Skip to main content

T-DNA integration is the final step of the transformation process. During this step, the T-DNA, which traveled as a single-stranded DNA molecule from the bacterial cell through the host-cell cytoplasm into the nucleus, must covalently attach itself to the host cell’s double-stranded genomic DNA. To fulfil its destiny, the T-DNA needs to be directed to its point of integration in the host genome, to be stripped of some, if not all, of its bacterial and host escorting proteins, and to interact with and co-opt the host's DNA-repair proteins and machinery for its complementation into a double-stranded DNA molecule during its integration into the host genome. In the following chapter, we describe the current knowledge on the functions performed by the bacterial and host proteins, and the role that the host genome may play, during the integration process. We also present the dominant models used today to explain the complex mechanism of T-DNA integration in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  • Abu-Arish A, Frenkiel-Krispin D, Fricke T, Tzfira T, Citovsky V, Grayer Wolf S, Elbaum M (2004) Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA. J Biol Chem 279: 25359-25363

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657

    Article  PubMed  Google Scholar 

  • Ambros PF, Matzke AJ, Matzke MA (1986) Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J 5: 2073-2077

    PubMed  CAS  Google Scholar 

  • An S, Park S, Jeong DH, Lee DY, Kang HG, Yu JH, Hur J, Kim SR, Kim YH, Lee M, Han S, Kim SJ, Yang J, Kim E, Wi SJ, Chung HS, Hong JP, Choe V, Lee HK, Choi JH, Nam J, Park PB, Park KY, Kim WT, Choe S, Lee CB, An G (2003) Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133: 2040-2047

    Article  PubMed  CAS  Google Scholar 

  • Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore KS (2007) Arabidopsis VirE2 interacting protein2 is required for Agrobacterium T-DNA Integration in Plants. Plant Cell 19: 1695-1708

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk E, Cottrill PB, Storozhenko S, Fuangthong M, Chen Y, O’Farrell MK, Van Montagu M, Inze D, Kushnir S (1998) Higher plants possess two struc-turally different poly(ADP-ribose) polymerases. Plant J 15: 635-645

    Article  PubMed  CAS  Google Scholar 

  • Bakkeren G, Koukolikova-Nicola Z, Grimsley N, Hohn B (1989) Recovery of Agrobacterium tumefaciens T-DNA molecules from whole plants early after transfer. Cell 57: 847-857

    Article  PubMed  CAS  Google Scholar 

  • Bako L, Umeda M, Tiburcio AF, Schell J, Koncz C (2003) The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci USA 100: 10108-10113

    Article  PubMed  CAS  Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723-10728

    Article  PubMed  CAS  Google Scholar 

  • Bebenek K, Kunkel TA (2004) Functions of DNA polymerases. Adv Protein Chem 69: 137-165

    Article  PubMed  CAS  Google Scholar 

  • Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci USA 82: 8527-8529

    Article  PubMed  CAS  Google Scholar 

  • Boulton SJ, Jackson SP (1998) Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J 17: 1819-1828

    Article  PubMed  CAS  Google Scholar 

  • Bray CM, West CE (2005) DNA repair mechanisms in plants: crucial sensors and effectors for the maintenance of genome integrity. New Phytol 168: 511-528

    Article  PubMed  CAS  Google Scholar 

  • Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lecharny A (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3: 1152-1157

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14: 3206-3214

    PubMed  CAS  Google Scholar 

  • Bundock P, Hooykaas PJJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proc Natl Acad Sci USA 93: 15272-15275

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, van Attikum H, den Dulk-Ras A, Hooykaas PJ (2002) Insertional mutagenesis in yeasts using T-DNA from Agrobacterium tumefaciens. Yeast 19: 529-536

    Article  PubMed  Google Scholar 

  • Butaye KM, Goderis IJ, Wouters PF, Pues JM, Delaure SL, Broekaert WF, Depicker A, Cammue BP, De Bolle MF (2004) Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J 39: 440-449

    Article  PubMed  CAS  Google Scholar 

  • Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin JC, Hurt EC, Nehrbass U (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441: 770-773

