Skip to main content

The Worldwide Gene Pool of G. hirsutum and its Improvement

  • Chapter
  • First Online:
Genetics and Genomics of Cotton

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 3))

Abstract

The Gossypium genus has more than 50 species that are available to use as germplasm; 5 species, including G. hirsutum, are allotetraploids while the rest are diploid species. The 7 races of G. hirsutum are directly usable as a germplasm resource with photoperiodism as the main barrier. The sister tetraploids require further effort to be utilized as germplasm for G. hirsutum improvement due to segregational breakdown. Utilizing germplasm from the diploids generally requires more extreme methods such as chromosome doubling and the use of bridging species. The phenotypic consequences of the domestication of Upland cotton, G. hirsutum, are similar to the domestication syndrome that is generally common to many crop plants. The genetic consequences of domestication are reflected by the very low level of genetic diversity found in Upland cultivars. In continuing the domestication of Upland cotton, developmental breeding programs are quickly becoming absolutely imperative to provide the diversity that is needed to provide intrinsic genetic solutions to the needs of producers, processors, and consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov, I.Y., Kohel, R.J., Saha, S., Pepper, A.E., Yu, J.Z., Buriev, Z.T., Abdullaev, A., Shermatov, S., Jenkins, J.N., Scheffler, B., and Abdukarimov, A. (2007). Genome-wide linkage disequilibrium revealed by microsatellite markers and association study of fiber quality traits in cotton. In: Plant & Animal Genomes XV Conference (San Diego, CA, USA: Scherago).

    Google Scholar 

  • Anonymous. (2006). 2006 National Cotton Variety Test (Stoneville, MS: USDA-ARS, Crop Genetics & Production Research Unit, http://www.ars.usda.gov/SP2UserFiles/Place/64021500/2006NCVT.pdf), pp. 139.

  • Anonymous. (2007). Cotton - Summary Data - United States (National Cotton Council of America, http://www.cotton.org/econ/cropinfo/cropdata/summary.cfm).

  • AOGTR. (2002). The biology and ecology of cotton (Gossypium hirsutum) in Australia (Australian Office of the Gene Technology Regulator, http://www.agbios.com/docroot/decdocs/06-059-003.pdf), pp. 30.

  • Applequist, W.L., Cronn, R., and Wendel, J.F. (2001). Comparative development of fiber in wild and cultivated cotton. Evolution & Development 3, 3–17.

    Article  CAS  Google Scholar 

  • Basal, H., Bebeli, P., Smith, C.W., and Thaxton, P. (2003). Root growth parameters of converted race stocks of upland cotton and two BC2F2 populations. Crop Science 43, 1983–1988.

    Article  Google Scholar 

  • Beasley, J.O. (1940a). The production of polyploids in Gossypium. Journal of Heredity 31, 39–48.

    Google Scholar 

  • Beasley, J.O. (1940b). Hybridization of American 26-chromosome and Asiatic 13-chromosome species of Gossypium. Journal of Agricultural Research 60, 175–181.

    Google Scholar 

  • Beasley, J.O., and Brown, M.S. (1942). Asynaptic Gossypium plants and their polyploids. Journal of Agricultural Research 1, 421–427.

    Google Scholar 

  • Blakeslee, A.F., and Avery, A.G. (1937). Methods of inducing doubling of chromosomes in plants. Journal of Heredity 28, 393–411.

    CAS  Google Scholar 

  • Bowman, D., May, O.L., and Calhoun, D.S. (1997). Coefficients of parentage for 260 cotton cultivars released between 1970 and 1990 (Washington, DC: USDA-ARS, Tech. Bull. no. 1852).

    Google Scholar 

  • Bowman, D.T., May, O.L., and Calhoun, D.S. (1996). Genetic base of upland cotton cultivars released between 1970 and 1990. Crop Science 36, 577–581.

    Article  Google Scholar 

  • Bridge, R.R., Meredith, W.R., Jr., and Chism, J.F. (1971). Comparative performance of obsolete varieties and current varieties of Upland cotton. Crop Science 11, 29–32.

    Article  Google Scholar 

  • Briggs, F.N., and Knowles, P.F. (1967). Introduction to plant breeding. (New York: Reinhold Publishing Corporation).

    Google Scholar 

  • Brown, H.B., and Ware, J.O. (1958). Cotton. (New York: McGraw-Hill).

