Skip to main content

Models for Angiogenesis

  • Chapter
Angiogenesis

There are many systems which can serve as models for assessing angiogenic responses, both in vivo and in vivo. Each model has its advantages and disadvantages, its problems, technical difficulties and limitations, as well as its beneficial features. In this review we evaluate the major test systems currently in use, with special emphasis on comparing cell cultures, organ explants, whole embryo cultures and in vivo assay systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–6.

    PubMed  CAS  Google Scholar 

  2. Auerbach R. An overview of current angiogenesis assays: Choice of assay, precautions in interpretation, future requirements and directions. In: Staton C, Bicknell R, Lewis C, eds. Angiogenesis Assays. Chichester, UK, 2007:410.

    Google Scholar 

  3. Auerbach R, Akhtar N, Lewis RL, Shinners BL. Angiogenesis assays: problems and pitfalls. Cancer Metastasis Rev 2000;19:167–72.

    Article  PubMed  CAS  Google Scholar 

  4. Auerbach R, Auerbach W. Assays to study angiogenesis. In: Voest E, D’Amore P, eds. Tumor angiogenesis and microcirculation. New York: Marcel Dekker, 2001:91–102.

    Google Scholar 

  5. Auerbach R, Auerbach W, Polakowski I. Assays for angiogenesis: a review. Pharmacol Ther 1991;51:1–11.

    Article  PubMed  Google Scholar 

  6. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N. Angiogenesis assays: a critical overview. Clin Chem 2003;49:32–40.

    Article  PubMed  CAS  Google Scholar 

  7. Hasan J, Shnyder SD, Bibby M, Double JA, Bicknel R, Jayson GC. Quantitative angiogenesis assays in vivo–a review. Angiogenesis 2004;7:1–16.

    Article  PubMed  CAS  Google Scholar 

  8. Jain RK, Schlenger K, Hockel M, Yuan F. Quantitative angiogenesis assays: progress and problems. Nat Med 1997;3:1203–8.

    Article  PubMed  CAS  Google Scholar 

  9. Norrby K. In vivo models of angiogenesis. J Cell Mol Med 2006;10:588–612.

    Article  PubMed  CAS  Google Scholar 

  10. Ribatti D, Vacca A. Models for studying angiogenesis in vivo. Int J Biol Markers 1999;14:207–13.

    PubMed  CAS  Google Scholar 

  11. Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE. Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 2004;85:233–48.

    Article  PubMed  CAS  Google Scholar 

  12. Tucker GC. Modèles expérimentaux d’angiogénèse (in vitro et chez l’animal) [Experimental models of angiogenesis (in vitro and in vivo)]. Therapie 2001;56:473–81.

    PubMed  CAS  Google Scholar 

  13. Murray J. Angiogenesis Protocols. Totowa, NJ: Huamana Press, 2001.

    Book  Google Scholar 

  14. Auerbach R, Popp B, Kiley L, Gilligan l. Angiogenesis assays: problems, pitfalls and potential. In: Hori W, ed. Therapeutic implications and mechanisms of angiogenesis–inhibitors and stimulators. Westborough, MA: IBC USA Conferences, Inc., 1996:1.3.1–1.3.9.

    Google Scholar 

  15. Sidky YA, Auerbach R. Lymphocyte-induced angiogenesis: a quantitative and sensitive assay of the graft-vs.-host reaction. J Exp Med 1975;141:1084–1100.

    Article  PubMed  CAS  Google Scholar 

  16. Sidky YA, Auerbach R. Lymphocyte-induced angiogenesis in tumor-bearing mice. Science 1976;192:1237–8.

    Article  PubMed  CAS  Google Scholar 

  17. Brooks PC, Montgomery AM, Cheresh DA. Use of the 10-day-old chick embryo model for studying angiogenesis. Methods Mol Biol 1999;129:257–69.

    PubMed  CAS  Google Scholar 

  18. Gazit Y, Baish JW, Safabakhsh N, Leunig M, Baxter LT, Jain RK. Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation 1997;4: 395–402.

    Article  PubMed  CAS  Google Scholar 

  19. Guidolin D, Vacca A, Nussdorfer GG, Ribatti D. A new image analysis method based on topological and fractal parameters to evaluate the angiostatic activity of docetaxel by using the Matrigel assay in vitro. Microvasc Res 2004;67:117–24.

