Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Federal Communications Commission, “Spectrum Policy Task Force,” Report ET Docket no. 02-135, Nov. 2002.

    Google Scholar 

  2. M. A. McHenry, “NSF spectrum occupancy measurements project summary,” Shared Spectrum Company Report, Aug. 2005.

    Google Scholar 

  3. Federal Communications Commission, ET Docket No. 03-322. Notice of Proposed Rule Making and Order, Dec. 2003.

    Google Scholar 

  4. C. Cordeiro, K. Challapali, D. Birru, and N. Sai Shankar, “IEEE 802.22: The first worldwide wireless standard based on cognitive radios,” in Proc. IEEE Symp. New Frontiers in Dynamic Spectrum Access Networks (Baltimore, USA), pp. 328–337, Nov. 8–11, 2005.

    Google Scholar 

  5. N. Devroye, P. Mitran, and V. Tarokh, “Limits on communications in a cognitive radio channel,” IEEE Commun. Mag., vol. 44, pp. 44–49, June 2006.

    Article  Google Scholar 

  6. J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios more personal,” IEEE Pers. Commun., vol. 6, pp. 13–18, Aug. 1999.

    Article  Google Scholar 

  7. D. Cabric, I. D. O’Donnell, M. S.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios,” IEEE Circuits Syst. Mag., vol. 6, no. 2, pp. 30–45, 2006.

    Article  Google Scholar 

  8. S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Select. Areas Commun., vol. 23, pp. 201–220, Feb. 2005.

    Article  Google Scholar 

  9. A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity – part I: System description,” IEEE Trans. Commun., vol. 51, pp. 1927–1938, Nov. 2003.

    Article  Google Scholar 

  10. D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” in Proc. Asilomar Conf. on Signals, Systems, and Computers, vol. 1, pp. 772–776, Nov. 7–10, 2004.

    Google Scholar 

  11. T. Weiss, J. Hillenbrand, and F. Jondral, “A diversity approach for the detection of idle spectral resources in spectrum pooling systems,” in Proc. 48th Int. Sci. Colloquium (Ilmenau, Germany), Sept. 2003.

    Google Scholar 

  12. P. K. Varshney and C. S. Burrus, Distributed detection and data fusion. New York: Springer, 1997.

    Google Scholar 

  13. A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits on cognitive radio,” in Proc. Allerton Conf. on Communications, Control, and Computing (Monticello), Oct. 2004.

    Google Scholar 

  14. N. Sai Shankar, C. Cordeiro, and K. Challapali, “Spectrum agile radios: Utilization and sensing architectures,” in Proc. IEEE Symp. New Frontiers in Dynamic Spectrum Access Networks (Baltimore, USA), pp. 160–169, Nov. 8–11, 2005.

    Google Scholar 

  15. W. A. Gardner and C. M. Spooner, “Signal interception: Performance advantages of cyclic-feature detectors,” IEEE Trans. Commun., vol. 40, pp. 149–159, Jan. 1992.

    Article  MATH  Google Scholar 

  16. Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum sensing for cognitive radios,” in Proc. Int. Conf. on Cognitive Radio Oriented Wireless Networks and Communications (Greece), June 8–10, 2006.

    Google Scholar 

  17. Y. Hur, J. Park, W. Woo, K. Lim, C.-H. Lee, H. S. Kim, and J. Laskar, “A wideband analog multi-resolution spectrum sensing (MRSS) technique for cognitive radio (CR) systems,” in Proc. IEEE Int. Symp. Circuit and System, pp. 4090–4093, May 21–24, 2006.

    Google Scholar 

  18. H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc. IEEE, vol. 55, pp. 523–531, Apr. 1967.

    Article  Google Scholar 

  19. J. Hillenbrand, T. Weiss, and F. K. Jondral, “Calculation of detection and false alarm probabilities in spectrum pooling systems,” IEEE Commun. Lett., vol. 9, pp. 349–351, Apr. 2005.

    Article  Google Scholar 

  20. V. I. Kostylev, “Energy detection of a signal with random amplitude,” in Proc. IEEE Int. Conf. Commun. (New York, NY), pp. 1606–1610, Apr. 28–May 2, 2002.

    Google Scholar 

  21. F. F. Digham, M.-S. Alouini, and M. K. Simon, “On the energy detection of unknown signals over fading channels,” in Proc. IEEE Int. Conf. Commun. (Anchorage, AK, USA), pp. 3575–3579, May 11–15, 2003.

    Google Scholar 

  22. A. Ghasemi and E. S. Sousa, “Collaborative spectrum sensing for opportunistic access in fading environments,” in Proc. IEEE Symp. New Frontiers in Dynamic Spectrum Access Networks (Baltimore, USA), pp. 131–136, Nov. 8–11, 2005.

    Google Scholar 

  23. E. Visotsky, S. Kuffner, and R. Peterson, “On collaborative detection of TV transmissions in support of dynamic spectrum sensing,” in Proc. IEEE Symp. New Frontiers in Dynamic Spectrum Access Networks (Baltimore, USA), pp. 338–345, Nov. 8–11, 2005.

    Google Scholar 

  24. S. M. Mishra, A. Sahai, and R. Brodersen, “Cooperative sensing among cognitive radios,” in Proc. IEEE Int. Conf. Commun. (Turkey), June 2006.

    Google Scholar 

  25. G. Ganesan and Y. G. Li, “Agility improvement through cooperation diversity in cognitive radio,” in Proc. IEEE Global Communications Conference (St Louis, Missouri, USA), vol. 5, pp. 2505–2509, Nov. 28–Dec. 2, 2005.

    Google Scholar 

  26. R. D. Murch and K. B. Letaief, “Antenna systems for broadband wireless access,” IEEE Commun. Mag., vol. 40, no. 4, pp. 76–83, Apr. 2002.

    Article  Google Scholar 

  27. S. M. Alamouti, “A simple transmit diversity technique for wireless communication,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451–1458, Oct. 1998.

    Article  Google Scholar 

  28. D. Huang, K. B. Letaief, and J. Lu, “A receive space diversity architecture for OFDM systems using orthogonal designs,” IEEE Trans. Wireless Commun., vol. 3, pp. 992–1002, May 2004.

    Google Scholar 

  29. J. Boutros, and E. Viterbo, “Signal space diversity: A power and bandwidth efficient diversity technique for the Rayleigh fading channel,” IEEE Trans. Inf. Theory, vol. 44, pp. 1453–1467, July 1998.

    Article  MATH  MathSciNet  Google Scholar 

  30. K. B. Letaief and Y. Zhang, “Dynamic multiuser resource allocation and adaptation for wireless systems,” IEEE Wireless Commun., vol. 13, no. 4, pp. 38–47, Aug. 2006.

    Article  Google Scholar 

  31. C. Sun, W. Zhang, and K. B. Letaief, “Cooperative spectrum sensing for cognitive radios under bandwidth constraints,” in Proc. IEEE Int. Wireless Commun. and Networking Conf. (Hong Kong), Mar. 11–15, 2007.

    Google Scholar 

Additional Reading

  1. I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput Netw, vol. 50, pp. 2127–2159, 2006.

    Article  MATH  Google Scholar 

  2. M. Ghozzi, M. Dohler, F. Marx, and J. Palicot, “Cognitive radio: Methods for the detection of free band,” CR Phys., Elsevier, vol. 7, pp. 794–804, Sept. 2006.

    Google Scholar 

  3. N. han, S. Shon, J. H. Chung, and J. M. Kim, “Spectral correlation based signal detection method for spectrum sensing in IEEE 802.22 WRAN systems,” in Proc. Int. Conf. Adv. Commun. Technol. (Phoenix Park, Korea), vol. 3, pp. 1765–1770, Feb. 20–22, 2006.

    Google Scholar 

  4. C. Sun, W. Zhang, and K. B. Letaief, “Cluster-based cooperative spectrum sensing for cognitive radio systems,” in Proc. IEEE Int. Conf. Commun. (Glasgow, Scotland, UK), June 24–28, 2007.

    Google Scholar 

  5. S. Bandyopadhyay and E. Coyle, “An energy-efficient hierarchical clustering algorithm for wireless sensor networks,” in Proc. IEEE INFOCOM (San Francisco, CA, USA), pp. 1713–1723, Apr. 2003.

    Google Scholar 

  6. O. Younis and S. Fahmy, “Distributed clustering in ad hoc sensor networks: A hybrid, energy-efficient approach,” in Proc. IEEE INFOCOM (Hong Kong, China), pp. 629–640, Mar. 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Letaief, K.B., Zhang, W. (2007). Cooperative Spectrum Sensing. In: Hossain, E., Bhargava, V. (eds) Cognitive Wireless Communication Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68832-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68832-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68830-5

  • Online ISBN: 978-0-387-68832-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics