Skip to main content

Cortical Processing Of Auditory Space: Pathways And Plasticity

  • Chapter
Spatial Processing in Navigation, Imagery and Perception

Abstract

Contrary to popular belief, which places auditory space processing wholly in the brainstem, several lines of evidence suggest that auditory cortex plays an important role in spatial perception. Lesion studies in animals and humans demonstrate severe deficits in sound localization after damage to auditory cortex. Single-unit recording studies find neurons tuned to spatial location in auditory cortical areas. While these neurons exist already in primary auditory cortex, their prevalence and sharpness of spatial tuning increases in nonprimary areas of the caudal belt, as defined in nonhuman primates. The firing of neurons in these latter areas also shows a tighter correlation with the behavioral performance of alert monkeys engaged in sound localization behavior. Caudal belt and parabelt project to posterior parietal cortex and to areas of prefrontal cortex, such as the frontal eye and pinna fields, known to be involved in spatial perception. This has led to the notion that a posterior-dorsal processing stream is intimately involved in aspects of auditory spatial perception. The existence of such an auditory “where”-stream is also suggested by functional neuroimaging studies in humans in which subjects process stationary or moving sounds in space. Consistently, posterior aspects of the superior temporal cortex and adjoining inferior parietal cortex are activated during these tasks. Thus, while brainstem nuclei perform an important service by computing some of the basic parameters necessary for spatial processing, such as interaural time and intensity differences, these parameters are integrated (together with monaural spectral cues that depend on head and pinnae) at the cortical level. Auditory space perception, including perception of motion in space, is, therefore, ultimately accomplished at the cortical level. Animals and humans that grow up blind use their auditory modality for localization in far space. Areas in parietal and occipital cortex that are ordinarily used for vision become activated by auditory input. This leads to an expansion of auditory areas in the dorsal stream into visual territory and to a simultaneous sharpening of auditory spatial tuning in these neurons. Together, this massive cross-modal reorganization leads to superior performance of blind as compared to sighted individuals in auditory spatial tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alain, C., Arnott, S. R., Hevenor, S., Graham, S., and Grady, C. L., 2001, “What” and “where” in the human auditory system, Proc Natl Acad Sci U S A 98(21):12301-12306.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, R. A., 1997, Multimodal integration for the representation of space in the posterior parietal cortex, Philos Trans R Soc Lond B Biol Sci 352(1360):1421-1428.

    Article  PubMed  CAS  Google Scholar 

  • Arno, P., De Volder, A. G., Vanlierde, A., Wanet-Defalque, M. C., Streel, E., Robert, A., Sanabria-Bohorquez, S., and Veraart, C., 2001, Occipital activation by pattern recognition in the early blind using auditory substitution for vision, Neuroimage 13(4):632-645.

    Article  PubMed  CAS  Google Scholar 

  • Arnott, S. R., Binns, M. A., Grady, C. L., and Alain, C., 2004, Assessing the auditory dual-pathway model in humans., Neuroimage 22(1):401-408.

    Article  PubMed  Google Scholar 

  • Baldi, P., and Heiligenberg, W., 1988, How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers, Biological Cybernetics 59(4-5):313-318.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, D. J., Hall, D. A., 2006, Response preferences for “what” and “where” in human non-primary auditory cortex, Neuroimage 32(2):968-977

    Article  PubMed  Google Scholar 

  • Beitel, R. E., and Kaas, J. H., 1993, Effects of bilateral and unilateral ablation of auditory cortex in cats on the unconditioned head orienting response to acoustic stimuli, J Neurophysiol 70(1):351-369.

    PubMed  CAS  Google Scholar 

  • Benedek, G., Mucke, L., Norita, M., Albowitz, B., and Creutzfeldt, O. D., 1988, Anterior ectosylvian visual area (AEV) of the cat: physiological properties, Prog Brain Res 75:245-255.

    PubMed  CAS  Google Scholar 

  • Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., and Possing, E. T., 2000, Human temporal lobe activation by speech and nonspeech sounds, Cereb Cortex 10(5):512-528.