    Google Scholar 

  • Brubaker, C.L., and Wendel, J.F. (1994). Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear Restriction-Fragment-Length-Polymorphisms (RFLPs). American Journal of Botany 81, 1309–1326.

    Article  Google Scholar 

  • Calhoun, D.S., Bowman, D.T., and May, O.L. (1994). Pedigrees of Upland and Pima cotton cultivars released between 1970 and 1990. Mississippi Agricultural and Forestry Experiment Station Bulletin 1017.

    Google Scholar 

  • Clement, C.R. (1999). 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Economic Botany 53, 188–202.

    Article  Google Scholar 

  • Culp, T.W., and Harrell, D.C. (1975). Influence of lint percentage, boll size, and seed size on lint yield of Upland cotton with high fiber strength. Crop Science 15, 741–746.

    Article  Google Scholar 

  • Damp, J.E., and Pearsall, D.M. (1994). Early cotton from coastal Ecuador. Economic Botany 48, 163–165.

    Article  Google Scholar 

  • Dillehay, T.D., Rossen, J., Andres, T.C., and Williams, D.E. (2007). Preceramic adoption of peanut, squash, and cotton in northern Peru. Science 316, 1890–1893.

    Article  PubMed  CAS  Google Scholar 

  • Doebley, J. (2004). The genetics of maize evolution. Annual Review of Genetics 38, 37–59.

    Article  PubMed  CAS  Google Scholar 

  • Doebley, J.F., Gaut, B.S., and Smith, B.D. (2006). The molecular genetics of crop domestication. Cell 127, 1309–1321.

    Article  PubMed  CAS  Google Scholar 

  • Duggar, J.F. (1907). Descriptions and classification of varieties of American Upland cotton (Auburn, AL: Agricultural Experiment Station of The Alabama Polytechnic Institute Bull. 140), pp. 24.

    Google Scholar 

  • Endrizzi, J.E., Turcotte, E.C., and Kohel, R.J. (1985). Genetics, cytology, and evolution of Gossypium. In: Advances in Genetics (Academic Press, Inc.), pp. 271–375.

    Google Scholar 

  • Endrizzi, J.E., Richmond, T.R., Kohel, R.J., and Brown, M.S. (1963). Monosomes-A tool for developing better cottons. Tex. Agric. Prog. 9, 9–11.

    Google Scholar 

  • Estur, G. (2004). Quality requirements on export markets for U.S. cotton (Washington, DC: International Cotton Advisory Committee, http://www.icac.org/cotton_info/speeches/estur/2004/quality_reqs_us_exp.pdf).

  • Frary, A., Nesbitt, T.C., Frary, A., Grandillo, S., van der Knaap, E., Cong, B., Liu, J.P., Meller, J., Elber, R., Alpert, K.B., and Tanksley, S.D. (2000). fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Freire, E.C., Moreira, J.A.N., Santos, J.W., and Andrade, F.P. (1998). Relações taxonômicas entre os algodoeiros Moco e Gossypium mustelinum do nordeste brasileiro. Pesqui. Agropecu. Bras. 33, 1555–1561.

    Google Scholar 

  • Fryxell, P.A. (1965). A revision of the Australian species of Gossypium with observations on the occurrence of Thespesia in Australia (Malvaceae). Australian Journal of Botany 13, 71–102.

    Article  Google Scholar 

  • Fryxell, P.A. (1979). The natural history of the cotton tribe. (College Station, TX: Texas A&M University Press).

    Google Scholar 

  • Fuller, D.Q. (2007). Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the old world. Annals of Botany 100, 903–924.

    Article  PubMed  Google Scholar 

  • Gulati, A.M., and Turner, A.J. (1928). A note on the early history of cotton. Indian Central Cotton Committee Technical Laboratory Bulletin 17.

    Google Scholar 

  • Harlan, J.R. (1992). Crops and man. (Madison, WI: American Society of Agronomy-Crop Science Society of America).

    Google Scholar 

  • Harlan, J.R., and de Wet, J.M.J. (1971). Toward a rational classification of cultivated plants. Taxon 20, 509–517.

    Article  Google Scholar 

  • Harris, D.R. (1989). An evolutionary continuum of people-plant interaction. In: Foraging and Farming, The evolution of plant exploitation (London: Unwin Hyman Ltd.), pp. 11–26.

