Skip to main content

Genomics of Eucalyptus, a Global Tree for Energy, Paper, and Wood

  • Chapter
Genomics of Tropical Crop Plants

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 1))

Abstract

Planted Eucalyptus forests occupy more than 18 million hectares globally and have become the most widely planted hardwood tree in the world, supplying high quality woody biomass for several industrial applications. This chapter attempts to link current eucalypt breeding practice and the genomic tools available or in development. A brief introduction is presented on the main features of modern eucalypt breeding and clonal forestry to provide a better understanding of the challenges and opportunities that lie ahead. Some current low technological input applications of molecular markers in support of operational breeding and clonal deployment are introduced. After reviewing the status of QTL mapping and gene discovery by EST sequencing, the prospects for physical mapping and association genetics in Eucalyptus are discussed. Challenges and opportunities for the application of genomic information to improve relevant traits are described within the framework of molecular breeding for trait improvement. Finally, with the expectation of a draft of a Eucalyptus grandis genome within the next three years, a discussion is included on the prospects of gene identification and subsequent applications in breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baril CP, Verhaegen D, Vigneron P, Bouvet JM, Kremer A (1997) Structure of the specific combining ability between two species of Eucalyptus. I. RAPD data. Theor Appl Genet 94:796–803

    CAS  Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. pp. 145–162. In Paterson AH (ed) Molecular Dissection of Complex Traits. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Bhalerao R, Nilsson O, Sandberg G (2003) Out of the woods: forest biotechnology enters the genomic era. Curr Opin Biotechnol. 14(2):206–213

    PubMed  CAS  Google Scholar 

  • Binkley D, Stape JL (2004) Sustainable management of eucalypt plantations in a changing world. pp. 11–15. In: Tomé M (ed) IUFRO Conf. Eucalyptus in a Changing World, RAIZ, Instituto Investigaçao de Floresta e Papel, Aveiro, Portugal

    Google Scholar 

  • Boerjan W (2005) Biotechnology and the domestication of forest trees. Curr Opin Biotechnol 16(2):159–166

    PubMed  CAS  Google Scholar 

  • Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, et al. (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    PubMed  CAS  Google Scholar 

  • Borralho NMG, Cotterill PP, Kanowski, PJ (1993) Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures. Can J For Res 23:648–656

    Google Scholar 

  • Brandão LG, Campinhos E, Ikemori YK (1984) Brazil’s new forest soars to success. Pulp Pap Int 26:38–40

    Google Scholar 

  • Brommonschenkel SH; Brondani RPV, Bucelli RF, Lourenço RT, Novaes E, et al. (2005) A BAC library of Eucalyptus grandis: characterization, fingerprinting, bac-end sequencing and shotgun assembly of lignification genes. IUFRO Tree Biotechnology S3.08. http://www.eyevisual.co.za/biotree/viewAbstract.asp

    Google Scholar 

  • Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor Appl Genet 97:816–827

    CAS  Google Scholar 

  • Brondani RPV, Brondani C, Grattapaglia D (2002) Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Mol Genet Genomics 267:338–347

    PubMed  CAS  Google Scholar 

  • Brondani RPV, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol 6:20

    PubMed  Google Scholar 

  • Brune A, Zobel BJ (1981) Genetic base populations, gene pools and breeding populations for Eucalyptus in Brazil. Silvae Genetica 30:146–149

    Google Scholar 

  • Bundock PC, Hayden M, Vaillancourt RE (2000) Linkage maps of Eucalyptus globulus using RAPD and microsatellite markers. Silvae Genetica 49:223–232

    Google Scholar 

  • Burczyk J, Adams WT, Moran GF, Griffin AR (2002) Complex patterns of mating revealed in a Eucalyptus regnans seed orchard using allozyme markers and the neighbourhood model. Mol Ecol 11:2379–91

    PubMed  CAS  Google Scholar 

  • Butler JM (2005) Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers. (2nd Edition). Elsevier Academic Press, New York, 688 pp

    Google Scholar 

  • Byrne M, Murrell JC, Allen B, Moran GF (1995). An integrated genetic linkage map for Eucalyptus using RFLP, RAPD and isozyme markers. Theor Appl Genet 91:869–875

