Skip to main content

Role of IL-1-Mediated Inflammation in Tumor Angiogenesis

  • Conference paper
Immune-Mediated Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 601))

Abstract

Angiogenesis, or generation of new blood vessels from pre-existing vessels, is an integral part of many physiological or pathological processes, including tumor growth. Physiological angiogenesis is a complex process controlled by different proangiogenic as well as antiangiogenic factors. For angiogenic induction, the balance between these pro- and anti-angiogenic factors in the microenvironment has to shift in favor of proangiogenic factors, either by upregulation of these pro-angiogenic factors or by downregulation of angiogenic inhibitors. Proinflammatory cytokines, such as IL-1 and TNFα , were found to be major pro-angiogenic stimuli of both physiological and pathological angiogenesis. The IL-1 family consists of pleiotropic proinflammatory and immunoregulatory cytokines, namely, IL-1α and IL-1β , and one antagonistic protein, the IL-1 receptor antagonist (IL-1Ra), which binds to IL-1 receptors without transmitting an activation signal and represents a physiological inhibitor of preformed IL-1. Previously, we described an important role for microenvironment IL-1, mainly IL-1β , in tumor angiogenesis. In this chapter, we analyze the role of microenvironment host- and tumor cell-derived IL-1 on angiogenesis and the role of inflammation in pathological angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apte, R.N., Dotan, S., Elkabets, M., White, M.R., Reich, E., Carmi, Y., Song, X., Dvorkin, T., Krelin, Y. and Voronov, E. (2006a) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev. 25, 387–408.

    Article  PubMed  CAS  Google Scholar 

  • Apte, R.N., Krelin, Y., Song, X., Dotan, S., Recih, E., Elkabets, M., Carmi, Y., Dvorkin, T., White, R.M., Gayvoronsky, L., Segal, S. and Voronov, E. (2006b) Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur. J. Cancer 42, 751–759.

    Article  PubMed  CAS  Google Scholar 

  • Apte, R.N. and Voronov, E. (2002) Interleukin-1-a major pleiotropic cytokine in tumor-host interactions. Semin. Cancer Biol. 12, 277–290.

    Article  PubMed  CAS  Google Scholar 

  • Asahara, T. and Kawamoto, A. (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am. J. Physiol. Cell Physiol. 287, C572–579.

    Article  PubMed  CAS  Google Scholar 

  • Balkwill, F. (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 13, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Bar, D., Apte, R.N., Voronov, E., Dinarello, C.A. and Cohen, S. (2004) A continuous delivery system of IL-1Ra reduces angiogenesis and inhibits tumor development. FASEB J. 18, 161–163.

    PubMed  CAS  Google Scholar 

  • Ben-Av, P., Crofford, L.J., Wilder, R.L. and Hla, T. (1995) Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett. 372, 83–87.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P. (2003) Angiogenesis in health and disease. Nat. Med. 9, 653–660.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, P. and Jain, R.K. (2000) Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Dinarello, C.A. (1996) Biologic basis for interleukin-1 in disease. Blood 87, 2095–2147.

    PubMed  CAS  Google Scholar 

  • El Awad, B., Kreft, B., Wolber, E.M., Hellwig-Burgel, T., Metzen, E., Fandrey, J. and Jelkmann, W. (2000) Hypoxia and interleukin-1beta stimulate vascular endothelial growth factor production in human proximal tubular cells. Kidney Int. 58, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Elaraj, D.M., Weinreich, D.M., Varghese, S., Puhlmann, M., Hewitt, S.M., Carroll, N.M., Feldman, E.D., Turner, E.M. and Alexander, H.R. (2006) The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin. Cancer Res. 12, 1088–1096.

    Article  PubMed  CAS  Google Scholar 

  • Fiedler, U. and Augustin, H.G. (2006) Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 27, 552–558.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. (2003) Fundamental concepts of the angiogenic process. Curr. Mol. Med. 3, 643–651.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. and D’Amore, P.A. (1996) Blood vessel formation: what is its molecular basis? Cell 87, 1153–1155.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, M. and Asahara, T. (2004) Endothelial progenitor cell culture for vascular regeneration. Stem Cells Dev. 13, 344–349.

    Article  PubMed  Google Scholar 

  • Jung, Y.D., Liu, W., Reinmuth, N., Ahmad, S.A., Fan, F., Gallick, G.E. and Ellis, L.M. (2001) Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis 4, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Krelin, Y., Voronov, E., Dotan, S., Elkabets, M., Reich, E., Fogel, M., Huszar, M., Iwakura, Y., Segal, S., Dinarello, C.A. and Apte, R.N. (2007) Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res. 67, 1062–1071.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani, A. and Dejana, E. (1989) Cytokines as communication signals between leukocytes and endothelial cells. Immunol. Today 10, 370–375.

    Article  PubMed  CAS  Google Scholar 

  • Moldovan, N. I. and Asahara, T. (2003) Role of blood mononuclear cells in recanalization and vascularization of thrombi: past, present, and future. Trends Cardiovasc. Med. 13, 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Murayama, T., Tepper, O. M., Silver, M., Ma, H., Losordo, D.W., Isner, J.M., Asahara, T. and Kalka, C. (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp. Hematol. 30, 967–972.

    Article  PubMed  CAS  Google Scholar 

  • Rafii, S., Lyden, D., Benezra, R., Hattori, K. and Heissig, B. (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer 2, 826–835.

    CAS  Google Scholar 

  • Song, X., Krelin, Y., Dvorkin, T., Bjorkdahl, O., Segal, S., Dinarello, C.A., Voronov, E. and Apte, R.N. (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1β -secreting cells. J. Immunol. 175, 8200–8208.

    PubMed  CAS  Google Scholar 

  • Song, X., Voronov, E., Dvorkin, T., Fima, E., Cagnano, E., Benharroch, D., Shendler, Y., Bjorkdahl, O., Segal, S., Dinarello, C.A. and Apte, R.N. (2003) Differential effects of IL-1 alpha and IL-1 beta on tumorigenicity patterns and invasiveness. J. Immunol. 171, 6448–6456.

    PubMed  CAS  Google Scholar 

  • Voronov, E., Shouval, D.S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., Dinarello, C.A. and Apte, R.N. (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl. Acad. Sci. USA 100, 2645–2650.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Voronov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Voronov, E., Carmi, Y., Apte, R.N. (2007). Role of IL-1-Mediated Inflammation in Tumor Angiogenesis. In: Shurin, M.R., Smolkin, Y.S. (eds) Immune-Mediated Diseases. Advances in Experimental Medicine and Biology, vol 601. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72005-0_28

Download citation

Publish with us

Policies and ethics