    Article  PubMed  CAS  Google Scholar 

  • Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples trans-criptional status and nuclear organization. Cell 117: 427-439

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36: 105-113

    Article  PubMed  CAS  Google Scholar 

  • Chilton M-D, Que Q (2003) Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133: 956-965

    Article  PubMed  CAS  Google Scholar 

  • Chyi YS, Jorgensen RA, Goldstein D, Tanksley SD, Loaiza-Figueroa F (1986) Locations and stability of Agrobacterium-mediated T-DNA insertions in the Lycopersicon genome. Mol Gen Genet 204: 64-69

    Article  CAS  Google Scholar 

  • Citovsky V, Guralnick B, Simon MN, Wall JS (1997) The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271: 718-727

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman A, Dafny-Yelin M, Vyas S, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9: 9-20

    Article  PubMed  CAS  Google Scholar 

  • Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11: 1287-1289

    Article  PubMed  CAS  Google Scholar 

  • Daniel PP, Bryant JA (1985) DNA ligase in pea (Pisum sativum L.) seedlings: changes in activity during germination and effects of deoxyribonucleotides. J Exp Bot 39: 481-486

    Article  Google Scholar 

  • De Bolle MF, Butaye KM, Goderis IJ, Wouters PF, Jacobs A, Delaure SL, Depicker A, Cammue BP (2006) The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants. Plant Mol Biol 63: 533-543

    Article  CAS  Google Scholar 

  • De Buck S, Jacobs A, Van Montagu M, Depicker A (1999) The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20: 295-304

    Article  PubMed  Google Scholar 

  • De Neve M, De Buck S, Jacobs A, Van Montagu M, Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11: 15-29

    Article  PubMed  Google Scholar 

  • Deng W, Chen L, Wood DW, Metcalfe T, Liang X, Gordon MP, Comai L, Nester EW (1998) Agrobacterium VirD2 protein interacts with plant host cyclophilins. Proc Natl Acad Sci USA 95: 7040-7045

    Article  PubMed  CAS  Google Scholar 

  • Dominguez A, Fagoaga C, Navarro L, Moreno P, Pena L (2002) Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Mol Genet Genomics 267: 544-556

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38: 258-263

    Article  PubMed  CAS  Google Scholar 

  • Elmayan T, Balzergue S, Beon F, Bourdon V, Daubremet J, Guenet Y, Mourrain P, Palauqui JC, Vernhettes S, Vialle T, Wostrikoff K, Vaucheret H (1998) Arabidopsis mutants impaired in cosuppression. Plant Cell 10: 1747-1758

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara K, Abe K, Ichikawa H, Valentine L, Hohn B, Toki S (2006) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25: 5579-5590

    Article  PubMed  CAS  Google Scholar 

  • Ferreira PC, Hemerly AS, Engler JD, van Montagu M, Engler G, Inze D (1994) Developmental expression of the Arabidopsis cyclin gene cyc1At. Plant Cell 6: 1763-1774

    Article  PubMed  CAS  Google Scholar 

  • Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52: 161-176

    Article  PubMed  CAS  Google Scholar 

  • Francis KE, Spiker S (2005) Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J 41: 464-477

    Article  PubMed  CAS  Google Scholar 

  • Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34: 427-440

    Article  PubMed  CAS  Google Scholar 

  • Fritsch O, Benvenuto G, Bowler C, Molinier J, Hohn B (2004) The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol Cell 16: 479-485

    Article  PubMed  CAS  Google Scholar 

  • Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI (2003) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35: 557-565

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez FM, Schrammeijer B, Hooykaas PJ (2006) The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. Nucleic Acids Res 34: 6496-6504

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51: 223-256

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67: 16-37

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB, Kim SI (2007) Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochim Biophys Acta 1769: 409-420

    Google Scholar 

  • Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5: 287-297

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100

    Article  PubMed  CAS  Google Scholar 

  • Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25: 4650-4657

    Article  PubMed  CAS  Google Scholar 

  • Haber JE (2000) Lucky breaks: analysis of recombination in Saccharomyces. Mutat Res 451: 53-69

    PubMed  CAS  Google Scholar 

  • Herman L, Jacobs A, Van Montagu M, Depicker A (1990) Plant chromosome/ marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol Gen Genet 224: 248-256

    Article  PubMed  CAS  Google Scholar 

  • Jacque JM, Stevenson M (2006) The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature 441: 641-645

    Article  PubMed  CAS  Google Scholar 

  • Journin L, Bouchezs D, Drong RF, Tepfer D, Slightom JL (1989) Analysis of TR-DNA/plant junctions in the genome of Convolvulus arvensis clone transformed by Agrobacterium rhizogenes strain A4. Plant Mol Biol 12: 72-85

    Google Scholar 

  • Kalpana GV, Marmon S, Wang W, Crabtree GR, Goff SP (1994) Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266: 2002-2006

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Takashima K, Kakutani T (2004) Epigenetic control of CACTA transposon mobility in Arabidopsis thaliana. Genetics 168: 961-969

    Article  PubMed  CAS  Google Scholar 

  • Kertbundit S, De Greve H, Deboeck F, Van Montagu M, Hernalsteens JP (1991) In vivo random beta-glucuronidase gene fusions in Arabidopsis thaliana. Proc Natl Acad Sci USA 88: 5212-5216

    Article  PubMed  CAS  Google Scholar 

  • Kim S-I, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51: 779-791

    Article  PubMed  CAS  Google Scholar 

  • Kirik A, Pecinka A, Wendeler E, Reiss B (2006) The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18: 2431-2442

    Article  PubMed  CAS  Google Scholar 

  • Kohler F, Cardon G, Pohlman M, Gill R, Schieder O (1989) Enhancement of transformation rates in higher plants by low-dose irradiation: are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome? Plant Mol Biol 12: 189-199

    Article  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86: 8467-8471

    Article  PubMed  CAS  Google Scholar 

  • Krizkova L, Hrouda M (1998) Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J 16: 673-680

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J 31: 543-551

    Article  PubMed  CAS  Google Scholar 

  • Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22: 29-37

    Article  PubMed  CAS  Google Scholar 

  • Leskov KS, Criswell T, Antonio S, Li J, Yang CR, Kinsella TJ, Boothman DA (2001) When X-ray-inducible proteins meet DNA double strand break repair. Semin Radiat Oncol 11: 352-372

    Article  PubMed  CAS  Google Scholar 

  • Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2: e60

    Article  PubMed  CAS  Google Scholar 

  • Lewis LK, Resnick MA (2000) Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat Res 451: 71-89

    PubMed  CAS  Google Scholar 

  • Li J, Krichevsky A, Vaidya M, Tzfira T, Citovsky V (2005a) Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci USA 102: 5733-5738

    Article  PubMed  CAS  Google Scholar 

  • Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T (2005b) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci USA 102: 19231-19236

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Rosso MG, Ulker B, Weisshaar B (2006) Analysis of T-DNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions. Genomics 87: 645-652

    Article  PubMed  CAS  Google Scholar 

  • Loyter A, Rosenbluh J, Zakai N, Li J, Kozlovsky SV, Tzfira T, Citovsky V (2005) The plant VirE2 interacting protein 1. A molecular link between the Agrobacterium T-complex and the host cell chromatin? Plant Physiol 138: 1318-1321

    Article  PubMed  CAS  Google Scholar 

  • Luthra R, Kerr SC, Harreman MT, Apponi LH, Fasken MB, Ramineni S, Chaurasia S, Valentini SR, Corbett AH (2007) Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem 282: 3042-3049

    Article  PubMed  CAS  Google Scholar 

  • Makarevitch I, Somers DA (2006) Association of Arabidopsis topoisomerase IIA cleavage sites with functional genomic elements and T-DNA loci. Plant J 48: 697-709

    Article  PubMed  CAS  Google Scholar 

  • Martinez JJ, Seveau S, Veiga E, Matsuyama S, Cossart P (2005) Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123: 1013-1023

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10: 697-704

    PubMed  CAS  Google Scholar 

  • Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48: 1-17

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2: E234

    Article  PubMed  CAS  Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retro-transposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15: 1771-1780

    Article  PubMed  Google Scholar 

  • Montague JW, Hughes FM, Jr., Cidlowski JA (1997) Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cistrans-isomerase activity. Potential roles of cyclophilins in apoptosis. J Biol Chem 272: 6677-6684

    Article  PubMed  CAS  Google Scholar 

  • Muller AE, Atkinson RG, Sandoval RB, Jorgensen RA (2007) Microhomologies between T-DNA ends and target sites often occur in inverted orientation and may be responsible for the high frequency of T-DNA-associated inversions. Plant Cell Rep 26: 617-630

    Article  PubMed  CAS  Google Scholar 

  • Mysore KS, Kumar CTR, Gelvin SB (2000a) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21: 9-16

    Article  PubMed  CAS  Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000b) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97: 948-953

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9: 317-333

    Article  PubMed  CAS  Google Scholar 

  • Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436: 1053-1057

    Article  PubMed  CAS  Google Scholar 

  • Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313: 848-851

    Article  PubMed  CAS  Google Scholar 

  • Offringa R, de Groot MJA, Haagsman HJ, Does MP, van den Elzen PJM, Hooykaas PJJ (1990) Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9: 3077-3084

    PubMed  CAS  Google Scholar 

  • Pansegrau W, Schoumacher F, Hohn B, Lanka E (1993) Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci USA 90: 11538-11542

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7: 4021-4026

    PubMed  CAS  Google Scholar 

  • Pelczar P, Kalck V, Gomez D, Hohn B (2004) Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic T-DNA complexes in mammalian cells. EMBO Rep 5: 632-637

    Article  PubMed  CAS  Google Scholar 

  • Riha K, Watson JM, Parkey J, Shippen DE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J 21: 2819-2826

    Article  PubMed  CAS  Google Scholar 

  • Rodenburg KW, de Groot MJ, Schilperoort RA, Hooykaas PJ (1989) Single-stranded DNA used as an efficient new vehicle for transformation of plant protoplasts. Plant Mol Biol 13: 711-719

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro S, Fischer T, Luo MJ, Antunez O, Brettschneider S, Lechner J, Perez-Ortin JE, Reed R, Hurt E (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116: 75-86

    Article  PubMed  CAS  Google Scholar 

  • Rossi L, Hohn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 93: 126-130

    Article  PubMed  CAS  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53: 247-259

    Article  PubMed  CAS  Google Scholar 

  • Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann JC, Delseny M, Guiderdoni E (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39: 450-464

    Article  PubMed  CAS  Google Scholar 

  • Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17: 6086-6095

    Article  PubMed  CAS  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73: 39-85

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli UK (2006) Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell 21: 379-391

    Article  PubMed  CAS  Google Scholar 

  • Schneeberger RG, Zhang K, Tatarinova T, Troukhan M, Kwok SF, Drais J, Klinger K, Orejudos F, Macy K, Bhakta A, Burns J, Subramanian G, Donson J, Flavell R, Feldmann KA (2005) Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions. Funct Integr Genomics 5: 240-253

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16: 2561-2572

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14: 2985-2994

    Article  PubMed  CAS  Google Scholar 

  • Sha Y, Li S, Pei Z, Luo L, Tian Y, He C (2004) Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet 108: 306-314

    Article  PubMed  CAS  Google Scholar 

  • Szabados L, Kovacs I, Oberschall A, Abraham E, Kerekes I, Zsigmond L, Nagy R, Alvarado M, Krasovskaja I, Gal M, Berente A, Redei GP, Haim AB, Koncz C (2002) Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32: 233-242

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser SM (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441: 774-778

    Article  PubMed  CAS  Google Scholar 

  • Teo SH, Jackson SP (1997) Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J 16: 4788-4795

    Article  PubMed  CAS  Google Scholar 

  • Timson DJ, Singleton MR, Wigley DB (2000) DNA ligases in the repair and rep-lication of DNA. Mutat Res 460: 301-318

    PubMed  CAS  Google Scholar 

  • Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1: 178-184

    Article  Google Scholar 

  • Tinland B, Hohn B (1995) Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome. Genet Eng 17: 209-229

    CAS  Google Scholar 

  • Tinland B, Schoumacher F, Gloeckler V, Bravo-Angel AM, Hohn B (1995) The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 14: 3585-3595

    PubMed  CAS  Google Scholar 

  • Tsukamoto Y, Ikeda H (1998) Double-strand break repair mediated by DNA end-joining. Genes Cells 3: 135-144

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12: 121-129

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Frankman LR, Vaidya M, Citovsky V (2003) Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133: 1011-1023

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004a) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20: 375-383

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2004b) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431: 87-92

    Article  PubMed  CAS  Google Scholar 

  • van Attikum H, Bundock P, Hooykaas PJJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20: 6550-6558

    Article  PubMed  Google Scholar 

  • van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJJ (2003) The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31: 4247-4255

    Article  PubMed  CAS  Google Scholar 

  • van Attikum H, Hooykaas PJJ (2003) Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 31: 826-832

    Article  PubMed  CAS  Google Scholar 

  • Volokhina I, Chumakov M (2007) Study of the VirE2-ssT-DNA complex formation by scanning probe microscopy and gel electrophoresis- T-complex visualization. Microsc Microanal 13: 51-54

    Article  PubMed  CAS  Google Scholar 

  • Wallroth M, Gerats AGM, Rogers SG, Fraley RT, Horsch RB (1986) Chromosomal localization of foreign genes in Petunia hybrida. Mol Gen Genet 202: 6-15

    Article  CAS  Google Scholar 

  • West CE, Waterworth WM, Story GW, Sunderland PA, Jiang Q, Bray CM (2002) Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31: 517-528

    Article  PubMed  CAS  Google Scholar 

  • Weterings E, van Gent DC (2004) The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair (Amst) 3: 1425-1435

    Article  CAS  Google Scholar 

  • Wu Y-Q (2002) Protein-protein interaction between VirD2 and DNA ligase: an essential step of Agrobacterium tumefaciens T-DNA integration. Ph.D. thesis. University of Basel

    Google Scholar 

  • Wu Y-Q, Hohn B (2003) Cellular transfer and Chromosomal integration of T-DNA during Agrobacterium tumefaciens-mediated plant transformation. In G Stacey, NT Keen, eds, Plant-Microbe Interactions Vol 6, pp 1-18

    Google Scholar 

  • Yi H, Mysore KS, Gelvin SB (2002) Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J 32: 285-298

    Article  PubMed  CAS  Google Scholar 

  • Yi H, Sardesai N, Fujinuma T, Chan CW, Veena, Gelvin SB (2006) Constitutive expression exposes functional redundancy between the Arabidopsis histone H2A gene HTA1 and other H2A gene family members. Plant Cell 18: 1575-1589

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Li J, Liu Z, Qi Q, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Zhao W, Li P, Chen W, Zhang Y, Hu J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Tao M, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79-92

    Article  PubMed  CAS  Google Scholar 

  • Zambryski PC (1992) Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu Rev Plant Physiol Plant Mol Biol 43: 465-490

    Article  CAS  Google Scholar 

  • Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Chen G, Liu H, Han B, Zhang Q, Wu C (2007) Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J 49: 947-959

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126: 1189-1201

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena, Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJ, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132: 494-505

    Article  PubMed  CAS  Google Scholar 

  • Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium T-DNA into plant nuclei: Two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13: 369-384

    Article  PubMed  CAS  Google Scholar 

  • Ziemienowicz A, Tinland B, Bryant J, Gloeckler V, Hohn B (2000) Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol Cell Biol 20: 6317-6322

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdepen-dence between methylation and transcription. Nat Genet 39: 61-69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ziemienowicz, A., Tzfira, T., Hohn, B. (2008). Mechanisms of T-DNA integration. In: Tzfira, T., Citovsky, V. (eds) Agrobacterium: From Biology to Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72290-0_11

Download citation

Publish with us

Policies and ethics