    Article  PubMed  CAS  Google Scholar 

  20. Risau W. Mechanisms of angiogenesis. Nature 1997;386: 671–4.

    Article  PubMed  CAS  Google Scholar 

  21. Auerbach R, Auerbach W. Vasculogenesis and angiogenesis. In: Fan T-P, Kohn E, eds. The New Angiotherapy. Totowa, NJ: Humana Press, 2002:1–6.

    Google Scholar 

  22. Fan TP, Kohn E, eds. The New Angiotherapy. Totowa, NJ: Humana Press, 2002.

    Google Scholar 

  23. Auerbach R. Differential angiogenesis. In: Rifkin D, Klagsbrun M, eds. Angiogenesis. Mechanisms and Pathology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1987:131–133.

    Google Scholar 

  24. Muthukkaruppan V, Auerbach R. Angiogenesis in the mouse cornea. Science 1979;205:1416–8.

    Article  PubMed  CAS  Google Scholar 

  25. Murray M, Kopech G. A bibliography of the research in tissue culture, 1884–1950. New York: Academic Press, 1953.

    Google Scholar 

  26. Nachman RL, Jaffe EA. Endothelial cell culture: beginnings of modern vascular biology. J Clin Invest 2004;114:1037–40.

    PubMed  CAS  Google Scholar 

  27. Gimbrone MA, Jr., Cotran RS, Folkman J. Endothelial regeneration: studies with human endothelial cells in culture. Ser Haematol 1973;6:453–5.

    PubMed  Google Scholar 

  28. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973;52:2745–56.

    Article  PubMed  CAS  Google Scholar 

  29. Folkman J, Haudenschild CC, Zetter BR. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A 1979;76:5217–21.

    Article  PubMed  CAS  Google Scholar 

  30. Auerbach R. Vascular endothelial cell differentiation: organ-specificity and selective affinities as the basis for developing anti-cancer strategies. Int J Radiat Biol 1991;60:1–10.

    Article  PubMed  CAS  Google Scholar 

  31. Auerbach R, Alby L, Morrissey LW, Tu M, Joseph J. Expression of organ-specific antigens on capillary endothelial cells. Microvasc Res 1985;29:401–11.

    Article  PubMed  CAS  Google Scholar 

  32. Auerbach R, Joseph J. Cell surface markers on endothelial cells: A developmental perspective. In: Jaffe E, ed. The biology of endothelial cells. The Hague: Martinus Nijhoff, 1983: 393–400.

    Google Scholar 

  33. Auerbach R, Lu WC, Pardon E, Gumkowski F, Kaminska G, Kaminski M. Specificity of adhesion between murine tumor cells and capillary endothelium: an in vitro correlate of preferential metastasis in vivo. Cancer Res 1987;47:1492–6.

    PubMed  CAS  Google Scholar 

  34. Gumkowski F, Kaminska G, Kaminski M, Morrissey LW, Auerbach R. Heterogeneity of mouse vascular endothelium. In vitro studies of lymphatic, large blood vessel and microvascular endothelial cells. Blood Vessels 1987;24:11–23.

    PubMed  CAS  Google Scholar 

  35. Obeso J, Weber J, Auerbach R. A hemangioendothelioma-derived cell line: its use as a model for the study of endothelial cell biology. Lab Invest 1990;63:259–69.

    PubMed  CAS  Google Scholar 

  36. Yu D, Auerbach R. Brain-specific differentiation of mouse yolk sac endothelial cells. Brain Res Dev Brain Res 1999;117: 159–69.

    Article  PubMed  CAS  Google Scholar 

  37. Wang SJ, Greer P, Auerbach R. Isolation and propagation of yolk-sac-derived endothelial cells from a hypervascular transgenic mouse expressing a gain-of-function fps/fes proto-oncogene. In vitro Cell Dev Biol Anim 1996;32:292–9.

    Article  PubMed  CAS  Google Scholar 

  38. Plendl J, Gilligan BJ, Wang SJ, et al. Primitive endothelial cell lines from the porcine embryonic yolk sac. In vitro Cell Dev Biol Anim 2002;38:334–42.

    Article  PubMed  Google Scholar 

  39. Jackson CJ, Nguyen M. Human microvascular endothelial cells differ from macrovascular endothelial cells in their expression of matrix metalloproteinases. Int J Biochem Cell Biol 1997;29:1167–77.

    Article  PubMed  CAS  Google Scholar 

  40. Kriehuber E, Breiteneder-Geleff S, Groeger M, et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 2001;194:797–808.

    Article  PubMed  CAS  Google Scholar 

  41. Helm CL, Zisch A, Swartz MA. Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol Bioeng 2007;96:167–76.

    Article  PubMed  CAS  Google Scholar 

  42. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest 1998;102:430–7.

    Article  PubMed  CAS  Google Scholar 

  43. Ruoslahti E, Rajotte D. An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol 2000;18: 813–27.

    Article  PubMed  CAS  Google Scholar 

  44. Zetter BR. The cellular basis of site-specific tumor metastasis. N Engl J Med 1990;322:605–12.

    PubMed  CAS  Google Scholar 

  45. Obeso JL, Auerbach R. A new microtechnique for quantitating cell movement in vitro using polystyrene bead monolayers. J Immunol Methods 1984;70:141–52.

    Article  PubMed  CAS  Google Scholar 

  46. Auerbach R, Bielich H, Obeso J, Weber J. Quantitation of endothelial cell movement: an in vitro approach to vasculogenesis and angiogenesis. Issues Biomed 1990;14:180–189.

    Google Scholar 

  47. Schor SL, Ellis IR, Harada K, et al. A novel ‘sandwich’ assay for quantifying chemo-regulated cell migration within 3-dimensional matrices: wound healing cytokines exhibit distinct motogenic activities compared to the transmembrane assay. Cell Motil Cytoskeleton 2006;63:287–300.

    Article  PubMed  CAS  Google Scholar 

  48. Franzen L, Norrby K. A tissue model for quantitative studies on time course of healing, rate of healing, and cell proliferation after wounding. Acta Pathol Microbiol Immunol Scand [A] 1983;91:281–9.

    CAS  Google Scholar 

  49. Pepper MS, Belin D, Montesano R, Orci L, Vassalli JD. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 1990;111:743–55.

    Article  PubMed  CAS  Google Scholar 

  50. Montesano R, Orci L, Vassalli P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 1983;97:1648–52.

    Article  PubMed  CAS  Google Scholar 

  51. Montesano R, Pepper MS. Three-dimensional in vitro assay of endothelial cell invasion and capillary tube morphogenesis. In: Little C, Mironov V, Sage E, eds. Vascular morphogenesis: In vivo, in vitro, in mente. Boston: Birkhausert, 1998:79–110.

    Google Scholar 

  52. Bahramsoltani M, Plendl J. [A new in vitro model to quantify angiogenesis]. Altex 2004;21:227–44.

    PubMed  Google Scholar 

  53. Baker JH, Huxham LA, Kyle AH, Lam KK, Minchinton AI. Vascular-specific quantification in an in vivo Matrigel chamber angiogenesis assay. Microvasc Res 2006;71:69–75.

    Article  PubMed  Google Scholar 

  54. Korff T, Kimmina S, Martiny-Baron G, Augustin HG. Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. Faseb J 2001;15:447–57.

    Article  PubMed  CAS  Google Scholar 

  55. Globerson A, Auerbach R. Primary antibody response in organ cultures. J Exp Med 1966;124:1001–16.

    Article  PubMed  CAS  Google Scholar 

  56. Globerson A, Auerbach R. Primary immune reactions in organ cultures. Science 1965;149:991–3.

    Article  PubMed  CAS  Google Scholar 

  57. Blacher S, Devy L, Burbridge MF, et al. Improved quantification of angiogenesis in the rat aortic ring assay. Angiogenesis 2001;4:133–42.

    Article  PubMed  CAS  Google Scholar 

  58. Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest 1990;63:115–22.

    PubMed  CAS  Google Scholar 

  59. Masson VV, Devy L, Grignet-Debrus C, et al. Mouse Aortic Ring Assay: A New Approach of the Molecular Genetics of Angiogenesis. Biol Proced Online 2002;4:24–31.

