Skip to main content

Evolution of Centromeres and Kinetochores: A Two-Part Fugue

  • Chapter
  • First Online:
The Kinetochore:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, K. and Henikoff, S. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9: 1191–200.

    PubMed  CAS  Google Scholar 

  • Albertson, D.G., Rose, A.M. and Villeneuve, A.M. 1997. C. elegans II: Chromosome Organization, Mitosis and Meiosis.

    Google Scholar 

  • Albertson, D.G. and Thomson, J.N. 1982. The kinetochores of Caenorhabditis elegans. Chromosoma 86: 409–428.

    PubMed  CAS  Google Scholar 

  • Albertson, D.G. and Thomson, J.N. 1993. Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1: 15–26.

    PubMed  CAS  Google Scholar 

  • Alonso, A., Mahmood, R., Li, S., et al. 2003. Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12: 2711–21.

    PubMed  CAS  Google Scholar 

  • Amor, D.J. and Choo, K.H. 2002. Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71: 695–714.

    PubMed  Google Scholar 

  • Amor, D.J., Kalitsis, P., Sumer, H., et al. 2004. Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14: 359–368.

    PubMed  CAS  Google Scholar 

  • Ananiev, E.V., Phillips, R.L. and Rines, H.W. 1998. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95: 13073–8.

    PubMed  CAS  Google Scholar 

  • Baker, R.E. and Rogers, K. 2006. Phylogenetic analysis of fungal centromere H3 proteins. Genetics 174: 1481–1492.

    PubMed  CAS  Google Scholar 

  • Baum, M., Sanyal, K., Mishra, P.K., et al. 2006. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc Natl Acad Sci USA 103: 14877–14882.

    PubMed  CAS  Google Scholar 

  • Bernard, P., Maure, J.F., Partridge, J.F., et al. 2001. Requirement of heterochromatin for cohesion at centromeres. Science 294: 2539–2542.

    PubMed  CAS  Google Scholar 

  • Bidau, C.J. and Marti, D.A. 2004. B chromosomes and Robertsonian fusions of Dichroplus pratensis (Acrididae): intraspecific support for the centromeric drive theory. Cytogenet Genome Res 106: 347–350.

    PubMed  CAS  Google Scholar 

  • Bloom, K. 1993. The centromere frontier: kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell 73: 621–624.

    PubMed  CAS  Google Scholar 

  • Blower, M.D., Sullivan, B.A. and Karpen, G.H. 2002. Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2: 319–330.

    PubMed  CAS  Google Scholar 

  • Bongiorni, S., Fiorenzo, P., Pippoletti, D., et al. 2004. Inverted meiosis and meiotic drive in mealybugs. Chromosoma 112: 331–341.

    PubMed  Google Scholar 

  • Braselton, J.P. 1981. The ultrastructure of meiotic kinetochores of Luzula. Chromosoma 82: 143–151.

    Google Scholar 

  • Brown, M.T. 1995. Sequence similarities between the yeast chromosome segregation protein Mif2 and the mammalian centromere protein CENP-C. Gene 160: 111–116.

    PubMed  CAS  Google Scholar 

  • Brunet, S., Maria, A.S., Guillaud, P., et al. 1999. Kinetochore fibers are not involved in the formation of the first meiotic spindle in mouse oocytes, but control the exit from the first meiotic M phase. J Cell Biol 146: 1–12.

    PubMed  CAS  Google Scholar 

  • Buchwitz, B.J., Ahmad, K., Moore, L.L., et al. 1999. A histone-H3-like protein in C. elegans. Nature 401: 547–548.

    PubMed  CAS  Google Scholar 

  • Camahort, R., Li, B., Florens, L., et al. 2007. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26: 853–865.

    PubMed  CAS  Google Scholar 

  • Cambareri, E.B., Aisner, R. and Carbon, J. 1998. Structure of the chromosome VII centromere region in Neurospora crassa: degenerate transposons and simple repeats. Mol Cell Biol 18: 5465–5477.

    PubMed  CAS  Google Scholar 

  • Cao, Y.K., Zhong, Z.S., Chen, D.Y., et al. 2005. Cell cycle-dependent localization and possible roles of the small GTPase Ran in mouse oocyte maturation, fertilization and early cleavage. Reproduction 130: 431–440.

    PubMed  CAS  Google Scholar 

  • Cardone, M.F., Alonso, A., Pazienza, M., et al. 2006. Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7: R91.

    PubMed  Google Scholar 

  • Chan, R.C., Severson, A.F. and Meyer, B.J. 2004. Condensin restructures chromosomes in preparation for meiotic divisions. J Cell Biol 167: 613–625.

    PubMed  CAS  Google Scholar 

  • Cheeseman, I.M., Chappie, J.S., Wilson-Kubalek, E.M., et al. 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127: 983–997.

    PubMed  CAS  Google Scholar 

  • Cheng, Z., Dong, F., Langdon, T., et al. 2002. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14: 1691–704.

    PubMed  CAS  Google Scholar 

  • Choo, K.H. 1997. The Centromere. Oxford: Oxford University Press.

    Google Scholar 

  • Clarke, L. 1990. Centromeres of budding and fission yeasts. Trends Genet 6: 150–4.

    PubMed  CAS  Google Scholar 

  • Collet, C. and Westerman, M. 1984. Interspersed distribution patterns of C-bands and satellite DNA in the holocentric chromosomes of Luzula flaccida. Genetica 63: 175–179.

    CAS  Google Scholar 

  • Collet, C. and Westerman, M. 1987. Interspecies comparison of the highly-repeated DNA of Australasian Luzula (Juncaceae). Genetica 74: 95–103.

    PubMed  CAS  Google Scholar 

  • Collins, K.A., Furuyama, S. and Biggins, S. 2004. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr Biol 14: 1968–1972.

    PubMed  CAS  Google Scholar 

  • Cooper, J.L. and Henikoff, S. 2004. Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21: 1712–8.

    PubMed  CAS  Google Scholar 

  • Dalal, Y., Furuyama, T., Vermaak, D., et al. 2007a. Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci USA 104: 15974–15981.

    Google Scholar 

  • Dalal, Y., Wang, H., Lindsay, S., et al. 2007b. Tetrameric Structure of Centromeric Nucleosomes in Interphase Drosophila Cells. PLoS Biol 5: e218.

    Google Scholar 

  • Dawe, R.K. and Henikoff, S. 2006. Centromeres put epigenetics in the driver's seat. Trends Biochem Sci 31: 662–669.

    PubMed  CAS  Google Scholar 

  • Dawe, R.K. and Hiatt, E.N. 2004. Plant neocentromeres: fast, focused, and driven. Chromosome Res 12: 655–669.

    PubMed  CAS  Google Scholar 

  • Dawson, S.C., Sagolla, M.S. and Cande, W.Z. 2007. The cenH3 histone variant defines centromeres in Giardia intestinalis. Chromosoma 116: 175–184.

    PubMed  CAS  Google Scholar 

  • Dolan, M.F., Melnitsky, H., Margulis, L., et al. 2002. Motility proteins and the origin of the nucleus. Anat Rec 268: 290–301.

    PubMed  CAS  Google Scholar 

  • Douglas, S., Zauner, S., Fraunholz, M., et al. 2001. The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091–1096.

    PubMed  CAS  Google Scholar 

  • Dumont, J., Petri, S., Pellegrin, F., et al. 2007. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J Cell Biol 176: 295–305.

    PubMed  CAS  Google Scholar 

  • Earnshaw, W.C. and Rothfield, N. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91: 313–321.

    PubMed  CAS  Google Scholar 

  • Eckert, C.A., Gravdahl, D.J. and Megee, P.C. 2007. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev 21: 278–291.

    PubMed  CAS  Google Scholar 

  • Ersfeld, K. and Gull, K. 1997. Partitioning of large and minichromosomes in Trypanosoma brucei. Science 276: 611–614.

    PubMed  CAS  Google Scholar 

  • Esteban, M.R., Giovinazzo, G. and Goday, C. 1995. Chromatin diminution is strictly correlated to somatic cell behavior in early development of the nematode Parascaris univalens. J Cell Sci 108(Pt 6): 2393–2404.

    PubMed  CAS  Google Scholar 

  • Ferreri, G.C., Liscinsky, D.M., Mack, J.A., et al. 2005. Retention of latent centromeres in the Mammalian genome. J Hered 96: 217–224.

    PubMed  CAS  Google Scholar 

  • Furuyama, S. and Biggins, S. 2007. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA 104: 14706–14711.

    PubMed  CAS  Google Scholar 

  • Furuyama, T., Dalal, Y. and Henikoff, S. 2006. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci USA 103: 6172–6177.

    PubMed  CAS  Google Scholar 

  • Gard, D.L. 1992. Microtubule organization during maturation of Xenopus oocytes: assembly and rotation of the meiotic spindles. Dev Biol 151: 516–530.

    PubMed  CAS  Google Scholar 

  • Gard, D.L. 1993. Ectopic spindle assembly during maturation of Xenopus oocytes: evidence for functional polarization of the oocyte cortex. Dev Biol 159: 298–310.

    PubMed  CAS  Google Scholar 

  • Goday, C. and Pimpinelli, S. 1989. Centromere organization in meiotic chromosomes of Parascaris univalens. Chromosoma 98: 160–166.

    PubMed  CAS  Google Scholar 

  • Hackett, J.D., Scheetz, T.E., Yoon, H.S., et al. 2005. Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics 6: 80.

    PubMed  Google Scholar 

  • Haizel, T., Lim, Y.K., Leitch, A.R., et al. 2005. Molecular analysis of holocentric centromeres of Luzula species. Cytogenet. Genome Res 109: 134–143.

    PubMed  CAS  Google Scholar 

  • Hall, S.E., Luo, S., Hall, A.E., et al. 2005. Differential rates of local and global homogenization in centromere satellites from Arabidopsis relatives. Genetics 170: 1913–1927.

    PubMed  CAS  Google Scholar 

  • Hartman, H. and Fedorov, A. 2002. The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99: 1420–1425.

    PubMed  CAS  Google Scholar 

  • Hayashi, T., Fujita, Y., Iwasaki, O., et al. 2004. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118: 715–729.

    PubMed  CAS  Google Scholar 

  • Henikoff, S., Ahmad, K. and Malik, H.S. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.

    PubMed  CAS  Google Scholar 

  • Heun, P., Erhardt, S., Blower, M.D., et al. 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303–315.

    PubMed  CAS  Google Scholar 

  • Heus, J.J., Zonneveld, B.J., Steensma, H.Y., et al. 1994. Mutational analysis of centromeric DNA elements of Kluyveromyces lactis and their role in determining the species specificity of the highly homologous centromeres from K. lactis and Saccharomyces cerevisiae. Mol Gen Genet 243: 325–333.

    PubMed  CAS  Google Scholar 

  • Hiatt, E.N. and Dawe, R.K. 2003. Four loci on abnormal chromosome 10 contribute to meiotic drive in maize. Genetics 164: 699–709.

    PubMed  CAS  Google Scholar 

  • Holy, T.E. and Leibler, S. 1994. Dynamic instability of microtubules as an efficient way to search in space. Proc Natl Acad Sci USA 91: 5682–5685.

    PubMed  CAS  Google Scholar 

  • Houben, A., Schroeder-Reiter, E., Nagaki, K., et al. 2007. CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116: 275–283.

    PubMed  CAS  Google Scholar 

  • Howe, M., McDonald, K.L., Albertson, D.G., et al. 2001. HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. J Cell Biol 153: 1227–1238.

    PubMed  CAS  Google Scholar 

  • Huang, L., Wang, J., Nie, W., et al. 2006. Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis. Chromosome Res 14: 637–647.

    PubMed  CAS  Google Scholar 

  • Hunt, P.A. and Hassold, T.J. 2002. Sex matters in meiosis. Science 296: 2181–2183.

    PubMed  CAS  Google Scholar 

  • Irvine, D.V., Amor, D.J., Perry, J., et al. 2004. Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res 12: 805–815.

    PubMed  CAS  Google Scholar 

  • Ito, H., Miura, A., Takashima, K., et al. 2007. Ecotype-specific and chromosome-specific expansion of variant centromeric satellites in Arabidopsis thaliana. Mol Genet Genomics 277: 23–30.