    CAS  Google Scholar 

  • Byrne M, Marquezgarcia MI, Uren T, Smith DS, Moran GF (1996) Conservation and genetic diversity of microsatellite loci in the genus Eucalyptus. Aust J Bot 44:331–341

    CAS  Google Scholar 

  • Byrne M, Murrell JC, Owen JV, Kriedemann P, Williams ER, et al. (1997a) Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Theor Appl Genet 94:674–681

    Google Scholar 

  • Byrne M, Murrell JC, Owen JV, Williams ER, Moran GF (1997b) Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theor Appl Genet 95:975–979

    CAS  Google Scholar 

  • Campinhos E (1980) More wood of better quality through intensive silviculture with rapid growth improved Brazilian Eucalyptus. Tappi 63:145–147

    Google Scholar 

  • Campinhos E, Ikemori YK (1977) Tree improvement program of Eucalyptus spp.: preliminary results, pp. 717–738. In: Third World Consultation on Forest Tree Breeding. CSIRO, Canberra, Australia

    Google Scholar 

  • Chaix G, Gerber S, Razafimaharo V, Vigneron P, Verhaegen D, et al. (2003) Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theor Appl Genet 107:705–712

    PubMed  CAS  Google Scholar 

  • Chen ZZ, Ho CK, Ahn IS, Chiang VL (2006) Eucalyptus. Methods Mol Biol 344:125–34

    PubMed  CAS  Google Scholar 

  • Costa e Silva C, Grattapaglia D (1997) RAPD relatedness of elite clones, applications in breeding and operational clonal forestry. pp. 161–166 Proc. International IUFRO Conference on Eucalyptus Genetics and Silviculture, Salvador, Brazil

    Google Scholar 

  • de Assis TF (2000) Production and use of Eucalyptus hybrids for industrial purposes. pp. 63–74. In Nikles DG (ed) Proc QFRI/CRC Workshop on Hybrid Breeding and Genetics of Forest Trees. Department of Primary Industries, Brisbane, Australia

    Google Scholar 

  • de Assis TF (2001) The evolution of technology for cloning Eucalyptus in a large scale. Proc IUFRO Conference on Developing the Eucalypt of the Future. Valdivia, Chile, INFOR. 16 pp (CDROM)

    Google Scholar 

  • de Assis TF, Warburton P, Harwood C (2005a) Artificially induced protogyny: an advance in the controlled pollination of Eucalyptus. Austr Forestry 68:27–33

    Google Scholar 

  • de Assis TF, Rezende GDSP, Aguiar AM (2005b) Current status of breeding and deployment for clonal forestry with tropical eucalypt hybrids in Brazil. Intl Forestry Rev 7:61. XXII IUFRO World Congress. Forests in the Balance: Linking Tradition and Technology, Brisbane, Australia

    Google Scholar 

  • Dekkers JC (2004) Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. J Anim Sci. 82:313–328

    Google Scholar 

  • Dekkers JC, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Genet Rev 3:22–32

    CAS  Google Scholar 

  • Doughty RW (2000) The Eucalyptus: A natural and commercial history of the gum tree. The Johns Hopkins University Press, Baltimore and London

    Google Scholar 

  • Eldridge K, Davidson J, Harwood C, van Wyk G (1993) Eucalypt domestication and breeding. Clarendon Press, Oxford 288 pp

    Google Scholar 

  • Evans R (1994) Rapid measurement of the transverse dimensions of tracheids in radial woodsections from Pinus radiata. Holzforschung 48:168–173

    Google Scholar 

  • Evans R, Kibblewhite RP, Stringer SL (2001) Variation in microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita J 53(5):450–457.

    Google Scholar 

  • FAO (2000) global forest resources assessment 2000: main report. FAO Forestry paper http://www.fao.org /forestry/fo/fra/main/index.jsp

    Google Scholar 

  • Faria DA, Alves TPM, Pereira RW, Grattapaglia D (2006). Frequência de SNPs e extensao do desequilìbrio de ligaçao ao longo dos genes CCR e CAD em E. grandis, E. globulus e E. urophylla. abstract GP251. 52nd Brazilian Genetics Congress

    Google Scholar 

  • Feuillet C, Boudet AM, Grima-Pettenati J (1993) Nucleotide sequence of a cDNA encoding cinnamyl alcohol dehydrogenase from Eucalyptus. Plant Physiol 103:1447

    PubMed  CAS  Google Scholar 

  • Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170(4):739–752

    PubMed  CAS  Google Scholar 

  • Franklin EC (1986) Estimation of genetic parameters through four generations of selection in Eucalyptus grandis. pp. 12–17. Proc IUFRO Joint Meeting of Working Parties on Breeding Theory, Progeny Testing and Seed Orchards

    Google Scholar 

  • Gaiotto FA, Grattapaglia D (1997) Estimation of genetic variability in a breeding population of Eucalyptus urophylla using AFLP (amplified fragment length polymorphism) markers. pp. 46–52. Proc Intl IUFRO Conf Eucalyptus Genetics and Silviculture

    Google Scholar 

  • Gaiotto FA, Bramucci M, Grattapaglia, D (1997) Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla s.t. Blake with dominant RAPD and AFLP markers. Theor Appl Genet 95:842–849

    CAS  Google Scholar 

  • Gion J-M, Rech P, Grima-Pettenati J, Verhaegen D, Plomion C (2000) Mapping candidate genes in Eucalyptus with emphasis on lignification genes. Mol Breed 6:441–449

    CAS  Google Scholar 

  • Glaubitz JC, Emebiri LC, Moran GF (2001) Dinucleotide microsatellite from Eucalyptus sieberi: Inheritance, diversity, and improved scoring of single-base differences. Genome 44: 1014–1045

    Google Scholar 

  • Gonzàlez-Martìnez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175(1):399–409

    PubMed  Google Scholar 

  • Grattapaglia D (2000) Molecular breeding of Eucalyptus - State of the art, operational applications and technical challenges. pp. 451–474. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Grattapaglia D (2004) Integrating genomics into Eucalyptus breeding. Gen Mol Res 3:369–379

    CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    Google Scholar 

  • Grattapaglia D, Chaparro J, Wilcox P, Mccord S, Werner D, Amerson H, Mckeand S, Bridgwater F, Whetten R, O’malley D, Sederoff R R (1992) Mapping in woody plants with RAPD markers: applications to breeding in forestry and horticulture. Proceedings of the Symposium “Applications of RAPD Technology to Plant Breeding”. Crop Science Society of America, American Society of Horticultural Science, American Genetic Association, pp. 37–40

    Google Scholar 

  • Grattapaglia D, O’Malley DM, Sederoff RR (1992) Multiple applications of RAPD markers to genetic analysis of Eucalyptus sp. pp. 436–450. Proc IUFRO Intl Conf “Breeding tropical trees” Section 2.02–08 Cali, Colombia

    Google Scholar 

  • Grattapaglia D, Bertolucci FLG, Sederoff R (1995) Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross mapping strategy and RAPD markers. Theor Appl Genet 90:933–947

    CAS  Google Scholar 

  • Grattapaglia D, Bertolucci FLG, Penchel R, Sederoff R (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144:1205–1214

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Pimenta D, Campinhos EN, Rezende GDS, Assis TF (2003) Marcadores moleculares na proteçao varietal de Eucalyptus. pp. 1–13. Proc 8th Brazilian Forestry Congress. Published in CD, SBS, Brazilian Soc Silviculture

    Google Scholar 

  • Grattapaglia D, Ribeiro VJ, Rezende, GD (2004) Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. Theor Appl Genet 109:192–199

    PubMed  CAS  Google Scholar 

  • Griffin AR, Burgess IP, Wolf L (1988) Patterns of natural and manipulated hybridisation in the genus Eucalyptus L’Herit: a review. Austr J Bot 36:41–66

    Google Scholar 

  • Hazen SP, Kay SA (2003) Gene arrays are not just for measuring gene expression. Trends Plant Sci 8:413–416

    PubMed  CAS  Google Scholar 

  • Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, et al. (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA 98:14732–14737

    PubMed  CAS  Google Scholar 

  • Ikemori YK, Penchel RM, Bertolucci FLG (1994) Integrating biotechnology into Eucalyptus breeding, pp. 79–84. Proc Intl Symp Wood Biotechnol, TAPPI, Japan Wood Research Society and Nippon Paper Industries

    Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 177:388–391

    Google Scholar 

  • Junghans DT, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, et al. (2003) Resistance to rust (Puccinia psidii Winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theor Appl Genet 108:175–80

    PubMed  CAS  Google Scholar 

  • Kanowski PJ, Borralho NMG (2004) Economics of tree improvement. pp. 1561–1568. In: Youngquist JA (ed) Encyclopedia of Forest Science. Elsevier Science, Oxford

    Google Scholar 

  • Kawazu T, Dol K, Tatemichi Y, Ito K, Shibata M (1996) Regenaration of transgenic plants by nodule culture systems in Eucalyptus camaldulensis. pp. 492–497. In: Proc IUFRO Conf: “Tree improvement for sustainable tropical forestry

    Google Scholar 

  • Keil M, Griffin AR (1994) Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus. Theor Appl Genet 89: 442–450

    CAS  Google Scholar 

  • Kellison RC (2001) Present and future uses of eucalypts wood in the world. In: Barros S (ed) Developing the Eucalypt of the Future. IUFRO Intl Symp INFOR, Chile (published in CDROM)

    Google Scholar 

  • Kirst M, Brondani RPV, Brondani C, Grattapaglia D (1997) Screening of designed primer pairs for recovery of microsatellite markers and their transferability among species of Eucalyptus, pp. 167–171. Proc IUFRO Conf Eucalyptus Genetics and Silviculture

    Google Scholar 

  • Kirst M, Myburg AA, De Leon JP, Kirst ME, Scott J, et al. (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol 135:2368–2378

    PubMed  CAS  Google Scholar 

  • Kirst M, Cordeiro CM, Rezende GD, Grattapaglia, D (2005a) Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. J Hered 96:161–166

    CAS  Google Scholar 

  • Kirst M, Basten CJ, Myburg A, Zeng Z-B, Sederoff, R (2005b) Genetic architecture of transcript level variation in differentiating xylem of Eucalyptus hybrids. Genetics 169:2295–2303

    CAS  Google Scholar 

  • Kirst M, Marques CM, Sederoff R (2005c) Nucleotide diversity and linkage disequilibrium in three Eucalyptus globulus genes. Section 5, P 28. (abs) IUFRO Tree Biotechnol Conf

    Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics. 171:2029–2041

    PubMed  CAS  Google Scholar 

  • Ladiges PY, Udovicic F, Nelson, G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Litt M, Hauge X, Sharma V (1993) Shadow bands seen when typing polymorphic dinucleotide repeats: some causes and cures. BioTechniques 15:280–284

    PubMed  CAS  Google Scholar 

  • Lourenço RT, Grattapaglia D, Pappas GJ Jr, Pereira GA (2005) Sample sequencing of 3 megabases of shotgun DNA of Eucalyptus grandis : genome structure, repetitive elements and genes. IUFRO Tree Biotechnology S1.08 http://www.eyevisual.co.za/biotree/viewAbstract.asp

    Google Scholar 

  • MacRae S, van Staden J (1999) Transgenic eucalyptus. In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry. 44:88–114. Springer, Heidelberg

    Google Scholar 

  • Machado LO, de Andrade GM, Cid LPB, Penchel RM, Brasileiro ACM (1997) Agrobacterium strain specificity and shooty tumour formation in eucalypt Eucalyptus grandis × E. urophylla. Plant Cell Rep 16:299–303

    CAS  Google Scholar 

  • Marcucci-Poltri SN, Zelener N, Rodriguez Traverso J, Gelid P, Hopp H (2003) Selection of a seed orchard of Eucalyptus dunnii based on genetic diversity criteria calculated using molecular markers. Tree Physiol 23:625–632

    PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Marques CM, Araujo JA, Ferreira JG, Whetten R, O’Malley DM, et al. (1998) AFLP genetic maps of Eucalyptus globulus and E. tereticornis. Theor Appl Genet 96:727–737

    CAS  Google Scholar 

  • Marques CM, Vasquez-Kool J, Carocha VJ, Ferreira JG, O’Malley DM, et al. (1999) Genetic dissection of vegetative propagation traits in Eucalyptus tereticornis and E. globulus. Theor Appl Genet 99:936–946