    Article  PubMed  CAS  Google Scholar 

  • Binder, J. R., Liebenthal, E., Possing, E. T., Medler, D. A., and Ward, B. D., 2004, Neural correlates of sensory and decision processes in auditory object identification, Nat Neurosci 7(3):295-301.

    Article  PubMed  CAS  Google Scholar 

  • Bremmer, F., Schlack, A., Shah, N. J., Zafiris, O., Kubischik, M., Hoffmann, K., Zilles, K., and Fink, G. R., 2001, Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys, Neuron 29(1):287-296.

    Article  PubMed  CAS  Google Scholar 

  • Brunetti, M., Belardinelli, P., Caulo, M., Del Gratta, C., Della Penna, S., Ferretti, A., Lucci, G., Moretti, A., Pizzella, V., Tartaro, A., Torquati, K., Olivetti Belardinelli, M., and Romani, G. L., 2005, Human brain activation during passive listening to sounds from different locations: An fMRI and MEG study, Hum Brain Mapp 26(4):251-261.

    Article  PubMed  CAS  Google Scholar 

  • Büchel, C., Price, C., Frackowiak, R. S., and Friston, K., 1998, Different activation patterns in the visual cortex of late and congenitally blind subjects, Brain 121(Pt 3):409-419.

    Article  PubMed  Google Scholar 

  • Bushara, K. O., Weeks, R. A., Ishii, K., Catalan, M. J., Tian, B., Rauschecker, J. P., and Hallett, M., 1999, Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans, Nat Neurosci 2(8):759-766.

    Article  PubMed  CAS  Google Scholar 

  • Clarey, J. C., and Irvine, D. R. F., 1990, The anterior ectosylvian sulcal auditory field in the cat: I. An electrophysiological study of its relationship to surrounding auditory cortical fields, J Comp Neurol 301:289-303.

    Article  PubMed  CAS  Google Scholar 

  • Clemo, H. R., and Stein, B. E., 1983, Organization of a fourth somatosensory area of cortex in cat, J Neurophysiol 50(4):910-925.

    PubMed  CAS  Google Scholar 

  • Cohen, L. G., Celnik, P., Pascual-Leone, A., Corwell, B., Falz, L., Dambrosia, J., Honda, M., Sadato, N., Gerloff, C., Catala, M. D., and Hallett, M., 1997, Functional relevance of cross-modal plasticity in blind humans, Nature 389(6647):180-183.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, L. G., Weeks, R. A., Sadato, N., Celnik, P., Ishii, K., and Hallett, M., 1999, Period of susceptibility for cross-modal plasticity in the blind, Ann Neurol 45(4):451-460.

    Article  PubMed  CAS  Google Scholar 

  • De Volder, A. G., Catalan-Ahumada, M., Robert, A., Bol, A., Labar, D., Coppens, A., Michel, C., and Veraart, C., 1999, Changes in occipital cortex activity in early blind humans using a sensory substitution device, Brain Res 826(1):128-134.

    Article  PubMed  Google Scholar 

  • Degerman, A., Rinne, T., Salmi, J., Salonen, O., and Alho, K., 2006, Selective attention to sound location or pitch studied with fMRI, Brain Res 1077 (1):123-134.

    Article  CAS  Google Scholar 

  • Diamond, I. T., Fisher, J. F., Neff, W. D., and Yela, M., 1956, Role of auditory cortex in discrimination requiring localization of sound in space, J Neurophysiol 19(6):500-512.

    PubMed  CAS  Google Scholar 

  • Falchier, A., Clavagnier, S., Barone, P., and Kennedy, H., 2002, Anatomical evidence of multimodal integration in primate striate cortex, J Neurosci 22(13):5749-5759.

    PubMed  CAS  Google Scholar 

  • Fisher, G. H., 1964, Spatial localization by the blind, Am J Psychol 77:2-133.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, D. C., Batra, R., Stanford, T. R., and Kuwada, S., 1997, A neuronal population code for sound localization, Nature 388(6645):871-874.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S., 1996, The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive, Phil Trans R Soc Lond B 351(1346):1445-1453.