    Google Scholar 

  • Hutchinson, J.B. (1951). Intra-specific differentiation in Gossypium hirsutum. Heredity 5, 161–193.

    Article  Google Scholar 

  • ICAC. (2004). Cotton: Review of the world situation (Washington D. C.: International Cotton Advisory Committee), pp. 20.

    Google Scholar 

  • Iqbal, M.J., Pepper, A.E., El-Zik, K.M., and Reddy, O.U.K. (2001). A genetic bottleneck in the ‘evolution under domestication' of Upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theoretical and Applied Genetics 103, 547–554.

    Article  CAS  Google Scholar 

  • Jenkins, J.N., Wu, J.X., McCarty, J.C., Saha, S., Gutierrez, O., Hayes, R., and Stelly, D.M. (2006). Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with Upland cotton cultivars: I. Yield and yield components. Crop Science 46, 1169–1178.

    Article  Google Scholar 

  • Jenkins, J.N., McCarty, J.C., Wu, J., Saha, S., Gutierrez, O., Hayes, R., and Stelly, D.M. (2007). Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with Upland cotton cultivars: II. Fiber quality traits. Crop Science 47, 561–570.

    Article  Google Scholar 

  • Jiang, C., DelMonte, T.A., Paterson, A.H., Wright, R.J., and Woo, S.S. (2000). QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theoretical and Applied Genetics 100, 409–418.

    Article  CAS  Google Scholar 

  • Kislev, M.E., Hartmann, A., and Bar-Yosef, O. (2006). Early domesticated fig in the Jordan Valley. Science 312, 1372–1374.

    Article  PubMed  CAS  Google Scholar 

  • Knight, R.L., and Hutchinson, J.B. (1950). The evolution of blackarm resistance in cotton. J. Genet. 50, 36–58.

    Article  Google Scholar 

  • Konishi, S., Izawa, T., Lin, S.Y., Ebana, K., Fukuta, Y., Sasaki, T., and Yano, M. (2006). An SNP caused loss of seed shattering during rice domestication. Science 312, 1392–1396.

    Article  PubMed  CAS  Google Scholar 

  • Lacape, J.M., Dessauw, D., Rajab, M., Noyer, J.L., and Hau, B. (2007). Microsatellite diversity in tetraploid Gossypium germplasm: Assembling a highly informative genotyping set of cotton SSRs. Molecular Breeding 19, 45–58.

    Article  CAS  Google Scholar 

  • Lee, J.A. (1981). Genetics of D3 complementary lethality in Gossypium hirsutum and Gossypium barbadense. Journal of Heredity 72, 299–300.

    Google Scholar 

  • Lee, J.A. (1984). Cotton as a world crop. In: Cotton, R.J. Kohel and C.F. Lewis, (Eds.) (Madison, WI: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc.), pp. 1–25.

    Google Scholar 

  • Lewton, F.L. (1925). Notes on the taxonomy of American and Mexican Upland cottons. J. Washington Academy of Sciences 15, 65–71.

    Google Scholar 

  • Li, C.B., Zhou, A.L., and Sang, T. (2006). Rice domestication by reducing shattering. Science 311, 1936–1939.

    Article  PubMed  CAS  Google Scholar 

  • Lubbers, E.L., Chee, P.W., Paterson, A.H., and Smith, C.W. (2006). Fiber quality of a near-isogenic introgression line series from an Upland by Pima interspecific cross. In: Beltwide Cotton Conferences (San Antonio, TX), pp. 845–852.

    Google Scholar 

  • Lubbers, E.L., Chee, P.W., May, O.L., Gannaway, J.R., and Paterson, A.H. (2005). Genetic relationships of historically important eastern U.S. Upland cotton. In: Beltwide Cotton Conferences (New Orleans, LA), pp. 1027–1030.

    Google Scholar 

  • Main, T.F. (1912). Cambodia cotton in Bombay Presidency. Agricultural Journal of India 7, 373–381.

    Google Scholar 

  • May, O.L., Bowman, D.T., and Calhoun, D.S. (1995). Genetic Diversity of Us Upland Cotton Cultivars Released between 1980 and 1990. Crop Science 35, 1570–1574.

    Article  Google Scholar 

  • McCarty, J.C., and Jenkins, J.N. (2005a). Registration of 14 primitive derived cotton germplasm lines with improved fiber strength. Crop Science 45, 2668–2669.

    Google Scholar 

  • McCarty, J.C., and Jenkins, J.N. (2005b). Registration of 21 day length-neutral flowering primitive cotton germplasm lines. Crop Science 45, 2134–2134.

    Google Scholar 

  • McCarty, J.C., Jenkins, J.N., and Robinson, M. (1998). Cotton germplasm: Root-knot nematode resistance in day-neutral primitive accessions (Mississippi State University: Mississippi Agricultural & Forestry Experiment Station Research Report vol 22 no 3), pp. 4.

    Google Scholar 

  • McCarty, J.C., Jenkins, J.N., and Zhu, J. (1998a). Introgression of day-neutral genes in primitive cotton accessions: I. Genetic variances and correlations. Crop Science 38, 1425–1428.

    Google Scholar 

  • McCarty, J.C., Jenkins, J.N., and Wu, J.X. (2004a). Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement: II. Genetic effects and genotypic values. Crop Science 44, 1231–1235.

    Google Scholar 

  • McCarty, J.C., Jenkins, J.N., and Wu, J.X. (2004b). Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement: I. Phenotypic values and variance components. Crop Science 44, 1226–1230.

    Google Scholar 

  • McCarty, J.C., Jenkins, J.N., and Wu, J. (2005). Potential of primitive accessions for cotton improvement (Mississippi State University: Office of Agricultural Communications, Division of Agriculture, Forestry, and Veterinary Medicine, Mississippi State University; MAFES Bull. 1141), pp. 22.

    Google Scholar 

  • McCarty, J.C., Wu, J., and Jenkins, J.N. (2006). Genetic diversity for agronomic and fiber traits in day-neutral accessions derived from primitive cotton germplasm. Euphytica 148, 283–293.

    Article  Google Scholar 

  • McCarty, J.C., Wu, J., and Jenkins, J.N. (2007). Use of primitive derived cotton accessions for agronomic and fiber traits improvement: Variance components and genetic effects. Crop Science 47, 100–110.

    Article  Google Scholar 

  • McCarty, J.C., Jenkins, J.N., Parrott, W.L., and Creech, R.G. (1979). The conversion of photoperiodic primitive race stocks of cotton to day-neutral stocks (Mississippi State University: Mississippi Agricultural and Forestry Experiment Station Research Report vol 4 no 19), pp. 4.

    Google Scholar 

  • McCarty, J.C., Jr., and Jenkins, J.N. (1992). Cotton germplasm: Characteristics of 79 day-neutral primitive race accessions (Mississippi State University: Mississippi Agricultural and Forestry Experiment Station, Tech Bull no 184), pp. 17.

    Google Scholar 

  • McCarty, J.C., Jr., and Jenkins, J.N. (1993). Registration of 79 day-neutral primitive cotton germplasm lines. Crop Science 33, 351–351.

    Article  Google Scholar 

  • McCarty, J.C., Jr., and Jenkins, J.N. (2001). Primitive cotton germplasm: Yield and fiber traits for 16 day-neutral accessions (Mississippi State University: Mississippi Agricultural & Forestry Experiment Station, Research Report vol 22 no 19), pp. 5.

    Google Scholar 

  • McCarty, J.C., Jr., and Jenkins, J.N. (2002). Registration of 16 day length-neutral flowering primitive cotton germplasm lines. Crop Science 42, 1755–1756.

    Article  Google Scholar 

  • McCarty, J.C., Jr., Jenkins, J.N., and Zhu, J. (1998b). Introgression of day-neutral genes in primitive cotton accessions. II. Predicted genetic effects. Crop Science 38, 1428–1431.

    Google Scholar 

  • Mendes, A.J.T. (1939). Duplicacao do numero de cromosomios em cafe, algodoa e fumo, pela acao de colchicinia. In: Boletim Tecnico No. 57 (Sao Paulo, Brazil: Secretaria da Agricultura, Industria, e Comercio), pp. 21.

    Google Scholar 

  • Mergeai, G. (2003). Forty years of genetic improvement of cotton through interspecific hybridisation at Gembloux Agricultural University: Achievement and prospects. In: Proc. World Cotton Research Conference - 3. Cotton Production for the New Millennium, A. Swanepoel, ed (Cape Town, South Africa: Agricultural Research Council, Institute for Industrial Crops, Pretoria), pp. 120–133.

    Google Scholar 

  • Miller, P.A., and Rawlings, J.O. (1967). Selection for increased lint yield and correlated responses in Upland cotton, Gossypium hirsutum L. Crop Science 7, 637–640.

