Skip to main content

Nitric Oxide in The Kidney Direct measurements of bioavailable renal nitric oxide

  • Conference paper
Oxygen Transport to Tissue XXVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 599))

Abstract

Increasing efforts have been directed towards investigating the involvement of nitric oxide (NO) for normal kidney function. Recently, a crucial role of NO in the development of progressive renal dysfunction has been reported during diabetes and hypertension. Indirect estimation of renal NO production include urinary nitrite/nitrate measurements, but there are several disadvantages of indirect methods since production and bioavailability of NO rarely coincide. Thus, direct measurement of in vivo NO bioavailability is preferred, although these methods are more time consuming and require highly specialized equipment and knowledge. This review focuses on two techniques for in vivo measurement of bioavailable NO in the kidney. We have applied Whalen-type recessed NO microsensors for measurement of NO in the kidney cortex, whereas the hemoglobin-trapping technique seems to be more suitable for NO measurement in the renal medulla. Both methods are robust and reliable, and we discuss advantages and shortcomings of each method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. C. Kone, and C. Baylis, Biosynthesis and homeostatic roles of nitric oxide in the normal kidney, Am J Physiol 272(F561-F578 (1997).

    PubMed  CAS  Google Scholar 

  2. M. G. Salom, B. Arregui, L. F. Carbonell, F. Ruiz, J. L. Gonzalez-Mora, and F. J. Fenoy, Renal ischemia induces an increase in nitric oxide levels from tissue stores, Am J Physiol Regul Integr Comp Physiol 289(5), R1459-1466 (2005).

    PubMed  CAS  Google Scholar 

  3. N. Miyata, A. P. Zou, D. L. Mattson, and A. W. Cowley, Jr., Renal medullary interstitial infusion of L-arginine prevents hypertension in Dahl salt-sensitive rats, Am J Physiol 275(5 Pt 2), R1667-1673 (1998).

    PubMed  CAS  Google Scholar 

  4. R. Komers, and S. Anderson, Paradoxes of nitric oxide in the diabetic kidney, Am J Physiol Renal Physiol 284(6), F1121-F1137 (2003).

    PubMed  CAS  Google Scholar 

  5. F. Palm, D. G. Buerk, P. O. Carlsson, P. Hansell, and P. Liss, Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygenation and microcirculation, Diabetes 54(11), 3282-3287 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. A. P. Zou, and A. W. Cowley, Jr., Nitric oxide in renal cortex and medulla. An in vivo microdialysis study, Hypertension 29(1 Pt 2), 194-198 (1997).

    PubMed  CAS  Google Scholar 

  7. M. Kakoki, H. S. Kim, W. J. Arendshorst, and D. L. Mattson, L-Arginine uptake affects nitric oxide production and blood flow in the renal medulla, Am J Physiol Regul Integr Comp Physiol 287(6), R1478-1485 (2004).

    PubMed  CAS  Google Scholar 

  8. P. A. Ortiz, and J. L. Garvin, Role of nitric oxide in the regulation of nephron transport, Am J Physiol Renal Physiol 282(5), F777-84 (2002).

    PubMed  CAS  Google Scholar 

  9. A. Deng, C. M. Miracle, J. M. Suarez, M. Lortie, J. Satriano, S. C. Thomson, K. A. Munger, and R. C. Blantz, Oxygen consumption in the kidney: Effects of nitric oxide synthase isoforms and angiotensin II, Kidney Int 68(2), 723-730 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. C. G. Schnackenberg, Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature, Am J Physiol Regul Integr Comp Physiol 282(2), R335-R342 (2002).

    PubMed  CAS  Google Scholar 

  11. A. Koivisto, J. Pittner, M. Froelich, and A. E. Persson, Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide, nKidney Int 55(6), 2368-2375 (1999).

    Article  CAS  Google Scholar 

  12. R. H. Boger, Asymmetric dimethylarginine (ADMA) modulates endothelial function–therapeutic implications, Vasc Med 8(3), 149-51 (2003).

    Article  PubMed  Google Scholar 

  13. C. T. Tran, J. M. Leiper, and P. Vallance, The DDAH/ADMA/NOS pathway, Atheroscler Suppl 4(4), 33-40 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. R. H. Boger, Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the "L-arginine paradox" and acts as a novel cardiovascular risk factor, J Nutr 134(10 Suppl), 2842S-2847S; discussion 2853S (2004).

    PubMed  Google Scholar 

  15. D. G. Buerk, C. E. Riva, and S. D. Cranstoun, Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli, Microvasc Res 52(1), 13-26 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. W. J. Whalen, J. Riley, and P. Nair, A microelectrode for measuring intracellular PO2, J Appl Physiol 23(5), 798-801 (1967).

    PubMed  CAS  Google Scholar 

  17. Y. Zhang, F. E. Samson, S. R. Nelson, and T. L. Pazdernik, Nitric oxide detection with intracerebral microdialysis: important considerations in the application of the hemoglobin-trapping technique, J Neurosci Methods 68(2), 165-173 (1996).

    Article  PubMed  CAS  Google Scholar 

  18. A. Balcioglu, and T. J. Maher, The measurement of nitric oxide release induced by kainic acid using a novel hemoglobin-trapping technique with microdialysis, Ann N Y Acad Sci 738(282-288 (1994).

    Article  PubMed  CAS  Google Scholar 

  19. F. Palm, P. Hansell, G. Ronquist, A. Waldenstrom, P. Liss, and P. O. Carlsson, Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats, Diabetologia 47(7), 1223-1231 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. C. Thorup, M. Kornfeld, J. M. Winaver, M. S. Goligorsky, and L. C. Moore, Angiotensin-II stimulates nitric oxide release in isolated perfused renal resistance arteries, Pflugers Arch 435(3), 432-434 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Palm, F., Nordquist, L., Buerk, D.G. (2008). Nitric Oxide in The Kidney Direct measurements of bioavailable renal nitric oxide. In: Maguire, D.J., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVIII. Advances in Experimental Medicine and Biology, vol 599. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71764-7_16

Download citation

Publish with us

Policies and ethics