    Google Scholar 

  • Marques CM, Brondani RPV, Grattapaglia D, Sederoff R (2002) Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species. Theor Appl Genet 105: 474–478

    PubMed  CAS  Google Scholar 

  • Martin B, Quillet J (1974) The propogation by cuttings of forest trees in the Congo. Bois et Forets des Tropiques 155:15–33

    Google Scholar 

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381

    PubMed  CAS  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Missiaggia AA, Piacezzi AL, Grattapaglia D (2005a) Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis. Tree Genet Gen 1:79–84

    Google Scholar 

  • Missiaggia AA, Mamani EM, Novaes E, Pappas MCR, Padua JG, et al. (2005b) Microsatellite based QTL mapping and validation across multiple pedigrees of Eucalyptus. IUFRO Tree Biotechnology (abstr) s5.34 http://www.eyevisual. co.za/biotree/viewAbstract.asp

    Google Scholar 

  • Moran GF, Bell JC (1983) Eucalyptus. pp 423–441. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding. Elsevier, Amsterdam

    Google Scholar 

  • Moran G, Bell JC, Griffin AR (1989) Reduction in levels of inbreeding in a seed orchard of Eucalyptus regnans F. Muell, compared with natural populations. Silvae Genetica 38:32–36

    Google Scholar 

  • Moran GF, Thamarus KA, Raymond CA, Qiu D, Uren T, et al. (2002) Genomics of Eucalyptus wood traits. Ann For Sci 59:645–650

    Google Scholar 

  • Myburg AA (2001) Genetic architecture of hybrid fitness and wood quality traits in a wide interspecific cross of Eucalyptus tree species. PhD thesis. North Carolina State University, Raleigh, NC (http://www.lib.ncsu.edu/theses/ available/etd-20010723–175234)

    Google Scholar 

  • Myburg AA (2004) The International Eucalyptus Genome Consortium (IEuGC): Opportunities and Resources for Collaborative Genome Research in Eucalyptus. In: Li B, McKeand S (eds) Forest Genetics and Tree Breeding in the Age of Genomics: Progress and Future, pp. 154–155. IUFRO Joint Conference Division 2, Conf Proc http://www.ncsu.edu/feop/iufro_genetics 2004/proceed ings.pdf

    Google Scholar 

  • Myburg AA, Griffin AR, Sederoff RR, Whetten RW (2003) Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F1 hybrid based on a double pseudo-backcross mapping approach. Theor Appl Genet 107:1028–1042

    PubMed  CAS  Google Scholar 

  • Myburg AA, Potts B, Marques CM, Kirst M, Gion JM, et al. (2007) Eucalyptus, pp. 115–160; In Kole C (ed) Genome Mapping & Molecular Breeding in Plants Vol 7: Forest Trees. Springer, Heidelberg, Berlin, New York & Tokyo

    Google Scholar 

  • Neale D.B., Williams C.G. (1991) Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement. Can J For Res. 21:545–554.

    CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    PubMed  CAS  Google Scholar 

  • Nesbitt KA, Potts BM, Vaillancourt RE, West AK, Reid JB (1995) Partitioning and distribution of RAPD variation in a forest tree species, Eucalyptus globulus (Myrtaceae). Heredity 74:628–637

    Google Scholar 

  • Nesbitt KA, Potts BM, Vaillancourt RE, Reid JB (1997) Fingerprinting and pedigree analysis in Eualyptus globulus using RAPDs. Silvae Genetica 46:6–11

    Google Scholar 

  • Novaes E, Drost D, Farmerie B, Kirst M (2007) Rapid, high-throughput gene discovery in Eucalyptus by massive parallel pyrosequencing. IUFRO Tree Biotechnol Conf (abstr) SIII.10p. http://www.itqb.unl.pt/iufro2007/SciProg .html

    Google Scholar 

  • O’Malley D, Sederoff R, Grattapaglia D (1994) Methods For Within Family Selection In Woody Perennials Using Genetic Markers United States Patent and Trademark Office - Pat #6,054,634 (www.uspto.gov)

    Google Scholar 

  • Ottewell KM, Donnellan SC, Moran GF, Paton DC (2005) Multiplexed microsatellite markers for the genetic analysis of Eucalyptus leucoxylon, Myrtaceae and their utility for ecological and breeding studies in other Eucalyptus species. J Hered 96:445–451

    PubMed  CAS  Google Scholar 

  • Pasquali G, Bastolla FM, Kirch RP, Brondani RPV, Coelho ASG, et al. (2005) Sequencing of the Eucalyptus transcriptome in the Genolyptus project. IUFRO Tree Biotechnol (abstr) S1.21 http://www.eyevisual.co.za/biotree /viewAbstract .asp

    Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, et al. (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    PubMed  CAS  Google Scholar 

  • Paux E, Tamasloukht M, Ladouce N, Sivadon P, Grima-Pettenati J (2004) Identification of genes preferentially expressed during wood formation in Eucalyptus. Plant Mol Biol 55:263–80

    PubMed  CAS  Google Scholar 

  • Paux E, Carocha V, Marques C, Mendes de Sousa A, Borralho N, et al. (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167(1):89–100

    PubMed  CAS  Google Scholar 

  • Poke FS, Vaillancourt RE, Potts BM, Reid JB (2005) Genomic research in Eucalyptus. Genetica 125:79–101

    PubMed  CAS  Google Scholar 

  • Potts BM (2004) Genetic improvement of eucalypts, pp. 1480–1490. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of Forest Science. Elsevier Science, Oxford

    Google Scholar 

  • Potts BM, Dungey HS (2004) Hybridisation of Eucalyptus: key issues for breeders and geneticists. New Forests 27:115–138

    Google Scholar 

  • Potts BM, Vaillancourt RE, Jordan GJ, Dutkowski GW, Costa e Silva J, et al. (2004) Exploration of the Eucalyptus globulus gene pool. pp. 46–61. In: Tomé M (ed) Eucalyptus in a changing world. Aveiro, Portugal RAIZ, Instituto Investigaçao de Floresta e Papel

    Google Scholar 

  • Pryor LD (1976) The biology of eucalypts. Edward Arnold, London

    Google Scholar 

  • Pryor LD, Johnson LAS (1971) A classification of the eucalypts. Australian National University Press, Canberra

    Google Scholar 

  • Ranik M, Creux NM, Myburg AA. (2006) Within-tree transcriptome profiling in wood-forming tissues of a fast-growing Eucalyptus tree. Tree Physiol 26(3):365–75

    PubMed  CAS  Google Scholar 

  • Raymond, CA (2000) Genetics of Eucalyptus wood properties. Ann For Sci 59:525–531

    Google Scholar 

  • Ribeiro VJ, Bertolucci FLG, Grattapaglia D (1997) RAPD marker - guided matings in a reciprocal recurrent selection program of Eucalyptus. pp. 156–160. Proc. Intl IUFRO Conf Eucalyptus Genetics and Silviculture, Salvador, Brazil

    Google Scholar 

  • Sansaloni C, Pappas GJ, Grattapaglia D (2007) Desenvolvimento de sistemas otimizados de fingerprinting de Eucalyptus baseados em microssatélites de tetra e pentanucleotìdeos. 53rd Brazilian Genetics Congr, Sao Lourenço (abstr) 15465

    Google Scholar 

  • Sato S, Yamada N, Nakamoto S, Hibino T (2005) Expression profiling of the Eucalyptus transcription factor in differentiating xylem tissues. Plant Animal Genome Conf 13:P520, pg 201

    Google Scholar 

  • Schimleck LR, Michell AJ, Vinden P (1996) Eucalypt wood classification by NIR spectroscopy and principal components analysis. Appita J 49:319–324

    CAS  Google Scholar 

  • Shepherd M, Jones M (2005) Molecular markers in tree improvement: Characterisation and use in Eucalyptus. pp. 399–409. In: Lorz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Springer-Verlag, Heidelberg

    Google Scholar 

  • Shepherd M, Chaparro JX, Teasdale R (1999) Genetic mapping of monoterpene composition in an interspecific eucalypt hybrid. Theor Appl Genet 99:1207–1215

    CAS  Google Scholar 

  • Steane DA, Vaillancourt RE, Russell J, Powell W, Marshall D, et al. (2001) Development and characterization microsatellite loci in Eucalyptus globulus (Myrtacea). Silvae Genet. 50:89–91

    Google Scholar 

  • Steane DA, Jones RC, Vaillancourt RE (2005) A set of chloroplast microsatellite primers for Eucalyptus, Myrtaceae. Mol Ecol Notes 5:538–541

    CAS  Google Scholar 

  • Strauss SH, Lande R, Namkoong G (1992) Obstacles to molecular-marker-aided selection in forest trees. Can J For Res 22:1050–1061

    CAS  Google Scholar 

  • Stuber CW, Moll RH, Goodman MM, Schaffer HE, Weir BS (1980) Allozyme frequency changes associated with selection for increased grain yield in maize. Genetics 95: 225–236

    PubMed  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Ann Rev Genet 27:205–233

    PubMed  CAS  Google Scholar 

  • Thamarus K, Groom K, Murrell J, Byrne M, Moran G (2002) A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre and floral traits. Theor Appl Genet 104:379–387

    PubMed  CAS  Google Scholar 

  • Thamarus KA, Groom K, Bradley A, Raymond CA, Schimleck LR, et al. (2004) Identification of quantitative trait loci for wood and fibre properties in two full-sib pedigrees of Eucalyptus globulus. Theor Appl Genet 109:856–864

    PubMed  CAS  Google Scholar 

  • Thumma RF, Nolan MF, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265

    PubMed  CAS  Google Scholar 

  • Tournier V, Grat S, Marque C, El Kayal W, Penchel R, et al. (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis Eucalyptus urophylla). Transgenic Res 12:403–411

    PubMed  CAS  Google Scholar 

  • Turnbull JW (1999) Eucalypt plantations. New Forests 17: 37–52

    Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006 The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    PubMed  CAS  Google Scholar 

  • Vaillancourt RE, Potts BM, Watson M, Volker PW, Hodge GR, et al. (1995a) Prediction of heterosis using RAPD generated distances between Eucalyptus globulus trees. pp. 455–456. Proc CRC/IUFRO Conf Eucalypt plantations, improving fibre yield and quality. Hobart, Australia

    Google Scholar 

  • Vaillancourt RE, Potts BM, Manson A, Eldridge T, Reid JB (1995b) Using RAPD’s to detect QTLs in an interspecific F2 hybrid of Eucalyptus. pp. 430–433. Proc. CRC/IUFRO Conf Eucalypt plantations, improving fibre yield and quality, Hobart, Australia

    Google Scholar 

  • Verhaegen D, Plomion C (1996) Genetic mapping in Eucalyptus urophylla and E grandis. RAPD markers. Genome 39:1051–1061

    CAS  Google Scholar 

  • Verhaegen D, Plomion C, Gion JM, Poitel M, Costa P, et al. (1997) Quantitative trait dissection analysis in Eucalyptus using RAPD markers. 1. Detection of QTL in interspecific hybrid progeny, stability of QTL expression across different ages. Theor Appl Genet 95:597–608

    Google Scholar 

  • Waugh G (2004) Growing Eucalyptus globulus for high-quality sawn products. pp. 79–84. In: Tomé M (ed) Eucalyptus in a changing world. Aveiro, Portugal, Instituto Investigaço de Floresta e Papel

    Google Scholar 

  • West MA, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, et al. (2006) High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 16:787–795

    PubMed  CAS  Google Scholar 

  • Young ND (1999) A cautiously optimistic view for marker-assisted selection. Mol Breed 5:505–510

    Google Scholar 

  • Zelener N, Poltri SN, Bartoloni N, Lopez CR, Hopp HE (2005) Selection strategy for a seedling seed orchard design based on trait selection index and genomic analysis by molecular markers: a case study for Eucalyptus dunnii. Tree Physiol 25:1457–1467

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grattapaglia, D. (2008). Genomics of Eucalyptus, a Global Tree for Energy, Paper, and Wood. In: Moore, P.H., Ming, R. (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics: Crops and Models, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-71219-2_11

Download citation

Publish with us

Policies and ethics