Skip to main content

Angiogenesis and Vascular Remodeling in Inflammation and Cancer: Biology and Architecture of the Vasculature

  • Chapter
Angiogenesis

Blood vessels proliferate by sprouting from existing vessels (angiogenesis) and undergo changes in phenotype (vascular remodeling) in inflammatory diseases, tumors, and many other chronic conditions. Changes in newly formed and remodeled blood vessels are disease-specific, as they reflect vascular adaptations to environmental cues unique to each condition. In inflamed tissues, vascular remodeling expands the vasculature and increases blood flow, plasma leakage, and inflammatory cell influx, which contribute to the pathophysiology and clinical manifestations of the disease. Remodeling of endothelial cells into a venular phenotype, typical of sustained inflammation, is accompanied by expression of molecules that promote endothelial gap formation and leukocyte rolling, attachment, and migration. Blood vessels in tumors differ from those in inflammation. Endothelial cells in tumors undergo disorganized sprouting, proliferation and regression, and become dependent on vascular endothelial growth factor (VEGF) or other factors for survival. The growing vasculature enables tumor enlargement, but structural defects impair endothelial barrier function and increase interstitial pressure and luminal resistance, diminish blood flow, and alter immune cell traffic. Oxygen delivery may be inadequate for tumor cell viability despite the rich vascularity. Inhibition of VEGF signaling in tumors stops sprouting angiogenesis and triggers regression of some tumor vessels while normalizing others. Some capillaries in normal thyroid, pancreatic islets, and intestine may also regress after VEGF blockade, but most remodeled vessels at sites of inflammation do not. Pericytes and empty sleeves of vascular basement membrane persist after endothelial cells regress and provide a scaffold for blood vessel regrowth, which can occur within days after the inhibition ends. The clinical efficacy of VEGF signaling inhibitors in cancer and age-related macular degeneration provides proof of concept and stimulates the search for even more effective agents. Further advances in vascular biology will lead to more powerful strategies for controlling blood vessel growth and regression in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baluk P, Falcón BL, Hashizume H, et al. Cellular actions of angiogenesis inhibitors on blood vessels. In: Marmé D, Fusenig N, eds. Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy. New York: Springer; 2007:557–76.

    Google Scholar 

  2. Baluk P, Hashizume H, McDonald DM. Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 2005;15(1):102–11.

    Article  PubMed  CAS  Google Scholar 

  3. McDonald DM, Thurston G, Baluk P. Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation 1999;6(1):7–22.

    Article  PubMed  CAS  Google Scholar 

  4. Thurston G, Baluk P, McDonald DM. Determinants of endothelial cell phenotype in venules. Microcirculation 2000;7(1):67–80.

    Article  PubMed  CAS  Google Scholar 

  5. McDonald DM. Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am J Respir Crit Care Med 2001;164(10 Pt 2):S39–45.

    PubMed  CAS  Google Scholar 

  6. McDonald DM. Endothelial gaps and permeability of venules in rat tracheas exposed to inflammatory stimuli. Am J Physiol 1994;266(1 Pt 1):L61–83.

    PubMed  CAS  Google Scholar 

  7. Thurston G, Baluk P, Hirata A, et al. Permeability-related changes revealed at endothelial cell borders in inflamed venules by lectin binding. Am J Physiol 1996;271(6 Pt 2):H2547–62.

    PubMed  CAS  Google Scholar 

  8. Thurston G, Murphy TJ, Baluk P, et al. Angiogenesis in mice with chronic airway inflammation: strain-dependent differences. Am J Pathol 1998;153(4):1099–112.

    PubMed  CAS  Google Scholar 

  9. Murphy TJ, Thurston G, Ezaki T, et al. Endothelial cell heterogeneity in venules of mouse airways induced by polarized inflammatory stimulus. Am J Pathol 1999;155(1):93–103.

    PubMed  CAS  Google Scholar 

  10. Lindsey JR, Baker HJ, Overcash RG, et al. Murine chronic respiratory disease. Significance as a research complication and experimental production with Mycoplasma pulmonis. Am J Pathol 1971;64(3):675–708.

    PubMed  CAS  Google Scholar 

  11. Lindsey JR, Cassell H. Experimental Mycoplasma pulmonis infection in pathogen-free mice. Models for studying mycoplasmosis of the respiratory tract. Am J Pathol 1973;72(1):63–90.

    PubMed  CAS  Google Scholar 

  12. McDonald DM, Schoeb TR, Lindsey JR. Mycoplasma pulmonis infections cause long-lasting potentiation of neurogenic inflammation in the respiratory tract of the rat. J Clin Invest 1991;87(3):787–99.

    Article  PubMed  CAS  Google Scholar 

  13. Baluk P, Bowden JJ, Lefevre PM, et al. Upregulation of substance P receptors in angiogenesis associated with chronic airway inflammation in rats. Am J Physiol 1997;273(3 Pt 1):L565–71.

    PubMed  CAS  Google Scholar 

  14. Kwan ML, Gomez AD, Baluk P, et al. Airway vasculature after mycoplasma infection: chronic leakiness and selective hypersensitivity to substance P. Am J Physiol Lung Cell Mol Physiol 2001;280(2):L286–97.

    PubMed  CAS  Google Scholar 

  15. Davidson MK, Lindsey JR, Parker RF, et al. Differences in virulence for mice among strains of Mycoplasma pulmonis. Infection and immunity 1988;56(8):2156–62.

    PubMed  CAS  Google Scholar 

  16. Cartner SC, Simecka JW, Lindsey JR, et al. Chronic respiratory mycoplasmosis in C3H/HeN and C57BL/6N mice: lesion severity and antibody response. Infection and immunity 1995;63(10):4138–42.

    PubMed  CAS  Google Scholar 

  17. Bowden JJ, Schoeb TR, Lindsey JR, et al. Dexamethasone and oxytetracycline reverse the potentiation of neurogenic inflammation in airways of rats with Mycoplasma pulmonis infection. Am J Respir Crit Care Med 1994;150(5 Pt 1):1391–401.

    PubMed  CAS  Google Scholar 

  18. Ezaki T, Baluk P, Thurston G, et al. Time course of endothelial cell proliferation and microvascular remodeling in chronic inflammation. Am J Pathol 2001;158(6):2043–55.

    PubMed  CAS  Google Scholar 

  19. Thurston G, Maas K, Labarbara A, et al. Microvascular remodelling in chronic airway inflammation in mice. Clin Exp Pharmacol Physiol 2000;27(10):836–41.

    Article  PubMed  CAS  Google Scholar 

  20. Baffert F, Thurston G, Rochon-Duck M, et al. Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res 2004;94(7):984–92.

    Article  PubMed  CAS  Google Scholar 

  21. Baluk P, Lee CG, Link H, et al. Regulated angiogenesis and vascular regression in mice overexpressing vascular endothelial growth factor in airways. Am J Pathol 2004;165(4):1071–85.

    PubMed  CAS  Google Scholar 

  22. Baluk P, Raymond WW, Ator E, et al. Matrix metalloproteinase-2 and -9 expression increases in Mycoplasma-infected airways but is not required for microvascular remodeling. Am J Physiol Lung Cell Mol Physiol 2004;287(2):L307–17.

    Article  PubMed  CAS  Google Scholar 

  23. Baluk P, Tammela T, Ator E, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 2005;115(2):247–57.

    PubMed  CAS  Google Scholar 

  24. Thurston G, Wang Q, Baffert F, et al. Angiopoietin 1 causes vessel enlargement, without angiogenic sprouting, during a critical developmental period. Development 2005;132(14):3317–26.

    Article  PubMed  CAS  Google Scholar 

  25. Cho CH, Kim KE, Byun J, et al. Long-term and sustained COMP-Ang1 induces long-lasting vascular enlargement and enhanced blood flow. Circ Res 2005;97(1):86–94.

    Article  PubMed  CAS  Google Scholar 

  26. Baffert F, Le T, Thurston G, et al. Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am J Physiol Heart Circ Physiol 2006;290(1):H107–18.

    Article  PubMed  CAS  Google Scholar 

  27. Calvert JT, Riney TJ, Kontos CD, et al. Allelic and locus heterogeneity in inherited venous malformations. Hum Mol Genet 1999;8(7):1279–89.

    Article  PubMed  CAS  Google Scholar 

  28. Vikkula M, Boon LM, Carraway KL, 3rd, et al. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 1996;87(7):1181–90.

    Article  PubMed  CAS  Google Scholar 

  29. Nishimoto M, Akashi A, Kuwano K, et al. Gene expression of tumor necrosis factor alpha and interferon gamma in the lungs of Mycoplasma pulmonis-infected mice. Microbiol Immunol 1994;38(5):345–52.

    PubMed  CAS  Google Scholar 

  30. Faulkner CB, Simecka JW, Davidson MK, et al. Gene expression and production of tumor necrosis factor alpha, interleukin 1, interleukin 6, and gamma interferon in C3H/HeN and C57BL/6N mice in acute Mycoplasma pulmonis disease. InfectImmun 1995;63(10):4084–90.

    CAS  Google Scholar 

  31. McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med 2003;9(6):713–25.

    Article  PubMed  CAS  Google Scholar 

  32. Ocak I, Baluk P, Barrett T, et al. The biologic basis of in vivo angiogenesis imaging. Front Biosci 2007;12:3601–16.

    Article  PubMed  CAS  Google Scholar 

  33. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999;155(3):739–52.

    PubMed  CAS  Google Scholar 

  34. Chang YS, di Tomaso E, McDonald DM, et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A 2000;97(26):14608–13.

    Article  PubMed  CAS  Google Scholar 

  35. McDonald DM, Munn L, Jain RK. Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol 2000;156(2):383–8.

    PubMed  CAS  Google Scholar 

  36. Folberg R, Maniotis AJ. Vasculogenic mimicry. Apmis 2004;112(7–8):508–25.

    Article  PubMed  Google Scholar 

  37. Hendrix MJ, Seftor EA, Hess AR, et al. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nature Rev 2003;3(6):411–21.

    Article  CAS  Google Scholar 

  38. di Tomaso E, Capen D, Haskell A, et al. Mosaic tumor vessels: cellular basis and ultrastructure of focal regions lacking endothelial cell markers. Cancer Res 2005;65(13):5740–9.

    Article  PubMed  Google Scholar 

  39. Jain RK, Munn LL, Fukumura D. Dissecting tumour pathophysiology using intravital microscopy. Nature Rev 2002;2(4):266–76.

    Article  CAS  Google Scholar 

  40. Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000;156(4):1363–80.

    PubMed  CAS  Google Scholar 

  41. Thurston G, McLean JW, Rizen M, et al. Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 1998;101(7):1401–13.

    Article  PubMed  CAS  Google Scholar 

  42. Morikawa S, Baluk P, Kaidoh T, et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002;160(3):985–1000.

    PubMed  Google Scholar 

  43. Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003;161(6):1163–77.

    Article  PubMed  CAS  Google Scholar 

  44. Sennino B, Falcon BL, McCauley D, et al. Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor-beta by selective aptamer AX102. Cancer Res 2007;67(15):7358–67.

    Article  PubMed  CAS  Google Scholar 

  45. Baluk P, Morikawa S, Haskell A, et al. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 2003;163(5):1801–15.

    PubMed  Google Scholar 

  46. Mancuso MR, Davis R, Norberg SM, et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 2006;116(10):2610–21.

    Article  PubMed  CAS  Google Scholar 

  47. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 2004;25(4):581–611.

    Article  PubMed  CAS  Google Scholar 

  48. Ferrara N, Mass RD, Campa C, et al. Targeting VEGF-A to treat cancer and age-related macular degeneration. Ann Rev Med 2007;58:491–504.

    Article  PubMed  CAS  Google Scholar 

  49. Inai T, Mancuso M, Hashizume H, et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 2004;165(1):35–52.

    PubMed  CAS  Google Scholar 

  50. Pasqualini R, Arap W, McDonald DM. Probing the structural and molecular diversity of tumor vasculature. Trends Mol Med 2002;8(12):563–71.

    Article  PubMed  CAS  Google Scholar 

  51. Kamba T, Tam BY, Hashizume H, et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 2006;290(2):H560–76.

    Article  PubMed  CAS  Google Scholar 

  52. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. British journal of cancer 2007;96(12):1788–95.

    Article  PubMed  CAS  Google Scholar 

  53. Baffert F, Le T, Sennino B, et al. Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. Am J Physiol Heart Circ Physiol 2006;290(2):H547–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McDonald, D.M. (2008). Angiogenesis and Vascular Remodeling in Inflammation and Cancer: Biology and Architecture of the Vasculature. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics