Skip to main content

Resolution in Electron Tomography

  • Chapter
Electron Tomography

Abstract

Traditionally, in computed tomography practiced in radiology, the resolution of the reconstruction is expressed in terms of the number of evenly spaced projections required for the faithful reconstruction of an object that has a given diameter (see equation (10) below).The tacit assumption is that projection data have a sufficient spectral signal-to-noise ratio (SSNR) in the whole frequency range in order to reproduce the object faithfully. In electron microscopy, the situation is dramatically different, as the electron dose limitations result in very low SSNR in the individual projections. The suppression of signal is particularly severe in high spatial frequencies, where the signal is affected by the envelope function of the microscope and the high amount of ambient noise, as well as in some low spatial frequency regions (due to the influence of the contrast transfer function (CTF) of the electron microscope). In single-particle reconstruction, a satisfactory level of the SSNR in the 3D reconstruction is achieved by including a large number of 2D projections (tens to hundreds of thousands) that are averaged during the reconstruction process. Except for rare cases (Boisset et al., 1998), the angular distribution of projections is not an issue, as the large number of molecules and the randomness of their orientations on the support grid all but guarantee uniform coverage of angular space. The concern is whether the number of projections per angular direction is sufficient to yield the desired SSNR or whether the angular distribution of projections is such that the oversampling of the 3D Fourier space achieved during the reconstruction process will yield the desired SSNR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boisset, N., Penczek, P. A., Taveau, J. C., You, V., Dehaas, F. and Lamy, J. (1998). Overabundant single-particle electron microscope views induce a three-dimensional reconstruction artifact. Ultramicroscopy 74:201–207.

    Article  CAS  Google Scholar 

  • Böttcher, B., Wynne, S.A. and Crowther, R.A. (1997). Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386:88–91.

    Article  PubMed  Google Scholar 

  • Bracewell, R. N. and Riddle, A. C. (1967). Inversion of fan-beam scans in radio astronomy. Astrophys. J. 150:427–434.

    Article  Google Scholar 

  • Carazo, J. M. (1992). The fidelity of 3D reconstruction from incomplete data and the use of restoration methods. In Electron Tomography (J. Frank, ed.). Plenum, New York, pp. 117–166.

    Google Scholar 

  • Carazo, J.M. and Carrascosa, J. L. (1986). Information recovery in missing angular data cases: an approach by the convex projections method in three dimensions. J. Microsc. 145:23–43.

    Google Scholar 

  • Carazo, J. M. and Carrascosa, J. L. (1987). Restoration of direct Fourier three-dimensional reconstructions of crystalline specimens by the method of convex projections. J. Microsc. 145:159–177.

    PubMed  CAS  Google Scholar 

  • Cardone, G., Grünewald, K. and Steven, A.C. (2005). A resolution criterion for electron tomography based on cross-validation. J. Struct. Biol. 151:117–129.

    Article  PubMed  Google Scholar 

  • Conway, J. F., Cheng, N., Zlotnick, A., Wingfield, P.T., Stahl, S. J. and Steven, A. C. (1997). Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386:91–94.

    Article  PubMed  CAS  Google Scholar 

  • Crowther, R. A., DeRosier, D. J. and Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. A 317:319–340.

    Article  Google Scholar 

  • Faridani, A. (2003). Introduction to the mathematics of computed tomography. In Inside Out: Inverse Problems and Applications, vol. 47 (G. Uhlmann, ed.). Cambridge University Press, Cambridge, pp. 1–46.

    Google Scholar 

  • Frank, J. (2006). Three-Dimensional Electron Microscopy of Macromolecular Assemblies. Oxford University Press, New York.

    Google Scholar 

  • Frank, J. and Al-Ali, L. (1975). Signal-to-noise ratio of electron micrographs obtained by cross correlation. Nature 256:376–379.

    Article  PubMed  CAS  Google Scholar 

  • Keinert, F. (1989). Inversion of k-plane transforms and applications in computer-tomography. SIAM Rev. 31:273–298.

    Article  Google Scholar 

  • Lanzavecchia, S., Cantele, F., Bellon, P., Zampighi, L., Kreman, M., Wright, E. and Zampighi, G. (2005). Conical tomography of freeze-fracture replicas: a method for the study of integral membrane proteins inserted in phospholipid bilayers. J. Struct. Biol. 149:87–98.

    Article  PubMed  CAS  Google Scholar 

  • Louis, A. K. (1984). Nonuniqueness in inverse Radon problems-the frequency-distribution of the ghosts. Math. Z. 185:429–440.

    Article  Google Scholar 

  • Maass, P. (1987). The X-ray transform—singular value decomposition and resolution. Inverse Probl. 3:729–741.

    Article  Google Scholar 

  • Natterer, F. (1986). The Mathematics of Computerized Tomography. John Wiley & Sons, New York.

    Google Scholar 

  • Natterer, F. and Ritman, E. L. (2002). Past and future directions in x-ray computed tomography (CT). Int. J. Imaging Syst. Technol. 12:175–187.

    Article  Google Scholar 

  • Natterer, F. and Wübbeling, F. (2001). Mathematical Methods in Image Reconstruction. SIAM, Philadelphia.

    Google Scholar 

  • Orlov, S. S. (1976). Theory of three-dimensional reconstruction 1. Conditions for a complete set of projections. Soviet Phys. Crystallogr. 20:312–314.

    Google Scholar 

  • Penczek, P. (1998). Measures of resolution using Fourier shell correlation. J. Mol. Biol. 280:115–116.

    Google Scholar 

  • Penczek, P., Marko, M., Buttle, K. and Frank, J. (1995). Double-tilt electron tomography. Ultramicroscopy 60:393–410.

    Article  PubMed  CAS  Google Scholar 

  • Penczek, P. A. (2002). Three-dimensional spectral signal-to-noise ratio for a class of reconstruction algorithms. J. Struct. Biol. 138:34–46.

    Article  PubMed  Google Scholar 

  • Penczek, P. A., Renka, R. and Schomberg, H. (2004). Gridding-based direct Fourier inversion of the three-dimensional ray transform. J. Opt. Soc. Am. A 21:499–509.

    Article  Google Scholar 

  • Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc. Tech. 9:359–394.

    Article  PubMed  CAS  Google Scholar 

  • Saxton, W.O. (1978). Computer Techniques for Image Processing of Electron Microscopy. Academic Press, New York.

    Google Scholar 

  • Saxton, W. O. and Baumeister, W. (1982). The correlation averaging of a regularly arranged bacterial envelope protein. J. Microsc. 127:127–138.

    PubMed  CAS  Google Scholar 

  • Saxton, W. O., Baumeister, W. and Hahn, M. (1984). Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Sezan, M. I. (1992). An overview of convex projections theory and its application to image recovery problems. Ultramicroscopy 40:55–67.

    Article  Google Scholar 

  • Sezan, M. I. and Stark, H. (1982). Image restoration by the method of convex projections. II. Applications and numerical results. IEEE Trans. Med. Imaging 1:95–101.

    PubMed  CAS  Google Scholar 

  • Stewart, A. and Grigorieff, N. (2004). Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102:67–84.

    Article  PubMed  CAS  Google Scholar 

  • Unser, M., Sorzano, C. O., Thevenaz, P., Jonic, S., El-Bez, C., De Carlo, S., Conway, J. F. and Trus, B. L. (2005). Spectral signal-to-noise ratio and resolution assessment of 3D reconstructions. J. Struct. Biol. 149:243–255.

    Article  PubMed  CAS  Google Scholar 

  • Unser, M., Trus, B. L. and Steven, A. C. (1987). A new resolution criterion based on spectral signal-to-noise ratios. Ultramicroscopy 23:39–51.

    Article  PubMed  CAS  Google Scholar 

  • Vainshtein, B. K. and Penczek, P. A. (2006). Three-dimensional reconstruction. In International Tables for Crystallography 3rd edn., vol. B Reciprocal Space (U. Shmueli, ed.).

    Google Scholar 

  • van Heel, M. (1987). Similarity measures between images. Ultramicroscopy 21:95–100.

    Article  Google Scholar 

  • Wade, R.H. (1992). A brief look at imaging and contrast transfer. Ultramicroscopy 46:145–156.

    Article  CAS  Google Scholar 

  • Youla, D. C. and Webb, H. (1982). Image restoration by the method of convex projections. 1. Theory. IEEE Trans. Med. Imaging 1:81–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Penczek, P.A., Frank, J. (2007). Resolution in Electron Tomography. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_11

Download citation

Publish with us

Policies and ethics