    PubMed  CAS  Google Scholar 

  • Jin, W., Melo, J.R., Nagaki, K., et al. 2004. Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16: 571–581.

    PubMed  CAS  Google Scholar 

  • Kasai, F., Garcia, C., Arruga, M.V., et al. 2003. Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102: 326–330.

    PubMed  CAS  Google Scholar 

  • Kato, A., Lamb, J.C. and Birchler, J.A. 2004. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101: 13554–13559.

    PubMed  CAS  Google Scholar 

  • Kawabe, A., Nasuda, S. and Charlesworth, D. 2006. Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics 174: 2021–2032.

    PubMed  CAS  Google Scholar 

  • Keith, K.C., Baker, R.E., Chen, Y., et al. 1999. Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol Cell Biol 19: 6130–6139.

    PubMed  CAS  Google Scholar 

  • Kelly, J.M., McRobert, L. and Baker, D.A. 2006. Evidence on the chromosomal location of centromeric DNA in Plasmodium falciparum from etoposide-mediated topoisomerase-II cleavage. Proc Natl Acad Sci USA 103: 6706–6711.

    PubMed  CAS  Google Scholar 

  • Kitada, K., Yamaguchi, E., Hamada, K., et al. 1997. Structural analysis of a Candida glabrata centromere and its functional homology to the Saccharomyces cerevisiae centromere. Curr Genet 31: 122–127.

    PubMed  CAS  Google Scholar 

  • Kuta, E., Bohanec, B., Dubas, E., et al. 2004. Chromosome and nuclear DNA study on Luzula – a genus with holokinetic chromosomes. Genome 47: 246–256.

    PubMed  CAS  Google Scholar 

  • Lam, A.L., Boivin, C.D., Bonney, C.F., et al. 2006. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA 103: 4186–4191.

    PubMed  CAS  Google Scholar 

  • Langdon, T., Seago, C., Mende, M., et al. 2000. Retrotransposon evolution in diverse plant genomes. Genetics 156: 313–325.

    PubMed  CAS  Google Scholar 

  • Lavelle, C. and Prunell, A. 2007. Chromatin polymorphism and the nucleosome superfamily: a genealogy. Cell Cycle 6: 2113–2119.

    PubMed  CAS  Google Scholar 

  • Lee, H.R., Zhang, W., Langdon, T., et al. 2005. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102: 11793–11798.

    PubMed  CAS  Google Scholar 

  • LeMaire-Adkins, R. and Hunt, P.A. 2000. Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive. Genetics 156: 775–783.

    PubMed  CAS  Google Scholar 

  • Liu, S.T., Rattner, J.B., Jablonski, S.A., et al. 2006. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol 175: 41–53.

    PubMed  CAS  Google Scholar 

  • Lohe, A.R., Hilliker, A.J. and Roberts, P.A. 1993. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–74.

    PubMed  CAS  Google Scholar 

  • Loiodice, I., Alves, A., Rabut, G., et al. 2004. The entire Nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol Biol Cell 15: 3333–3344.

    PubMed  CAS  Google Scholar 

  • Lowell, J.E. and Cross, G.A. 2004. A variant histone H3 is enriched at telomeres in Trypanosoma brucei. J Cell Sci 117: 5937–5947.

    PubMed  CAS  Google Scholar 

  • Luger, K., Mader, A.W., Richmond, R.K., et al. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    PubMed  CAS  Google Scholar 

  • Lutz, D.A., Hamaguchi, Y. and Inoue, S. 1988. Micromanipulation studies of the asymmetric positioning of the maturation spindle in Chaetopterus sp. oocytes: I. Anchorage of the spindle to the cortex and migration of a displaced spindle. Cell Motil Cytoskeleton 11: 83–96.

    PubMed  CAS  Google Scholar 

  • Lysak, M.A., Berr, A., Pecinka, A., et al. 2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103: 5224–5229.

    PubMed  CAS  Google Scholar 

  • Ma, J., Wing, R.A., Bennetzen, J.L., et al. 2007a. Evolutionary History and Positional Shift of a Rice Centromere. Genetics Jul 29: [epub ahead of print].

    Google Scholar 

  • Ma, J., Wing, R.A., Bennetzen, J.L., et al. 2007b. Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23: 134–9.

    Google Scholar 

  • Maddox, P.S., Hyndman, F., Monen, J., et al. 2007. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J Cell Biol 176: 757–763.

    PubMed  CAS  Google Scholar 

  • Maiato, H., Rieder, C.L. and Khodjakov, A. 2004. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J Cell Biol 167: 831–840.

    PubMed  CAS  Google Scholar 

  • Malik, H.S. and Henikoff, S. 2001. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157: 1293–1298.

    PubMed  CAS  Google Scholar 

  • Malik, H.S. and Henikoff, S. 2003. Phylogenomics of the nucleosome. Nat Struct Biol 10: 882–891.

    PubMed  CAS  Google Scholar 

  • Malik, H.S., Vermaak, D. and Henikoff, S. 2002. Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proc Natl Acad Sci USA 99: 1449–1454.

    PubMed  CAS  Google Scholar 

  • Maruyama, S., Kuroiwa, H., Miyagishima, S.Y., et al. 2007. Centromere dynamics in the primitive red alga Cyanidioschyzon merolae. Plant J 49: 1122–1129.

    PubMed  CAS  Google Scholar 

  • Masumoto, H., Nakano, M. and Ohzeki, J. 2004. The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res 12: 543–556.

    PubMed  CAS  Google Scholar 

  • McClintock, B. 1938. The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. Genetics 23: 315–376.

    PubMed  CAS  Google Scholar 

  • Meluh, P.B. and Koshland, D. 1997. Budding yeast centromere composition and assembly as revealed by in vivo cross-linking. Genes Dev 11: 3401–3412.

    PubMed  CAS  Google Scholar 

  • Meraldi, P., McAinsh, A.D., Rheinbay, E., et al. 2006. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7: R23.

    PubMed  Google Scholar 

  • Mishra, P.K., Baum, M. and Carbon, J. 2007. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol Genet Genomics 278: 455–465.

    Google Scholar 

  • Monen, J., Maddox, P.S., Hyndman, F., et al. 2005. Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7: 1248–1255.

    PubMed  Google Scholar 

  • Moore, L.L. and Roth, M.B. 2001. HCP-4, a CENP-C-like protein in Caenorhabditis elegans, is required for resolution of sister centromeres. J Cell Biol 153: 1199–1208.

    PubMed  CAS  Google Scholar 

  • Moreno-Moreno, O., Torras-Llort, M. and Azorin, F. 2006. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res 34: 6247–6255.

    PubMed  CAS  Google Scholar 

  • Morey, L., Barnes, K., Chen, Y., et al. 2004. The histone fold domain of Cse4 is sufficient for CEN targeting and propagation of active centromeres in budding yeast. Eukaryot. Cell 3: 1533–1543.

    PubMed  CAS  Google Scholar 

  • Murata, M., Ogura, Y. and Motoyoshi, F. 1994. Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet 69: 361–370.

    PubMed  CAS  Google Scholar 

  • Musacchio, A. and Salmon, E.D. 2007. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8: 379–393.

    PubMed  CAS  Google Scholar 

  • Nabeshima, K., Villeneuve, A.M. and Colaiacovo, M.P. 2005. Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC. J Cell Biol 168: 683–689.

    PubMed  CAS  Google Scholar 

  • Nagaki, K., Cheng, Z., Ouyang, S., et al. 2004. Sequencing of a rice centromere uncovers active genes. Nat Genet 36: 138–145.

    PubMed  CAS  Google Scholar 

  • Nagaki, K., Kashihara, K. and Murata, M. 2005. Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17: 1886–1893.

    PubMed  CAS  Google Scholar 

  • Nasuda, S., Hudakova, S., Schubert, I., et al. 2005. Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA 102: 9842–9847.

    PubMed  CAS  Google Scholar 

  • Ng, R. and Carbon, J. 1987. Mutational and in vitro protein-binding studies on centromere DNA from Saccharomyces cerevisiae. Mol Cell Biol 7: 4522–34.

    PubMed  CAS  Google Scholar 

  • Niedermaier, J. and Moritz, K.B. 2000. Organization and dynamics of satellite and telomere DNAs in Ascaris: implications for formation and programmed breakdown of compound chromosomes. Chromosoma 109: 439–452.

    PubMed  CAS  Google Scholar 

  • Nordenskiold, H. 1951. Cyto-taxonomical studies in the genus Luzula I. Somatic chromosomes and chromosome numbers. Hereditas 37: 325–355.

    Google Scholar 

  • Nordenskiold, H. 1962. Studies of meiosis in Luzula purpurea. Hereditas 48: 503–519.

    Google Scholar 

  • Nordenskiold, H. 1963. A study of meiosis in the progeny of X-irradiated Luzula purpurea. Hereditas 49: 33–47.

    Google Scholar 

  • Obado, S.O., Bot, C., Nilsson, D., et al. 2007. Repetitive DNA is associated with centromeric domains in Trypanosoma brucei but not Trypanosoma cruzi. Genome Biol 8: R37.

    PubMed  Google Scholar 

  • Oegema, K., Desai, A., Rybina, S., et al. 2001. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153: 1209–1226.

    PubMed  CAS  Google Scholar 

  • Ogbadoyi, E., Ersfeld, K., Robinson, D., et al. 2000. Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108: 501–513.

    PubMed  CAS  Google Scholar 

  • Ogur, G., Van Assche, E., Vegetti, W., et al. 2006. Chromosomal segregation in spermatozoa of 14 Robertsonian translocation carriers. Mol Hum Reprod 12: 209–215.

    PubMed  CAS  Google Scholar 

  • Okamoto, Y., Nakano, M., Ohzeki, J., et al. 2007. A minimal CENP-A core is required for nucleation and maintenance of a functional human centromere. EMBO J 26: 1279–1291.

    PubMed  CAS  Google Scholar 

  • Orjalo, A.V., Arnaoutov, A., Shen, Z., et al. 2006. The Nup107–160 nucleoporin complex is required for correct bipolar spindle assembly. Mol Biol Cell 17: 3806–3818.

    PubMed  CAS  Google Scholar 

  • Palestis, B.G., Burt, A., Jones, R.N., et al. 2004. B chromosomes are more frequent in mammals with acrocentric karyotypes: support for the theory of centromeric drive. Proc Biol Sci 271(Suppl 3): S22–4.

    PubMed  Google Scholar 

  • Palmer, D.K., O'Day, K., Wener, M.H., et al. 1987. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104: 805–815.

    PubMed  CAS  Google Scholar 

  • Pardo-Manuel de Villena, F. and Sapienza, C. 2001a. Female meiosis drives karyotypic evolution in mammals. Genetics 159: 1179–1189.

    Google Scholar 

  • Pardo-Manuel de Villena, F. and Sapienza, C. 2001b. Nonrandom segregation during meiosis: the unfairness of females. Mamm. Genome 12: 331–339.

    Google Scholar 

  • Pardo-Manuel de Villena, F. and Sapienza, C. 2001c. Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Hum Genet 108: 31–36.

    Google Scholar 

  • Pidoux, A.L. and Allshire, R.C. 2004. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12: 521–34.

    PubMed  CAS  Google Scholar 

  • Pluta, A.F., Mackay, A.M., Ainsztein, A.M., et al. 1995. The centromere: hub of chromosomal activities. Science 270: 1591–1594.

    PubMed  CAS  Google Scholar 

  • Politi, V., Perini, G., Trazzi, S., et al. 2002. CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. J Cell Sci 115: 2317–2327.

    PubMed  CAS  Google Scholar 

  • Powers, J., Rose, D.J., Saunders, A., et al. 2004. Loss of KLP-19 polar ejection force causes misorientation and missegregation of holocentric chromosomes. J Cell Biol 166: 991–1001.

    PubMed  CAS  Google Scholar 

  • Presgraves, D.C. and Stephan, W. 2007. Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96. Mol Biol Evol 24: 306–314.

    PubMed  CAS  Google Scholar 

  • Rhoades, M.M. 1952. Preferential segregation in maize. In Heterosis, ed, J.W. Gowen, pp. 66–80. Ames. IA: Iowa State College Press.

    Google Scholar 

  • Rudd, M.K., Wray, G.A. and Willard, H.F. 2006. The evolutionary dynamics of alpha-satellite. Genome Res 16: 88–96.

    PubMed  CAS  Google Scholar 

  • Saffery, R., Sumer, H., Hassan, S., et al. 2003. Transcription within a functional human centromere. Mol Cell 12: 509–516.

    PubMed  CAS  Google Scholar 

  • Sansome, E. and Brasier, C.M. 1973. Diploidy and chromosomal structure in Phytophthora infestans. Nature 241: 344–345.

    Google Scholar 

  • Sanyal, K., Baum, M. and Carbon, J. 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci USA 101: 11374–11379.

    PubMed  CAS  Google Scholar 

  • Schittenhelm, R.B., Heeger, S., Althoff, F., et al. 2007. Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma 116: 385–402.

    PubMed  CAS  Google Scholar 

  • Schueler, M.G., Dunn, J.M., Bird, C.P., et al. 2005. Progressive proximal expansion of the primate X chromosome centromere. Proc Natl Acad Sci USA102: 10563–10568.

    PubMed  CAS  Google Scholar 

  • Schueler, M.G., Higgins, A.W., Rudd, M.K., et al. 2001. Genomic and genetic definition of a functional human centromere. Science 294: 109–115.

    PubMed  CAS  Google Scholar 

  • Schueler, M.G. and Sullivan, B.A. 2006. Structural and functional dynamics of human centromeric chromatin. Annu Rev Genomics Hum Genet 7: 301–13.

    PubMed  CAS  Google Scholar 

  • Schwartz, B.E. and Ahmad, K. 2005. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev. 19: 804–814.

    PubMed  CAS  Google Scholar 

  • Shelby, R.D., Vafa, O. and Sullivan, K.F. 1997. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol 136: 501–513.

    PubMed  CAS  Google Scholar 

  • Sheldon, B.C. 1999. Sex allocation: At the females' whim. Curr Biol 9: R487–9.

    PubMed  CAS  Google Scholar 

  • Shibata, F. and Murata, M. 2004. Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana. J Cell Sci 117: 2963–2970.

    PubMed  CAS  Google Scholar 

  • Skold, H.N., Komma, D.J. and Endow, S.A. 2005. Assembly pathway of the anastral Drosophila oocyte meiosis I spindle. J Cell Sci 118: 1745–1755.

    PubMed  Google Scholar 

  • Smith, G.P. 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191: 528–535.

    PubMed  CAS  Google Scholar 

  • Stear, J.H. and Roth, M.B. 2002. Characterization of HCP-6, a C. elegans protein required to prevent chromosome twisting and merotelic attachment. Genes Dev 16: 1498–1508.

    PubMed  CAS  Google Scholar 

  • Stoler, S., Rogers, K., Weitze, S., et al. 2007. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci USA. 104: 10571–10576.

    Google Scholar 

  • Sun, X., Le, H.D., Wahlstrom, J.M., et al. 2003. Sequence analysis of a functional Drosophila centromere. Genome Res 13: 182–194.

    PubMed  CAS  Google Scholar 

  • Surzycki, S.A. and Belknap, W.R. 2000. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proc Natl Acad Sci USA 97: 245–249.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Chen, E.S. and Yanagida, M. 2000. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288: 2215–2219.

    PubMed  CAS  Google Scholar 

  • Talbert, P.B., Bryson, T.D. and Henikoff, S. 2004. Adaptive evolution of centromere proteins in plants and animals. J Biol 3: 18.

    PubMed  Google Scholar 

  • Talbert, P.B., Masuelli, R., Tyagi, A.P., et al. 2002. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14: 1053–1066.

    PubMed  CAS  Google Scholar 

  • Tomkiel, J., Cooke, C.A., Saitoh, H., et al. 1994. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 125: 531–545.

    PubMed  CAS  Google Scholar 

  • Topp, C.N., Zhong, C.X. and Dawe, R.K. 2004. Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101: 15986–91.

    PubMed  CAS  Google Scholar 

  • Trazzi, S., Bernardoni, R., Diolaiti, D., et al. 2002. In vivo functional dissection of human inner kinetochore protein CENP-C. J Struct Biol 140: 39–48.

    PubMed  CAS  Google Scholar 

  • Underkoffler, L.A., Mitchell, L.E., Abdulali, Z.S., et al. 2005. Transmission ratio distortion in offspring of mouse heterozygous carriers of a (7.18) Robertsonian translocation. Genetics 169: 843–848.

    PubMed  Google Scholar 

  • Ventura, M., Antonacci, F., Cardone, M.F., et al. 2007. Evolutionary formation of new centromeres in macaque. Science 316: 243–246.

    PubMed  CAS  Google Scholar 

  • Ventura, M., Archidiacono, N. and Rocchi, M. 2001. Centromere emergence in evolution. Genome Res 11: 595–599.

    PubMed  CAS  Google Scholar 

  • Ventura, M., Mudge, J.M., Palumbo, V., et al. 2003. Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13: 2059–2068.

    PubMed  CAS  Google Scholar 

  • Ventura, M., Weigl, S., Carbone, L., et al. 2004. Recurrent sites for new centromere seeding. Genome Res 14: 1696–703.

    PubMed  CAS  Google Scholar 

  • Verlhac, M.H., Lefebvre, C., Guillaud, P., et al. 2000. Asymmetric division in mouse oocytes: with or without Mos. Curr Biol 10: 1303–1306.

    PubMed  CAS  Google Scholar 

  • Vermaak, D., Hayden, H.S. and Henikoff, S. 2002. Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22: 7553–61.

    PubMed  CAS  Google Scholar 

  • Villasante, A., Abad, J.P. and Mendez-Lago, M. 2007. Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc Natl Acad Sci USA 104: 10542–10547.

    PubMed  CAS  Google Scholar 

  • Warburton, P.E., Waye, J.S. and Willard, H.F. 1993. Nonrandom localization of recombination events in human alpha satellite repeat unit variants: implications for higher-order structural characteristics within centromeric heterochromatin. Mol Cell Biol 13: 6520–6529.

    PubMed  CAS  Google Scholar 

  • Westermann, S., Drubin, D.G. and Barnes, G. 2007. Structures and functions of yeast kinetochore complexes. Annu Rev Biochem 76: 563–591.

    PubMed  CAS  Google Scholar 

  • White, M.J.D. 1973. Animal Cytology and Evolution. 3rd edn. London: Cambridge Universtiy Press.

    Google Scholar 

  • Wickstead, B., Ersfeld, K. and Gull, K. 2004. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res 14: 1014–1024.

    PubMed  CAS  Google Scholar 

  • Willard, H.F. 1991. Evolution of alpha satellite. Curr Opin Genet Dev 1: 509–14.

    PubMed  CAS  Google Scholar 

  • Wollman, R., Cytrynbaum, E.N., Jones, J.T., et al. 2005. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr Biol 15: 828–832.

    PubMed  CAS  Google Scholar 

  • Wong, L.H., Brettingham-Moore, K.H., Chan, L., et al. 2007. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17: 1146–1160

    Google Scholar 

  • Yoda, K., Ando, S., Morishita, S., et al. 2000. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci USA 97: 7266–7271.

    PubMed  CAS  Google Scholar 

  • Yu, H.G., Hiatt, E.N., Chan, A., et al. 1997. Neocentromere-mediated chromosome movement in maize. J Cell Biol 139: 831–840.

    PubMed  CAS  Google Scholar 

  • Zhong, C.X., Marshall, J.B., Topp, C., et al. 2002. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14: 2825–36.

    PubMed  CAS  Google Scholar 

  • Zinkowski, R.P., Meyne, J. and Brinkley, B.R. 1991. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol 113: 1091–1110.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Talbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Talbert, P.B., Bayes, J.J., Henikoff, S. (2009). Evolution of Centromeres and Kinetochores: A Two-Part Fugue. In: De Wulf, P., Earnshaw, W. (eds) The Kinetochore:. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69076-6_7

Download citation

Publish with us

Policies and ethics