    Article  CAS  Google Scholar 

  • Griffiths, T. D., Rees, A., Witton, C., Cross, P. M., Shakir, R. A., and Green, G. G., 1997, Spatial and temporal auditory processing deficits following right hemisphere infarction. A psychophysical study, Brain 120(Pt 5):785-794.

    Article  PubMed  Google Scholar 

  • Griffiths, T. D., Rees, A., Witton, C., Shakir, R. A., Henning, G. B., and Green, G. G., 1996, Evidence for a sound movement area in the human cerebral cortex, Nature 383(6599):425-427.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, T. D., Rees, G., Rees, A., Green, G. G., Witton, C., Rowe, D., Buchel, C., Turner, R., and Frackowiak, R. S., 1998, Right parietal cortex is involved in the perception of sound movement in humans, Nat Neurosci 1(1):74-79.

    Article  PubMed  CAS  Google Scholar 

  • Heffner, H., and Masterton, B., 1975, Contribution of auditory cortex to sound localization in the monkey (Macaca mulatta), J Neurophysiol 38(6):1340-1358.

    PubMed  CAS  Google Scholar 

  • Heffner, H. E., and Heffner, R. S., 1990, Effect of bilateral auditory cortex lesions on sound localization in Japanese macaques, J Neurophysiol 64(3):915-931.

    PubMed  CAS  Google Scholar 

  • Hofman, P. M., Van Riswick, J. G., and Van Opstal, A. J., 1998, Relearning sound localization with new ears, Nat Neurosci 1(5):417-421.

    Article  PubMed  CAS  Google Scholar 

  • Howard, M. A., Volkov, I. O., Abbas, P. J., Damasio, H., Ollendieck, M. C., and Granner, M., 1996, A chronic microelectrode investigation of the tonotopic organization of human auditory cortex, Brain Res 724:260-264.

    Article  PubMed  CAS  Google Scholar 

  • Howard, M. A., Volkov, I. O., Mirsky, R., Garell, P. C., Noh, M. D., Granner, M., Damasio, H., Steinschneider, M., Reale, R. A., Hind, J. E., and Brugge, J. H., 2000, Auditory cortex on the human posterior superior temporal gyrus, J Comp Neurol 416:79-92.

    Article  PubMed  CAS  Google Scholar 

  • Hyvärinen, J., Carlson, S., and Hyvärinen, L., 1981, Early visual deprivation alters modality of neuronal responses in area 19 of monkey cortex, Neurosci Lett 4:239-243.

    Article  Google Scholar 

  • Hyvärinen, J., Hyvärinen, L., and Linnankoski, I., 1981, Modification of parietal association cortex and functional blindness after binocular deprivation in young monkeys, Exp Brain Res 42:1-8.

    PubMed  Google Scholar 

  • Imig, T. J., Irons, W. A., and Samson, F. R., 1990, Single-unit selectivity to azimuthal direction and sound pressure level of noise bursts in cat high-frequency primary auditory cortex, J Neurophysiol 63(6):1448-1466.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., and Clarke, S., 1984, Bilateral transitory projection from auditory cortex in kittens, Dev Brain Res 14:143-148.

    Article  Google Scholar 

  • Irvine, D. R. F., 1992, Physiology of auditory brainstem pathways., in: Springer Handbook of Auditory Research. Vol 2, The Mammalian Auditory Pathway: Neurophysiology, R. R. Fay and A. A. Popper, eds., Springer-Verlag, Berlin, pp. 153-231.

    Google Scholar 

  • Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J. L., Lin, F. H., May, P., Melcher, J., Stufflebeam, S., Tiitinen, H., and Belliveau, J. W., 2004, Human posterior auditory cortex gates novel sounds to consciousness, Proc Natl Acad Sci U S A 101(17):6809-6814.

    Article  PubMed  Google Scholar 

  • Jenkins, W. M., and Merzenich, M. M., 1984, Role of cat primary auditory cortex for sound-localization behavior, J Neurophysiol 52(5):819-847.