    Article  CAS  Google Scholar 

  60. Stiffey-Wilusz J, Boice JA, Ronan J, Fletcher AM, Anderson MS. An ex vivo angiogenesis assay utilizing commercial porcine carotid artery: modification of the rat aortic ring assay. Angiogenesis 2001;4:3–9.

    Article  PubMed  CAS  Google Scholar 

  61. Muthukkaruppan V, Shinners B, Lewis R, Park S-J, Baechler B, Auerbach R. The chick embryo aortic arch assay: a new, rapid, quantifiable in vitro method for testing the efficacy of angiogenic and anti-angiogenic factors in a three-dimensional, serum-free ogran culture system. Proc Am Assoc Cancer Res 2000;41:65.

    Google Scholar 

  62. Hamburger V. A manual of experimental embryology. Chicago: University of Chicago Press, 1942:212.

    Google Scholar 

  63. Richardson M, Singh G. Observations on the use of the avian chorioallantoic membrane (CAM) model in investigations into angiogenesis. Curr Drug Targets Cardiovasc Haematol Disord 2003;3:155–85.

    Article  PubMed  CAS  Google Scholar 

  64. Auerbach R, Kubai L, Knighton D, Folkman J. A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 1974;41:391–4.

    Article  PubMed  CAS  Google Scholar 

  65. Dunn BE. Technique of shell-less culture of the 72-hour avian embryo. Poult Sci 1974;53:409–12.

    PubMed  CAS  Google Scholar 

  66. Dunn BE, Boone MA. Growth of the chick embryo in vitro. Poult Sci 1976;55:1067–71.

    PubMed  CAS  Google Scholar 

  67. Dunn BE, Boone MA. Photographic study of chick embryo development in vitro. Poult Sci 1978;57:370–7.

    PubMed  CAS  Google Scholar 

  68. Dugan JD, Jr., Lawton MT, Glaser B, Brem H. A new technique for explantation and in vitro cultivation of chicken embryos. Anat Rec 1991;229:125–8.

    Article  PubMed  Google Scholar 

  69. Voss K, Jacob W, Roth K. A new image analysis method for the quantification of neovascularization. Exp Pathol 1984;26: 155–61.

    PubMed  CAS  Google Scholar 

  70. Vu MT, Smith CF, Burger PC, Klintworth GK. An evaluation of methods to quantitate the chick chorioallantoic membrane assay in angiogenesis. Lab Invest 1985;53:499–508.

    PubMed  CAS  Google Scholar 

  71. Vico PG, Kyriacos S, Heymans O, Louryan S, Cartilier L. Dynamic study of the extraembryonic vascular network of the chick embryo by fractal analysis. J Theor Biol 1998;195: 525–32.

    Article  PubMed  CAS  Google Scholar 

  72. Ribatti D, Gualandris A, Bastaki M, et al. New model for the study of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane: the gelatin sponge/chorioallantoic membrane assay. J Vasc Res 1997;34:455–63.

    Article  PubMed  CAS  Google Scholar 

  73. Storgard C, Mikolon D, Stupack DG. Angiogenesis assays in the chick CAM. Methods Mol Biol 2005;294:123–36.

    PubMed  Google Scholar 

  74. Thompson WD, Reid A. Quantitative assays for the chick chorioallantoic membrane. Adv Exp Med Biol 2000;476:225–36.

    PubMed  CAS  Google Scholar 

  75. Romanoff A. The avian embryo; structural and functional development. New York: Macmillan, 1960.

    Google Scholar 

  76. Ausprunk DH, Knighton DR, Folkman J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol 1975;79:597–628.

    PubMed  CAS  Google Scholar 

  77. Ausprunk DH, Knighton DR, Folkman J. Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 1974;38:237–48.

    Article  PubMed  CAS  Google Scholar 

  78. Honda H, Yoshizato K. Formation of the branching pattern of blood vessels in the wall of the avian yolk sac studied by a computer simulation. Dev Growth Differ 1997;39:581–9.

    Article  PubMed  CAS  Google Scholar 

  79. Parsons-Wingerter P, Lwai B, Yang MC, et al. A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation by bFGF and inhibition by angiostatin according to fractal dimension and grid intersection. Microvasc Res 1998;55: 201–14.

    Article  PubMed  CAS  Google Scholar 

  80. Norrby K, Jakobsson A, Sorbo J. Quantitative angiogenesis in spreads of intact rat mesenteric windows. Microvasc Res 1990;39:341–8.

    Article  PubMed  CAS  Google Scholar 

  81. Norrby K, Jakobsson A, Sorbo J. Mast-cell-mediated angiogenesis: a novel experimental model using the rat mesentery. Virchows Arch B Cell Pathol Incl Mol Pathol 1986;52:195–206.

    Article  PubMed  CAS  Google Scholar 

  82. Gerber SA, Rybalko VY, Bigelow CE, et al. Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol 2006;169:1739–52.

    Article  PubMed  CAS  Google Scholar 

  83. Kiricuta I, Popescu V. [Use of the omentum in the treatment of burns and severe hand trauma]. Ann Chir Plast 1976;21: 147–50.

    PubMed  CAS  Google Scholar 

  84. Gimbrone MA, Jr., Cotran RS, Leapman SB, Folkman J. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 1974;52:413–27.

    PubMed  Google Scholar 

  85. Muthukkaruppan VR, Kubai L, Auerbach R. Tumor-induced neovascularization in the mouse eye. J Natl Cancer Inst 1982;69:699–708.

    PubMed  CAS  Google Scholar 

  86. Polakowski IJ, Lewis MK, Muthukkaruppan VR, Erdman B, Kubai L, Auerbach R. A ribonuclease inhibitor expresses anti-angiogenic properties and leads to reduced tumor growth in mice. Am J Pathol 1993;143:507–17.

    PubMed  CAS  Google Scholar 

  87. Dickerson EB, Akhtar N, Steinberg H, et al. Enhancement of the antiangiogenic activity of interleukin-12 by peptide targeted delivery of the cytokine to alphavbeta3 integrin. Mol Cancer Res 2004;2:663–73.

    PubMed  CAS  Google Scholar 

  88. Brem H, Folkman J. Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med 1975;141:427–39.

    Article  PubMed  CAS  Google Scholar 

  89. Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature 1976;263:797–800.

    Article  PubMed  CAS  Google Scholar 

  90. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D’Amato RJ. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 1996;37:1625–32.

    PubMed  CAS  Google Scholar 

  91. Chang L, Kaipainen A, Folkman J. Lymphangiogenesis new mechanisms. Ann NY Acad Sci 2002;979:111–9.

    Article  PubMed  CAS  Google Scholar 

  92. Wilting J, Christ B. A morphological study of the rabbit corneal assay. Ann Anat 1992;174:549–56.

    PubMed  CAS  Google Scholar 

  93. Rogers MS, D’Amato RJ. The effect of genetic diversity on angiogenesis. Exp Cell Res 2006;312:561–74.

    Article  PubMed  CAS  Google Scholar 

  94. Rohan RM, Fernandez A, Udagawa T, Yuan J, D’Amato RJ. Genetic heterogeneity of angiogenesis in mice. Faseb J 2000;14:871–6.

    PubMed  CAS  Google Scholar 

  95. Shaked Y, Bertolini F, Man S, et al. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 2005;7:101–11.

    PubMed  CAS  Google Scholar 

  96. Greene H. The heterologous transplantation of embryonic mammalian tissues. Cancer Res 1943;3:809–822.

    Google Scholar 

  97. Grobstein C. Intra-ocular growth and differentiation of clusters of mouse embryonic shields cultured with and without primitive endoderm and in the presence of possible inductors. J Exp Zool 1952;119:355–379.

    Article  Google Scholar 

  98. Auerbach R. Analysis of the developmental effects of a lethal mutation in the house mouse. J Exp Zool 1954;127:305–330.

    Article  Google Scholar 

  99. Auerbach R. Genetic control of thymus lymphoid differentiation. Proc Natl Acad Sci U S A 1961;47:1175–1181.

    Article  PubMed  CAS  Google Scholar 

  100. Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 1992;202:1–8.

    Article  PubMed  CAS  Google Scholar 

  101. Passaniti A, Taylor RM, Pili R, et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 1992;67:519–28.

    PubMed  CAS  Google Scholar 

  102. Akhtar N, Dickerson EB, Auerbach R. The sponge/Matrigel angiogenesis assay. Angiogenesis 2002;5:75–80.

    Article  PubMed  CAS  Google Scholar 

  103. Auerbach R, Auerbach W. Regional differences in the growth of normal and neoplastic cells. Science 1982;215:127–34.

    Article  PubMed  CAS  Google Scholar 

  104. Auerbach R, Morrissey LW, Sidky YA. Regional differences in tumor growth: studies of the vascular system. Int J Cancer 1978;22:40–6.

    Article  PubMed  CAS  Google Scholar 

  105. Kubai L, Auerbach R. Regional differences in the growth of skin transplants. Transplantation 1980;30:128–31.

    Article  PubMed  CAS  Google Scholar 

  106. Auerbach R, Morrissey LW, Sidky YA. Regional differences in the incidence and growth of mouse tumors following intradermal or subcutaneous inoculation. Cancer Res 1978;38:1739–44.

    PubMed  CAS  Google Scholar 

  107. Killion JJ, Radinsky R, Fidler IJ. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 1998;17:279–84.

    Article  PubMed  Google Scholar 

  108. Yang M, Baranov E, Wang JW, et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 2002;99:3824–9.

    Article  PubMed  CAS  Google Scholar 

  109. Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 1990;50:6130–8.

    PubMed  CAS  Google Scholar 

  110. Plunkett ML, Hailey JA. An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab Invest 1990;62:510–7.

    PubMed  CAS  Google Scholar 

  111. Robertson NE, Discafani CM, Downs EC, et al. A quantitative in vivo mouse model used to assay inhibitors of tumor-induced angiogenesis. Cancer Res 1991;51:1339–44.

    PubMed  CAS  Google Scholar 

  112. Andrade SP, Fan TP, Lewis GP. Quantitative in-vivo studies on angiogenesis in a rat sponge model. Br J Exp Pathol 1987;68:755–66.

    PubMed  CAS  Google Scholar 

  113. Andrade SP, Machado RD, Teixeira AS, Belo AV, Tarso AM, Beraldo WT. Sponge-induced angiogenesis in mice and the pharmacological reactivity of the neovasculature quantitated by a fluorimetric method. Microvasc Res 1997;54:253–61.

    Article  PubMed  CAS  Google Scholar 

  114. Ellis L, Gilston V, Soo CC, Morris CJ, Kidd BL, Winyard PG. Activation of the transcription factor NF-kappaB in the rat air pouch model of inflammation. Ann Rheum Dis 2000;59:303–7.

    Article  PubMed  CAS  Google Scholar 

  115. Selye H. Use of the “granuloma pouch technique” in the study of antiphagocytic corticoids. Proc Soc Exp Biol Med 1953;82:328–333.

    PubMed  CAS  Google Scholar 

  116. Fan TP, Hu DE, Smither RL, Gresham GA. Further studies on angiogenesis in a rat sponge model. Exs 1992;61:308–14.

    PubMed  CAS  Google Scholar 

  117. Fajardo LF, Kowalski J, Kwan HH, Prionas SD, Allison AC. The disc angiogenesis system. Lab Invest 1988;58:718–24.

    PubMed  CAS  Google Scholar 

  118. Kowalski J, Kwan HH, Prionas SD, Allison AC, Fajardo LF. Characterization and applications of the disc angiogenesis system. Exp Mol Pathol 1992;56:1–19.

    Article  PubMed  CAS  Google Scholar 

  119. Nelson MJ, Conley FK, Fajardo LF. Application of the disc angiogenesis system to tumor-induced neovascularization. Exp Mol Pathol 1993;58:105–13.

    Article  PubMed  CAS  Google Scholar 

  120. Grant DS, Kinsella JL, Fridman R, et al. Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J Cell Physiol 1992;153:614–25.

