google Scholar 

  53. Doehler HH (1951) Die castings. McGraw Hill, New York

    Google Scholar 

  54. Sin LS, Dube D (2004) Influence of process parameters on fluidity of investment cast AZ91D magnesium alloy. Materials Science and Engineering A 386:34–42

    Article  Google Scholar 

  55. Moore S (2002) Magnesium Molding—technique expands options. Modern Plastics, July 2002:33

    Google Scholar 

  56. Kono K (1999) Method and apparatus for manufacturing metallic parts by fine die casting. US Patent 5,983,976, 16 Nov 1999

    Google Scholar 

  57. Moore S (2002) Thixotropic molding broadens processor capabilities. Modern Plastics March 2002:24–30

    Google Scholar 

  58. Tausing G, Ricketts NJ, Peck SR (2001) Forging of magnesium using squeeze cast preform. In J Hryn (ed) Magnesium Technology 2001, TMS, Warrendale, PA, pp 235–242

    Google Scholar 

  59. Couling SL, Pashak JF, Sturkey L (1959) Transactions ASM 51:94–107

    Google Scholar 

  60. Barnett MR, Bave MD, Bettles CJ (2004) Deformation microstructures and textures of some cold rolled Mg alloys. Materials Science and Engineering A 386:205–211

    Article  Google Scholar 

  61. Lochte L, Westengen H, Rodseth J (2005) An efficient route to magnesium alloy sheet: Twin roll casting and rolling. In NR Neelaleggham (ed) Magnesium Technology 2005, TMS, Warrendale, PA, pp 247–252

    Google Scholar 

  62. Bohlen J et al (2005) Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scripta Materialia 53:259–264

    Article  Google Scholar 

  63. Celotto S (2000) TEM study of continuous precipitation in Mg-9Al-1Zn alloy. Acta Materialia 48(8):1775–1787

    Article  Google Scholar 

  64. Zhang MX, Kelly PM (2002) Crystallography of Mg17Al12 precipitates in AZ91D alloy. Scripta Materialia 48:647–652

    Article  Google Scholar 

  65. Ghali E, Kainer KU (2004) General and localized corrosion of magnesium alloys: A critical review. Journal of Materials Engineering and Performance 13:7–23

    Article  Google Scholar 

  66. Lunder O et al (1989) Corrosion Science 45:741

    Article  Google Scholar 

  67. Juzeliunas E et al (2005) Structure and initial corrosion resistance of sputter deposited nanocrystalline Mg-Al-Zr alloys. Materials Science and Engineering A 395:411–416

    Google Scholar 

  68. Song G, StJohn D (2002) The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. Journal of Light Metals 2:1–16

    Article  Google Scholar 

  69. Dube D et al (2001) Characterization and performance of laser melted AZ91D and AM60B. Material Science and Engineering A 299:38–45

    Article  Google Scholar 

  70. Song G, Atrens A, Dargusch M (1999) Influence of microstructure on the corrosion of die cast AZ91D. Corrosion Science 41:249–273

    Article  Google Scholar 

  71. Mathieu S et al (2002) Corrosion behaviour of high pressure die cast and semisolid cast AZ91D alloys. Corrosion Science 44:2737–2756

    Article  Google Scholar 

  72. Wang F, Li Y, Huo H 2004) Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science 46:1467–1477

    Article  Google Scholar 

  73. Yang K, Xu L, Zhang E (2005) Formation by ion plating of Ti-coating on pure Mg for biomedical applications. Scripta Materialia 53:523–527

    Article  Google Scholar 

  74. Timoshenko AV, Magurova YV (1995) The effect of a cathodic component on AC microplasma oxidation of aluminum alloys. Protection of Metals 31(4):377–380

    Google Scholar 

  75. Stevens KT, John CG, Walsh FC (2003) Surface finishing of aluminum and magnesium alloys using plasma electrolytic oxidation. In HI Kaplan (ed) Magnesium Technology 2003, TMS, Warrendale, PA, p 89

    Google Scholar 

  76. Timoshenko AV et al (1994) The effect of silicates in sodium hydroxide solution on the structure of oxide coatings deposited on a D16T alloy by microarc oxidation. Protection of Metals 30(2):149–153

    Google Scholar 

  77. Shrestha S et al (2002) Improved corrosion performance of AZ91D magnesium alloy coated with the Keronite process. In HI Kaplan (ed) Magnesium Technology 2002, TMS, Warrendale, PA

    Google Scholar 

  78. MEL (2005) Surface treatments for magnesium alloys in aerospace and defence. Magnesium Elektron, Swinton, England

    Google Scholar 

  79. Brown RE (2002) Developments in magnesium wrought products rolling, forging and sheet casting. In 59th Annual World Magnesium Conference, Montreal, 2002, pp 25–32

    Google Scholar 

  80. Nakatsugawa I, Tsukeda T, Kitamura K (2002) Latest developments in magnesium use for thixomolding in Asia. In 59th Annual World Magnesium Conference, Montreal, 2002, 11–14

    Google Scholar 

  81. Shukun M et al (2006) China magnesium industry development report for 2005. In 63rd World Magnesium Conference, Beijing, IMA, pp 3–23

    Google Scholar 

  82. Metals Handbook (1973) 8th ed. vol. 8. American Society for Metals, Metals Park, Ohio

    Google Scholar 

  83. Westengen H, Bakke P, Albright, D (2005) Advances in Magnesium Alloy Development. Die Casting Engineer 49(6):26–32

    Google Scholar 

  84. Nayeb-Hashemi AA, Clark JB (1988) Phase diagrams of binary magnesium alloys. ASM International, Metals Park, Ohio

    Google Scholar 

  85. Brooks CR (1982) Heat treatment, structure and properties of non-ferrous alloys. ASM International, Metals Park, Ohio

    Google Scholar 

  86. Mathis K, Trojanova Z, Lukac P (2002) Hardening and softening in deformed magnesium alloys. Materials Science and Engineering A 324:141–144

    Article  Google Scholar 

  87. Pourbaix M (1974) Atlas of Electrochemical Equilibria. In Aqueous Solutions, National Association of Corrosion Engineers

    Google Scholar 

  88. Kato A et al (1994) Consolidation and mechanical properties of atomized Mg-based amorphous powder. Materials Science and Engineering A 179–180:112–117

    Article  Google Scholar 

  89. Kato A et al (1994) Microstructure and mechanical properties of bulk Mg70Ca10Al20 alloys produced by extrusion of atomized amorphous powders. Materials Science and Engineering A 179–180:707–711

    Article  Google Scholar 

  90. Friedrich H, Schumann S (2002) Strategies for overcoming technological barriers to the increased use of magnesium in cars. In Transactions of Institute of Mining and Metallurgy (section c: mineral processing and extractive metallurgy), The Institute of Materials, Minerals and Mining, pp. C65–C71

    Google Scholar 

  91. CRC Handbook of Chemistry and Physics (1996) New York

    Google Scholar 

  92. Smithels Metals Reference Book, 8-th edition (2004) Elsevier

    Google Scholar 

  93. Shewmon P, Diffusion in Solids (1989) TMS Warrendale

    Google Scholar 

  94. Horst HJ and Asby MF (1982) Deformation Mechanism Map, Pergamon Press

    Google Scholar 

  95. Cannon JF (1974) J. Phys. Chem. Ref. Data Vol. 3, pp 781–824

    Google Scholar 

  96. Magnesium and Magnesium Alloys (1999) edited by M. Avedesian and H. Baker, ASM International, Materials Park, OH

    Google Scholar 

  97. Metals Handbook (1990) Vol 2. ASM International, Materials Park, OH

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Czerwinski, F. (2008). Magnesium and Its Alloys. In: Magnesium Injection Molding. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72528-4_1

Download citation

Publish with us

Policies and ethics