    PubMed  CAS  Google Scholar 

  • Jiang, H., Leporé, F., Ptito, M., and Guillemot, J. P., 1994, Sensory modality distribution in the anterior ectosylvian cortex (AEC) of cats, Exp Brain Res 97(3):404-414.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., and Hackett, T. A., 2000, Subdivisions of auditory cortex and processing streams in primates, Proc Natl Acad Sci U S A 97(22):11793-11799.

    Article  PubMed  CAS  Google Scholar 

  • King, A. J., and Hutchings, M. E., 1987, Spatial response properties of acoustically responsive neurons in the superior colliculus of the ferret: a map of auditory space, J Neurophysiol 57:596-624.

    PubMed  CAS  Google Scholar 

  • King, A. J., and Parsons, C., 1999, Improved auditory spatial acuity in visually deprived ferrets, Eur J Neurosci 11(11):3945-3956.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen, E. I., and Konishi, M., 1978, A neural map of auditory space in the owl, Science 200(4343):795-797.

    Article  PubMed  CAS  Google Scholar 

  • Korte, M., and Rauschecker, J. P., 1993, Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness, J Neurophysiol 70(4):1717-1721.

    PubMed  CAS  Google Scholar 

  • Krumbholz, K., Schonwiesner, M., Rubsamen, R., Zilles, K., Fink, G. R., and von Cramon, D. Y., 2005, Hierarchical processing of sound location and motion in the human brainstem and planum temporale, Eur J Neurosci 21(1):230-238.

    Article  PubMed  Google Scholar 

  • Krumbholz, K., Schonwiesner, M., von Cramon, D. Y., Rubsamen, R., Shah, N. J., Zilles, K., and Fink, G. R., 2005, Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe, Cereb Cortex 15(3):317-324.

    Article  PubMed  Google Scholar 

  • Kujala, T., Alho, K., Huotilainen, M., Ilmoniemi, R., Lehtokoski, A., Leinonen, A., Rinne, T., Salonen, O., Sinkkonen, J., Standertskjold-Nordenstam, C., and Naatanen, R., 1997, Electrophysiological evidence for cross-modal plasticity in humans with early- and late-onset blindness, Psychophysiology 32(2):213-216.

    Article  Google Scholar 

  • Kujala, T., Alho, K., Kekoni, J., Hamalainen, H., Reinikainen, K., Salonen, O., Standertskjold-Nordenstam, C. G., and Näätänen, R., 1995, Auditory and somatosensory event-related brain potentials in early blind humans., Exp Brain Res 104(3):519-526.

    Article  PubMed  CAS  Google Scholar 

  • Kujala, T., Alho, K., Paavilainen, P., Summala, H., and Näätänen, R., 1992, Neural plasticity in processing sound location by the early blind: an event-related potential study, Electroencephalogr Clin Neurophysiol 84:469-472.

    Article  PubMed  CAS  Google Scholar 

  • Lessard, N., Pare, M., Lepore, F., and Lassonde, M., 1998, Early-blind human subjects localize sound sources better than sighted subjects, Nature 395(6699):278-280.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J. W., and Van Essen, D. C., 2000, Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey, J Comp Neurol 428(1):112-137.

    Article  PubMed  CAS  Google Scholar 

  • Liotti, M., Ryder, K., and Woldorf, M. G., 1998, Auditory attention in the congenitally blind: where, when and what gets, Neuroreport 9(6):1007-1012.

    Article  PubMed  CAS  Google Scholar 

  • Maeder, P. P., Meuli, R. A., Adriani, M., Bellmann, A., Fornari, E., Thiran, J. P., Pittet, A., and Clarke, S., 2001, Distinct Pathways Involved in Sound Recognition and Localization: A Human fMRI Study, Neuroimage 14(4):802-816.

    Article  PubMed  CAS  Google Scholar 

  • Malhotra, S., Hall, A. J., and Lomber, S. G., 2004, Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas, J Neurophysiol 92(3):1625-1643.

    Article  PubMed  Google Scholar 

  • Mazzoni, P., Bracewell, R. M., Barash, S., and Andersen, R. A., 1996, Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets, J Neurophysiol 75(3):1233-1241.

    PubMed  CAS  Google Scholar 

  • Meredith, M. A., and Clemo, H. R., 1989, Auditory cortical projection from the anterior ectosylvian sulcus (Field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study, J Comp Neurol 289(4):687-707.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks, J. C., Clock, A. E., Xu, L., and Green, D. M., 1994, A panoramic code for sound location by cortical neurons, Science 264(5160):842-844.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks, J. C., and Knudsen, E. I., 1984, A neural code for auditory space in the cat’s superior colliculus, J Neurosci 4:2621-2634.

    PubMed  CAS  Google Scholar 

  • Morel, A., Garraghty, P. E., and Kaas, J. H., 1993, Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys, J Comp Neurol 335(3):437-459.

    Article  PubMed  CAS  Google Scholar 

  • Muchnik, C., Efrati, M., Nemeth, E., Malin, M., and Hildesheimer, M., 1991, Central auditory skills in blind and sighted subjects, Scand Audiol 20:19-23.

    PubMed  CAS  Google Scholar 

  • Mucke, L., Norita, M., Benedek, G., and Creutzfeldt, O., 1982, Physiologic and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat, Exp Brain Res 46(1):1-11.

    Article  PubMed  CAS  Google Scholar 

  • Obleser, J., Boecker, H., Drzezga, A., Haslinger, B., Hennenlotter, A., Roettinger, M., Eulitz, C., and Rauschecker, J. P., 2005, Vowel sound extraction in anterior superior temporal cortex, Hum Brain Mapp 27(7):562-571.

    Article  Google Scholar 

  • Olson, C. R., and Graybiel, A. M., 1987, Ectosylvian visual area of the cat: location, retinotopic organization, and connections, J Comp Neurol 261(2):277-294.

    Article  PubMed  CAS  Google Scholar 

  • Pandya, D. N., and Sanides, F., 1972, Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern, Z Anat Entw-Gesch 139:127-161.

    Article  Google Scholar 

  • Pascual-Leone, A., and Hamilton, R., 2001, The metamodal organization of the brain, Prog Brain Res 134:427-445.

    PubMed  CAS  Google Scholar 

  • Poremba, A., Saunders, R. C., Crane, A. M., Cook, M., Sokoloff, L., and Mishkin, M., 2003, Functional mapping of the primate auditory system, Science 299(5606):568-572.

    Article  PubMed  CAS  Google Scholar 

  • Rajan, R., Aitkin, L. M., and Irvine, D. R., 1990, Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips, J Neurophysiol 64(3):888-902.

    PubMed  CAS  Google Scholar 

  • Rajan, R., Aitkin, L. M., Irvine, D. R., and McKay, J., 1990, Azimuthal sensitivity of neurons in primary auditory cortex of cats. I. Types of sensitivity and the effects of variations in stimulus parameters, J Neurophysiol 64(3):872-887.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., 1995, Compensatory plasticity and sensory substitution in the cerebral cortex, TINS 18:36-43.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., 1997, Processing of complex sounds in the auditory cortex of cat, monkey and man, Acta Otolaryngol 532:34-38.

    CAS  Google Scholar 

  • Rauschecker, J. P., 1998, Cortical processing of complex sounds, COIN 8:516-521.

    CAS  Google Scholar 

  • Rauschecker, J. P., 1999, Auditory cortical plasticity: a comparison with other sensory systems, Trends Neurosci 22(2):74-80.

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., 2002, Cortical map plasticity in animals and humans, Prog Brain Res 138:73-88.

    Article  PubMed  Google Scholar 

  • Rauschecker, J. P., 2005, Plasticity in auditory functions., in: Textbook of Neural Repair and Rehabilitation, Vol. 1, Neural Repair and Plasticity, M. Selzer, S. Clarke, L. Cohen, P. Duncan and F. Gage, eds., Cambridge University Press, Cambridge, England, pp. 162-197

    Google Scholar 

  • Rauschecker, J. P., and Harris, L. R., 1983, Auditory compensation of the effects of visual deprivation in the cat’s superior colliculus, Exp Brain Res 50:69-83.

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., and Henning, P., 2001, Crossmodal expansion of cortical maps in early blindness, in: The Mutable Brain, J. Kaas, ed., Harwood Academic Publishers, Singapore, pp. 243- 259.

    Google Scholar 

  • Rauschecker, J. P., and Kniepert, U., 1994, Enhanced precision of auditory localization behavior in visually deprived cats, Eur J Neurosci 6:149-160.

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., and Korte, M., 1993, Auditory compensation for early blindness in cat cerebral cortex, J. Neurosci 13:4538-4548.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., and Tian, B., 2000, Mechanisms and streams for processing of “what” and “where” in auditory cortex, Proc Natl Acad Sci U S A 97(22):11800-11806.

    Article  PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., and Tian, B., 2005, Hierarchic processing of communication sounds in primates, in: Behavior and Neurodynamics for Auditory Communication, J. S. Kanwal and G. Ehret, eds., Cambridge University Press, Cambridge, pp.

    Google Scholar 

  • Rauschecker, J. P., Tian, B., Pons, T., and Mishkin, M., 1997, Serial and parallel processing in rhesus monkey auditory cortex, J Comp Neurol 382(1):89-103.

    Article  PubMed  CAS  Google Scholar 

  • Ravizza, R. J., and Masterton, B., 1972, Contribution of neocortex to sound localization in opossum (Didelphis virginiana), J Neurophysiol 35(3):344-356.

    PubMed  CAS  Google Scholar 

  • Recanzone, G. H., 2000, Spatial processing in the auditory cortex of the macaque monkey, Proc Natl Acad Sci U S A 97(22):11829-11835.

    Article  PubMed  CAS  Google Scholar 

  • Recanzone, G. H., Guard, D. C., Phan, M. L., and Su, T. K., 2000, Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey, J Neurophysiol 83(5):2723-2739.

    PubMed  CAS  Google Scholar 

  • Rice, C. E., 1970, Early blindness, early experience, and perceptual enhancement, Res Bull Am Found Blind 22:1-22.

    Google Scholar 

  • Rice, C. E., Feinstein, S. H., and Schusterman, R. J., 1965, Echo-detection ability of the blind: size and distance factor, J Exp Psychol 70:246-251.

    Article  PubMed  CAS  Google Scholar 

  • Rockland, K. S., and Ojima, H., 2003, Multisensory convergence in calcarine visual areas in macaque monkey, Int J Psychophysiol 50(1-2):19-26.

    Article  PubMed  Google Scholar 

  • Röder, B., Rosler, F., Henninghausen, E., and Nacker, F., 1996, Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects, Brain Res Cog Brain Res 4(2):77-93.

    Google Scholar 

  • Röder, B., Rosler, F., and Neville, H. J., 1999, Effects of interstimulus interval on auditory event-related potentials in congenitally blind and normally sighted humans, Neurosci Lett 264(1-3):53-56.

    Article  PubMed  Google Scholar 

  • Röder, B., Teder-Salejarvi, W., Sterr, A., Rosler, F., Hillyard, S. A., and Neville, H. J., 1999, Improved auditory spatial tuning in blind humans, Nature 400(6740):162-166.

    Article  PubMed  Google Scholar 

  • Romanski, L. M., and Goldman-Rakic, P. S., 2002, An auditory domain in primate prefrontal cortex, Nat Neurosci 5:15-16.

    Article  PubMed  CAS  Google Scholar 

  • Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., and Rauschecker, J. P., 1999, Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex, Nat Neurosci 2(12):1131-1136.

    Article  PubMed  CAS  Google Scholar 

  • Sadato, N., Pascual-Leone, A., Grafman, J., Ibanez, V., Deiber, M.-P., Dold, G., and Hallett, M., 1996, Activation of the primary visual cortex by Braille reading in blind subjects, Nature 380(526-528).

    Article  Google Scholar 

  • Scott, S. K., Blank, C. C., Rosen, S., and Wise, R. J., 2000, Identification of a pathway for intelligible speech in the left temporal lobe, Brain 123(Pt 12):2400-2406.

    Article  PubMed  Google Scholar 

  • Stricanne, B., Andersen, R. A., and Mazzoni, P., 1996, Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP, J Neurophysiol 76(3):2071-2076.

    PubMed  CAS  Google Scholar 

  • Tata, M. S., and Ward, L. M., 2005a, Early phase of spatial mismatch negativity is localized to a posterior “where” auditory pathway, Exp Brain Res 167(3):481-486.

    Article  Google Scholar 

  • Tata, M. S., and Ward, L. M., 2005b, Spatial attention modulates activity in a posterior “where” auditory pathway, Neuropsychologia 43(4):509-516.

    Article  Google Scholar 

  • Tian, B., Reser, D., Durham, A., Kustov, A., and Rauschecker, J. P., 2001, Functional specialization in rhesus monkey auditory cortex, Science 292(5515):290-293.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, F., Franzen, P., Podreka, I., Steiner, M., and Deecke, L., 1993, Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans, Neurosci Lett 150:162-164.

    Article  PubMed  CAS  Google Scholar 

  • Wanet-Defalque, M. C., Veraart, C., De Volder, A., Metz, R., Michel, C., Dooms, G., and Goffinet, A., 1988, High metabolic activity in the visual cortex of early blind human subjects, Brain Res 446(2):369-373.

    Article  PubMed  CAS  Google Scholar 

  • Warren, J. D., Zielinski, B. A., Green, G. G. R., Rauschecker, J. P., and Griffiths, T. D., 2002, Analysis of sound source motion by the human brain, Neuron 34:1-20.

    Article  Google Scholar 

  • Weeks, R., Horwitz, B., Aziz-Sultan, A., Tian, B., Wessinger, C. M., Cohen, L. G., Hallett, M., and Rauschecker, J. P., 2000, A positron emission tomographic study of auditory localization in the congenitally blind, J Neurosci 20(7):2664-2672.

    PubMed  CAS  Google Scholar 

  • Weeks, R. A., Aziz-Sultan, A., Bushara, K. O., Tian, B., Wessinger, C. M., Dang, N., Rauschecker, J. P., and Hallett, M., 1999, A PET study of human auditory spatial processing, Neurosci Lett 262(3):155-158.

    Article  PubMed  CAS  Google Scholar 

  • Wessinger, C. M., VanMeter, J., Tian, B., Van Lare, J., Pekar, J., and Rauschecker, J. P., 2001, Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging, J Cogn Neurosci 13(1):1-7.

    Article  PubMed  CAS  Google Scholar 

  • Wightman, F. L., and Kistler, D. J., 1989, Headphone simulation of free-field listening. I: Stimulus synthesis, J Acoust Soc Am 85(2):858-867.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J. J., and Young, E. D., 2000, Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus, Proc Natl Acad Sci U S A 97(22):11780-11786.

    Article  PubMed  CAS  Google Scholar 

  • Zatorre, R. J., Bouffard, M., Ahad, P., and Belin, P., 2002, Where is ‘where’ in the human auditory cortex?, Nat Neurosci 5(9):905-909.

    Article  PubMed  CAS  Google Scholar 

  • Zimmer, U., and Macaluso, E., 2005, High binaural coherence determines successful sound localization and increased activity in posterior auditory areas, Neuron 47(6):893-905.

    Article  PubMed  CAS  Google Scholar 

  • Zwiers, M. P., Van Opstal, A. J., and Cruysberg, J. R., 2001, Two-dimensional sound-localization behavior of early-blind humans, Exp Brain Res 140(2):206-222.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rauschecker, J.P. (2007). Cortical Processing Of Auditory Space: Pathways And Plasticity. In: Mast, F., Jäncke, L. (eds) Spatial Processing in Navigation, Imagery and Perception. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71978-8_20

Download citation

Publish with us

Policies and ethics