Skip to main content

Analysis of Yersinia pestis Gene Expression in the Flea Vector

  • Chapter
The Genus Yersinia

Yersinia pestis is the causative agent of plague. Unlike the other pathogenic Yersinia species, Y. pestis has evolved an arthropod-borne route of transmission, alternately infecting flea and mammalian hosts. Distinct subsets of genes are hypothesized to be differentially expressed during infection of the arthropod vector and mammalian host. Genes crucial for mammalian infection are referred to as virulence factors whilst genes playing a role in the flea vector are termed transmission factors. This article serves as a review of known factors involved in flea-borne transmission and introduces an ‘in vivo’ microarray approach to elucidating the genetic basis of Y. pestis infection of- and transmission by the flea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacot, A.W. and Martin, C.J. (1914) Observations on the mechanism on the transmission of plague by fleas. J. Hyg. 13, 423-439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burroughs, A.L. (1947) Sylvatic plague studies. the vector efficiency of nine species of fleas compared with Xenopsylla cheopis. J. Hyg. 45, 371-396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrows, T.W. and Jackson, S. (1956) The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br. J. Exp. Pathol. 37, 570-576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen, G.D., Simpson, W.A., Younger, J.M., Baddour, L.M., Barrett, F.F., Melton, D.M. and Beachey, E.H. (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996-1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, K.D., Shukla, J.B. and Rennert, O.M. (1978) Polyamine compartmentalization in various human disease states. Clin. Chim. Acta 82, 1-7.

    Article  CAS  PubMed  Google Scholar 

  • Darby, C., Ananth, S.L., Tan, L. and Hinnebusch, B.J. (2005) Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect. Immun. 73, 7236-7242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darby, C., Hsu, J.W., Ghori, N. and Falkow, S. (2002) Caenorhabditis elegans: plague bacte-ria biofilm blocks food intake. Nature 417, 243-244.

    Article  CAS  PubMed  Google Scholar 

  • Davey, M.E. and O’Toole, G.A. (2000) Microbial biofilms: from ecology to molecular genet-ics. Microbiol. Mol. Biol. Rev. 64, 847-867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson, D.L., Jarrett, C.O., Wren, B.W. and Hinnebusch, B.J. (2006) Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J. Bacteriol. 188, 1113-1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinnebusch, B.J., Fischer, E.R. and Schwan, T.G. (1998) Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J. Infect. Dis. 178, 1406-1415.

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch, B.J., Perry, R.D. and Schwan, T.G. (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367-370.

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch, B.J., Rudolph, A.E., Cherepanov, P., Dixon, J.E., Schwan, T.G. and Forsberg, A. (2002) Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733-735.

    Article  CAS  PubMed  Google Scholar 

  • Igarashi, K. and Kashiwagi, K. (2000) Polyamines: mysterious modulators of cellular func-tions. Biochem. Biophys. Res. Commun. 271, 559-564.

    Article  CAS  PubMed  Google Scholar 

  • Jarrett, C.O., Deak, E., Isherwood, K.E., Oyston, P.C., Fischer, E.R., Whitney, A.R., Kobaya-shi, S.D., DeLeo, F.R. and Hinnebusch, B.J. (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 190, 783-792.

    Article  PubMed  Google Scholar 

  • Jones, H.A., Lillard, Jr., J.W. and Perry, R.D. (1999) HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 145, 2117-2128.

    Article  CAS  PubMed  Google Scholar 

  • Lu, C.D., Itoh, Y., Nakada, Y. and Jiang, Y. (2002) Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudo-monas aeruginosa PAO1. J. Bacteriol. 184, 3765-3773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, R.C. and Boyle, S.M. (1991) Cyclic AMP inhibits and putrescine represses expression of the speA gene encoding biosynthetic arginine decarboxylase in Escherichia coli. J. Bac-teriol. 173, 3615-3621.

    Article  CAS  Google Scholar 

  • Patel, C.N., Wortham, B.W., Lines, J.L., Fetherston, J.D., Perry, R.D. and Oliveira, M.A. (2006) Polyamines are essential for the formation of plague biofilm. J. Bacteriol. 188, 2355-2363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendrak, M.L. and Perry, R.D. (1993) Proteins essential for expression of the Hms+ pheno-type of Yersinia pestis. Mol. Microbiol. 8, 857-864.

    Article  CAS  PubMed  Google Scholar 

  • Perry, R.D., Pendrak, M.L. and Schuetze, P. (1990) Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J. Bacteriol. 172, 5929-5937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebbane, F., Lemaitre, N., Sturdevant, D.E., Rebeil, R., Virtaneva, K., Porcella, S.F. and Hinnebusch, B.J. (2006) Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc. Natl. Acad. Sci. USA 103, 11766-11771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg, C., Christensen, B.B., Johansen, T., Toftgaard Nielsen, A., Andersen, J.B., Givskov, M. and Molin, S. (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65, 4108-4117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Straley, S.C. and Bowmer, W.S. (1986) Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect. Immun. 51, 445-454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturgill, G. and Rather, P.N. (2004) Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol. Microbiol. 51, 437-446.

    Article  CAS  PubMed  Google Scholar 

  • Surgalla, M.J. and Beesley, E.D. (1969) Congo red-agar plating medium for detecting pig-mentation in Pasteurella pestis. Appl. Microbiol. 18, 834-837.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabor, C.W. and Tabor, H. (1985) Polyamines in microorganisms. Microbiol. Rev. 49, 81-99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tkachenko, A., Nesterova, L. and Pshenichnov, M. (2001) The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch. Microbiol. 176, 155-157.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, H.M., Fraser, A.V. and Hughes, A. (2003) A perspective of polyamine metabolism. Biochem. J. 376, 1-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner, E., Roe, F., Bugnicourt, A., Franklin, M.J., Heydorn, A., Molin, S., Pitts, B. and Stewart, P.S. (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl. Envi-ron. Microbiol. 70, 6188-6196.

    Article  CAS  Google Scholar 

  • Yoshida, M., Kashiwagi, K., Shigemasa, A., Taniguchi, S., Yamamoto, K., Makinoshima, H., Ishihama, A. and Igarashi, K. (2004) A unifying model for the role of polyamines in bac-terial cell growth, the polyamine modulon. J. Biol. Chem. 279, 46008-46013.

    Article  CAS  PubMed  Google Scholar 

  • Yu, T., de la Rosa, C. and Lu, R. (2004) Microsensor measurement of oxygen concentration in biofilms: from one dimension to three dimensions. Water Sci. Technol. 49, 353-358.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vadyvaloo, V., Sebbane, F., Hinnebusch, B.J., Sturdevant, D., Jarrett, C. (2007). Analysis of Yersinia pestis Gene Expression in the Flea Vector. In: Perry, R.D., Fetherston, J.D. (eds) The Genus Yersinia. Advances In Experimental Medicine And Biology, vol 603. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72124-8_16

Download citation

Publish with us

Policies and ethics