Skip to main content

Comparative Analysis of SNP in Estrogen-metabolizing Enzymes for Ovarian, Endometrial, and Breast Cancers in Novosibirsk, Russia

  • Chapter
Hormonal Carcinogenesis V

Summary

We estimated the frequency of CYP1A1, CYP1A2, CYP1B1, CYP19, and SULT1A1 allelic variants in a female population of the Novosibirsk district and their association with the elevated risk of breast (BC), ovarian (OC), and endometrial (EC) cancers. Significant differences (OR = 2.34, p = 0.0002) in the allele distributions for CYP1A1 M1 polymorphism between patients with BC (n = 118) and controls (n = 180) were found. No significant difference in both genotype and allele distributions for CYP1A1 polymorphisms in patients with OC (n = 96) and EC (n = 154) was observed. Remarkable differences in the allele and genotype distributions for CYP1A2*1F polymorphism in patients with BC or OC were found (OR = 0.26, p = 0.0000005 and OR = 0.34, p = 0.00000002). There were no differences for this polymorphism in women with EC. In patients with BC no significant differences were found in genotype and allele distributions for R264C polymorphism in the CYP19 gene. The frequency of a mutant CYP19 heterozygote genotype C/T was higher in patients with OC and EC compared with healthy women (OR = 3.87, p = 0.001 and OR = 3.73, p = 0.0004, respectively). Comparison of allele frequencies revealed a deficiency of an allele A of SULT1A1*2 in patients with OC (OR = 0.64, p = 0.019) compared with controls. No differences were found in the genotype and allele distributions for SULT1A1 polymorphism between patients with BC and EC and controls. In addition, there were no difference in allele and genotype distributions for CYP1B1 119G→T polymorphism between BC and control. In conclusion, these results support the hypothesis that susceptibility gene alleles of estrogen-metabolizing enzymes may differentially influence risk for woman hormone-dependent cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White R, Parker MJ (1998) Molecular mechanisms of steroid hormone action. Endocr Relat Cancer 5:1–14.

    Article  CAS  Google Scholar 

  2. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86: 225–230.

    Article  PubMed  CAS  Google Scholar 

  3. Sasano H, Harada N (1998) Intratumoral aromatase in human breast, endometrial, and ovarian malignancies. Endocrine Rew 19:593–607.

    Article  CAS  Google Scholar 

  4. Anderson E (2001) Ovarian steroids and control of proliferation in the normal human breast. Breast 4:273–278.

    Article  Google Scholar 

  5. Doisneau-Sixou SF, Sergio CM, Carroll JS, et al. (2003) Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10:179–186.

    Article  PubMed  CAS  Google Scholar 

  6. Bulun SE, Sebastian S, Takayama K, et al. (2003) The human CYP19 (aromatase P450) gene: update on physiologic roles and genomic organization of promoters. J Steroid Biochem Mol Biol 86:219–224.

    Article  PubMed  CAS  Google Scholar 

  7. Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227:115–124.

    Article  PubMed  CAS  Google Scholar 

  8. Strott CA (2002) Sulfonation and molecular action. Endocr Rev 23:703–732.

    Article  PubMed  CAS  Google Scholar 

  9. Kawajiri K, Nakachi K (1990) Identification of genetically high risk individuals to lung cancer by DNA polymorphism of the cytochrome P450 1A1 gene. FEBS Lett 263:131–133.

    Article  PubMed  CAS  Google Scholar 

  10. Goodman MT, Sachse C, Bhambra U, et al. (2003) Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol 55:68–76.

    Article  Google Scholar 

  11. Bailey LR, Roodi N, Dupont WD, Parl FF (1998) Association of cytochrome P450 1B1 (CYP1B1) polymorphism with steroid receptor status in breast cancer. Cancer Res 58:5038–5041.

    PubMed  CAS  Google Scholar 

  12. Raftogianis R, Creveling C, Weinshilboum R, Weisz J (2000) Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr 27:113–124.

    PubMed  CAS  Google Scholar 

  13. Kagawa N, Hori H, Waterman MR, Yoshioka S (2004) Characterization of stable human aromatase expressed in E. coli. Steroids 69:235–243.

    Google Scholar 

  14. Huang CS, Shen CY, Chang KJ, et al. (1999) Cytochrome P4501A1 polymorphism as a susceptibility factor for breast cancer in postmenopausal Chinese women in Taiwan. Br J Cancer 80:1838–1843.

    Article  PubMed  CAS  Google Scholar 

  15. Li Yu, Millikan RC, Bell DA, et al. (2004) Cigarette smoking, cytochrome P4501A1 polymorphisms, and breast cancer among African-American and white women. Breast Cancer Res 6:R460–R473.

    Article  PubMed  CAS  Google Scholar 

  16. Long JR, Egan KM, Dunning L, et al (2006) Population-based case-control study of AhR (aryl hydrocarbon receptor) and CYP1A2 polymorphisms and breast cancer risk. Pharmacogenet Genomics 16:237–243.

    Article  PubMed  CAS  Google Scholar 

  17. Ma CX, Adjei AA, Salavaggione OE, Coronel J (2005) Human aromatase: gene resequencing and functional genomics. Cancer Res 65:11071–11082.

    Article  PubMed  CAS  Google Scholar 

  18. Mikhailova ON, Gulyaeva LF, Prudnikov AV, et al. (2006) Estrogen-metabolizing gene polymorphisms in the assessment of female hormone-dependent cancer risk. Pharmacogenomics J 6:189–193.

    Article  PubMed  CAS  Google Scholar 

  19. Hanna IH, Dawling S, Roodi N, et al. (2000) Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res 60:3440–3444.

    PubMed  CAS  Google Scholar 

  20. Shimada T, Watanabe J, Kawajiri K, et al. (1999) Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 20:1607–1614.

    Article  PubMed  CAS  Google Scholar 

  21. Rylander-Rudqvist T, Wedren S, Granath F, et al. (2003) Cytochrome P450 1B1 gene polymorphisms and postmenopausal breast cancer risk. Carcinogenesis 24:1533–1539.

    Article  PubMed  CAS  Google Scholar 

  22. Sasaki M, Tanaka Y, Kaneuchi M, et al. (2003) CYP1B1 gene polymorphisms have higher risk for endometrial cancer, and positive correlations with estrogen receptor α and estrogen receptor β expressions. Cancer Res 63:3913–3918.

    PubMed  CAS  Google Scholar 

  23. Sellers TA, Schildkraut JM, Pankratz VS, et al. (2005) Estrogen bioactivation, genetic polymorphisms, and ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:2536–2543.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Gulyaeva, L.F. et al. (2008). Comparative Analysis of SNP in Estrogen-metabolizing Enzymes for Ovarian, Endometrial, and Breast Cancers in Novosibirsk, Russia. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_34

Download citation

Publish with us

Policies and ethics