    Article  Google Scholar 

  • Myers, G.O., and Badigannavar, A. (2007). Association genetics for quantitative characters in tetraploid cotton (G. hirsutum L.). In: 2007 Beltwide Cotton Conferences (New Orleans, Louisiana: National Cotton Council of America).

    Google Scholar 

  • NCCoA. (2006). World cotton database (National Cotton Council of America, http://www.cotton.org/econ/cropinfo/cropdata/index.cfm).

  • Nei, M., Maruyama, T., and Chakraborty, R. (1975). The bottleneck effect and genetic variability in populations. Evolution 29, 1–10.

    Article  Google Scholar 

  • Niles, G.A., and Feaster, C.V. (1984). Breeding. In: Cotton, R.J. Kohel and C.F. Lewis, (Eds.) (Madison, WI: ASA/CSSA/SSSA), pp. 202–229.

    Google Scholar 

  • Paterson, A.H. (2002). What has QTL mapping taught us about plant domestication? New Phytologist 154, 591–608.

    Article  CAS  Google Scholar 

  • Pickersgill, B. (1977). Taxonomy and origin and evolution of cultivated plants in New World. Nature 268, 591–595.

    Article  Google Scholar 

  • Pickersgill, B., Barrett, S.C.H., and Andrade-Lima, D.d. (1975). Wild cotton in northeast Brazil. Biotropica 7, 42–54.

    Article  Google Scholar 

  • Pillay, M., and Myers, G.O. (1999). Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers. Crop Science 39, 1881–1886.

    Article  CAS  Google Scholar 

  • Rieger, R., Michaelis, A., and Green, M.M. (1976). Glossary of genetics and cytogenetics: classical and molecular. (Berlin: Springer-Verlag).

    Google Scholar 

  • Saha, S., Jenkins, J.N., Wu, J.X., McCarty, J.C., Gutierrez, O.A., Percy, R.G., Cantrell, R.G., and Stelly, D.M. (2006). Effects of chromosome-specific introgression in Upland cotton on fiber and agronomic traits. Genetics 172, 1927–1938.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K.J., Fellers, J.P., Trick, H.N., Zhang, Z.C., Tai, Y.S., Gill, B.S., and Faris, J.D. (2006). Molecular characterization of the major wheat domestication gene Q. Genetics 172, 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. (2004). To improving fiber quality: Cotton breeding goals have shifted (New York, NY: Southwest Farm Press, Penton Media, Inc., http://www.southwestfarmpress.com/mag/farming_improving_fiber_quality/).

  • Stelly, D.M., Saha, S., Raska, D.A., Jenkins, J.N., McCarty, J.C., Jr., and Gutierrez, O.A. (2005). Registration of 17 Upland (Gossypium hirsutum) Cotton Germplasm Lines Disomic for Different G. barbadense Chromosome or Arm Substitutions. Crop Sci 45, 2663–2665.

    Article  Google Scholar 

  • Stephens, S.G. (1949). The cytogenetics of speciation in Gossypium. I. Selective elimination of the donor parent genotype in interspecific backcrosses. Genetics 34, 627–637.

    Google Scholar 

  • Stephens, S.G. (1958). Factors affecting seed dispersal in Gossypium and their possible evolutionary significance (North Carolina Agricultural Experiment Station Tech. Bull. No. 131), pp. 32.

    Google Scholar 

  • Stephens, S.G. (1965). The effects of domestication on certain seed and fiber properties of perennial forms of cotton, Gossypium hirsutum L. The American Naturalist 99, 355–372.

    Article  Google Scholar 

  • Stephens, S.G. (1967). Evolution under domestication of the New World cottons (Gossypium spp). Ciencia E Cultura 19, 118–134.

    Google Scholar 

  • Stephens, S.G. (1972). Geographical distribution of cultivated cottons relative to probable centers of domestication in the New World. In: 12th International Latin American Symposium, A.M. Srb, ed (Cali, Colombia: Plenum Press), pp. 39–254.

    Google Scholar 

  • Stephens, S.G. (1976). Some observations on photoperiodism and the development of annual forms of domesticated cottons. Economic Botany, 409–418.

    Google Scholar 

  • Stephens, S.G., and Phillips, L.L. (1972). The history and geographical distribution of a polymorphic system in New World cottons. Biotropica 4, 49–60.

    Article  Google Scholar 

  • Stewart, J.M. (1992). Germplasm resources and enhancement stratagies for disease resistance. In: Beltwide Cotton Conferences, D.J. Heber and D.A. Richter, eds (Memphis, TN: National Cotton Council of America), pp. 1323–1325.

    Google Scholar 

  • Stewart, J.M. (1994). Potential for crop improvement with exotic germplasm and genetic engineering. In: Challenging the Future: Proceedings of the World Cotton Research Conference-1, G.A. Constable and N.W. Forrester, eds (Brisbane, Australia: CSIRO, Melbourne, Australia), pp. 313–327.

    Google Scholar 

  • Stewart, J.M., and Kerr, T. (1974). Relationship between fiber-length increase and seed-volume Increase in cotton (Gossypium hirsutum L.). Crop Science 14, 118–120.

    Google Scholar 

  • Tanksley, S.D., and Nelson, J.C. (1996). Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics 92, 191–203.

    Article  Google Scholar 

  • Tatineni, V., Davis, D.D., and Cantrell, R.G. (1996). Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Science 36, 186–192.

    Article  Google Scholar 

  • Townsend, T. (2006). Personal communication (Washington DC: International Cotton Advisory Committee).

    Google Scholar 

  • Tyler, F.J. (1910). Varieties of American Upland cotton (USDA-ARS, BPI, Bulletin no. 163).

    Google Scholar 

  • UNCTAD. (2006). Cotton: Characteristics (United Nations Conference on Trade and Development).

    Google Scholar 

  • Van Becelaere, G., Lubbers, E.L., Paterson, A.H., and Chee, P.W. (2005). Pedigree- vs. DNA marker-based genetic similarity estimates in cotton. Crop Science 45, 2281–2287.

    Article  Google Scholar 

  • Van Esbroeck, G.A., Bowman, D.T., Calhoun, D.S., and May, O.L. (1998). Changes in the genetic diversity of cotton in the USA from 1970 to 1995. Crop Science 38, 33–37.

    Article  Google Scholar 

  • Van Esbroeck, G.A., Bowman, D.T., May, O.L., and Calhoun, D.S. (1999). Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars. Crop Science 39, 323–328.

    Google Scholar 

  • Vaughan, D.A., Balazs, E., and Heslop-Harrison, J.S. (2007). From crop domestication to super-domestication. Ann Bot 100, 893–901.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Nussbaum-Wagler, T., Li, B.L., Zhao, Q., Vigouroux, Y., Faller, M., Bomblies, K., Lukens, L., and Doebley, J.F. (2005). The origin of the naked grains of maize. Nature 436, 714–719.

    Article  PubMed  CAS  Google Scholar 

  • Ware, J.O. (1951). Origin, rise, and development of American Upland cotton varieties and their status at present. (Fayetteville, AR: University of Arkansas, College of Agriculture, Agricultural Experiment Station).

    Google Scholar 

  • Wendel, J.F., Brubaker, C.L., and Percival, A.E. (1992). Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. American Journal of Botany 79, 1291–1310.

    Article  Google Scholar 

  • White, T.G., Richmond, T.R., and Lewis, C.F. (1967). Use of cotton monosomes in developing interspecific substitution lines (Washington DC: Crop Res. USDA Rep. ARS 34–91), pp. 15.

    Google Scholar 

  • Wright, S. (1931). Evolution in mendelian populations. Genetics 16, 97–159.

    PubMed  CAS  Google Scholar 

  • Wu, J., Jenkins, J., McCarty, J., Saha, S., and Stelly, D. (2006). An additive-dominance model to determine chromosomal effects in chromosome substitution lines and other gemplasms. Theoretical and Applied Genetics 112, 391–399.

    Article  PubMed  CAS  Google Scholar 

  • Zohary, D., and Spiegel-Roy, P. (1975). Beginnings of fruit growing in the Old World. Science 187, 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Zohary, D., and Hopf, M. (2000). Domestication of plants in the old world: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. (New York: Oxford University Press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward L. Lubbers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lubbers, E.L., Chee, P.W. (2009). The Worldwide Gene Pool of G. hirsutum and its Improvement. In: Paterson, A.H. (eds) Genetics and Genomics of Cotton. Plant Genetics and Genomics: Crops and Models, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70810-2_2

Download citation

Publish with us

Policies and ethics