    Article  PubMed  CAS  Google Scholar 

  121. Algire G. An adaptation of the transparent chamber technique to the mouse. J Natl Cancer Inst 1943;4:1–11.

    Google Scholar 

  122. Grobstein C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature 1953;172:869–871.

    Article  PubMed  CAS  Google Scholar 

  123. Sewell IA. Studies of the microcirculation using transparent tissue observation chambers inserted in the hamster cheek pouch. J Anat 1966;100:839–56.

    PubMed  CAS  Google Scholar 

  124. Riley CM, Fuegy PW, Firpo MA, Shu XZ, Prestwich GD, Peattie RA. Stimulation of in vivo angiogenesis using dual growth factor-loaded crosslinked glycosaminoglycan hydrogels. Biomaterials 2006;27:5935–43.

    Article  PubMed  CAS  Google Scholar 

  125. Ichioka S, Shibata M, Kosaki K, Sato Y, Harii K, Kamiya A. Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber. J Surg Res 1997;72:29–35.

    Article  PubMed  CAS  Google Scholar 

  126. Cho CH, Sung HK, Kim KT, et al. COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci USA 2006;103:4946–51.

    Article  PubMed  CAS  Google Scholar 

  127. Ny A, Autiero M, Carmeliet P. Zebrafish and Xenopus tadpoles: small animal models to study angiogenesis and lymphangiogenesis. Exp Cell Res 2006;312:684–93.

    Article  PubMed  CAS  Google Scholar 

  128. Childs S, Chen JN, Garrity DM, Fishman MC. Patterning of angiogenesis in the zebrafish embryo. Development 2002;129:973–82.

    PubMed  CAS  Google Scholar 

  129. Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002;248:307–18.

    Article  PubMed  CAS  Google Scholar 

  130. Serbedzija GN, Flynn E, Willett CE. Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 1999;3:353–9.

    Article  PubMed  CAS  Google Scholar 

  131. Lee P, Goishi K, Davidson AJ, Mannix R, Zon L, Klagsbrun M. Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc Natl Acad Sci USA 2002;99:10470–5.

    Article  PubMed  CAS  Google Scholar 

  132. Seng WL, Eng K, Lee J, McGrath P. Use of a monoclonal antibody specific for activated endothelial cells to quantitate angiogenesis in vivo in zebrafish after drug treatment. Angiogenesis 2004;7:243–53.

    Article  PubMed  CAS  Google Scholar 

  133. Kajimura S, Aida K, Duan C. Understanding hypoxia-induced gene expression in early development: in vitro and in vivo analysis of hypoxia-inducible factor 1-regulated zebra fish insulin-like growth factor binding protein 1 gene expression. Mol Cell Biol 2006;26:1142–55.

    Article  PubMed  CAS  Google Scholar 

  134. Levine AJ, Munoz-Sanjuan I, Bell E, North AJ, Brivanlou AH. Fluorescent labeling of endothelial cells allows in vivo, continuous characterization of the vascular development of Xenopus laevis. Dev Biol 2003;254:50–67.

    Article  PubMed  CAS  Google Scholar 

  135. Ny A, Koch M, Schneider M, et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 2005;11:998–1004.

    PubMed  CAS  Google Scholar 

  136. Chaplain MA, Graziano L, Preziosi L. Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. Math Med Biol 2006;23:197–229.

    Article  PubMed  CAS  Google Scholar 

  137. Chaplain MA, McDougall SR, Anderson AR. Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng 2006;8:233–57.

    Article  PubMed  CAS  Google Scholar 

  138. Charalampidis D, Pascotto M, Kerut EK, Lindner JR. Anatomy and flow in normal and ischemic microvasculature based on a novel temporal fractal dimension analysis algorithm using contrast enhanced ultrasound. IEEE Trans Med Imaging 2006;25:1079–86.

    Article  PubMed  Google Scholar 

  139. Geninatti Crich S, Bussolati B, Tei L, et al. Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res 2006;66:9196–201.

    Article  PubMed  CAS  Google Scholar 

  140. Lin PC. Optical imaging and tumor angiogenesis. J Cell Biochem 2003;90:484–91.

    Article  PubMed  CAS  Google Scholar 

  141. Padhani AR, Neeman M. Challenges for imaging angiogenesis. Br J Radiol 2001;74:886–90.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Auerbach, R. (2008). Models for Angiogenesis. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics