Skip to main content

From Cells to (Silicon) Computers, and Back

  • Chapter
New Computational Paradigms

Although the whole history of computer science is marked by events related to and inspired from “computations” taking place in living cells and organisms (human being included), in the last decades, this became a mainstream research direction, with important and well-established areas, such as evolutionary computing and neural computing, and with exciting new areas, such as DNA and membrane (cellular) computing. All these have both consequences on the efficiency of using standard computers, hopefully leading also to new types of hardware, and—maybe more importantly—on the very understanding of the notion of computing and, at the edge of science towards science fiction. Topics of this kind will be touched in the paper, mainly in relation with DNA and membrane computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.M. Adleman: Molecular computation of solutions to combinatorial problems. Science, 226(Nov. 1994), 1021-1024.

    Article  Google Scholar 

  2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology of the Cell, 4th ed. Garland Science, New York, 2002.

    Google Scholar 

  3. A. Alhazov, M. Margenstern, V. Rogozhin, Y. Rogozhin, S. Verlan: Communicative P systems with minimal cooperation. In Membrane Computing. International Workshop WMC5, Milan, Italy, 2004. Revised Papers (G. Mauri, Gh. P ăun, M.J. Pérez-Jiménez, G. Rozenberg, C. Zandron, eds.), Lecture Notes in Computer Science, 3365, Springer, Berlin, 2005, 162-178.

    Google Scholar 

  4. J.A. Anderson: An Introduction to Neural Networks. The MIT Press, Cambridge, MA, 1996.

    Google Scholar 

  5. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro: Programmable and autonomous computing machine made of biomolecules. Nature, 414 (Nov. 2001), 430-434.

    Article  Google Scholar 

  6. Y. Benenson, E. Shapiro, B. Gill, U. Ben-Dor, R. Adar: Molecular computer. A ‘smart drug’ in a test tube. Proc. of Tenth DNA Computing Conference, Milano, 2004 (C. Ferretti, G. Mauri, C. Zandron, eds.), Univ. of Milano-Bicocca, 2004, 49 (abstract of invited talk).

    Google Scholar 

  7. D. Bray: Protein molecules as computational elements in living cells. Nature, 376 (July 1995),307-312.

    Article  Google Scholar 

  8. R. Brooks: The relationship between matter and life. Nature, 409 (Jan. 2001), 409-411.

    Article  Google Scholar 

  9. C. Calude, Gh. P ăun: Bio-steps beyond Turing. BioSystems, 77 (2004), 175-194.

    Article  Google Scholar 

  10. J. Mc Carthy: Problems and projection in CS for the next 49 years. Journal of the ACM, 50,1 (2003),73-79.

    Article  Google Scholar 

  11. J.L. Casti. Computing the uncomputable, The New Scientist, 154/2082, 17 (May 1997), 34.

    Google Scholar 

  12. S. Cook: The importance of the P versus NP question. Journal of the ACM, 50, 1 (2003),27-29.

    Article  MathSciNet  Google Scholar 

  13. G. Ciobanu, Gh. P ăun, M.J. Pérez-Jiménez, eds.: Applications of Membrane Computing.Springer, Berlin, 2006.

    Google Scholar 

  14. M. Conrad: The price of programmability. In The Universal Turing Machine: A Half-Century Survey (R. Herken, ed.), Kammerer and Unverzagt, Hamburg, 1988, 285-307.

    Google Scholar 

  15. B.J. Copeland: Hypercomputation. Minds and Machines, 12, 4 (2002), 461-502.

    Article  MATH  Google Scholar 

  16. B.J. Copeland, D. Proudfoot: Alan Turing’s forgotten ideas in computer science. Scientific American, 280 (April 1999), 77-81.

    Article  Google Scholar 

  17. E.W. Dijkstra: The end of computer science? Communications of the ACM, 44, 3 (2000), 92.

    Article  MathSciNet  Google Scholar 

  18. A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in Living Cells. Gene Assembly in Ciliates. Springer, Berlin, 2004.

    MATH  Google Scholar 

  19. A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing. Springer, Berlin, 2003.

    MATH  Google Scholar 

  20. G. Franco, C. Giabulli, C. Laudana, V. Manca: DNA extraction by cross pairing PCR. Proc. of Tenth DNA Computing Conference, Milano, 2004 (C. Ferretti, G. Mauri, C. Zan-dron, eds.), Univ. of Milano-Bicocca, 2004, 193-201.

    Google Scholar 

  21. R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Sci., 330, 2 (2005), 251-266.

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Gandy: Church’s thesis and principles for mechanisms. In The Kleene Symposium (J. Barwise , eds.), North-Holland, Amsterdam, 1980, 123-148.

    Chapter  Google Scholar 

  23. M.R. Garey, D.S. Johnson: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

    MATH  Google Scholar 

  24. M. Gross: Molecular computation. Chapter 2 of Non-Standard Computation (T. Gramss, S. Bornholdt, M. Gross, M. Mitchel, Th. Pellizzari, eds.), Wiley-VCH, Weinheim, 1998.

    Google Scholar 

  25. S.R. Hameroff, J.D. Dayhoff, R. Lahoz-Beltra, A.V. Samsonovich, S. Rasmussen: Models for molecular computation: Conformational automata in the cytoskeleton. Computer, 25 (Nov. 1992), 30-39.

    Article  Google Scholar 

  26. T. Head: Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors. Bulletin of Mathematical Biology, 49 (1987), 737-759.

    MATH  MathSciNet  Google Scholar 

  27. J. Hartmanis: About the nature of computer science. Bulletin of the EATCS, 53 (June 1994),170-190.

    MATH  Google Scholar 

  28. J. Hartmanis: On the weight of computation. Bulletin of the EATCS, 55 (Febr. 1995), 136-138.

    MATH  Google Scholar 

  29. J. Hoffmeyer: Surfaces inside surfaces. On the origin of agency and life. Cybernetics and Human Knowing, 5, 1 (1998), 33-42.

    Google Scholar 

  30. J. Hoffmeyer: Semiosis and living membranes. First Seminário Avançado de Comunicação e Semiótica. Biossemiótica e Semiótica Cognitiva, São Paolo, Brasil, 1998, 9-19.

    Google Scholar 

  31. J. Horáková, J. Kelemen: Cˇ apek, Turing, von Neumann, and the 20th century evolution of the concept of machine. In Proceedings of the International Conference in Memoriam John von Neumann, Budapest Polytechnic, 2003, 121-135.

    Google Scholar 

  32. J. Hromkovic: Communication Complexity and Parallel Computing. Springer, Berlin, 1997.

    MATH  Google Scholar 

  33. S. Ji: The cell as the smallest DNA-based molecular computer. BioSystems, 52 (1999), 123-133.

    Article  Google Scholar 

  34. S. Kauffman: At Home in the Universe. Oxford Univ. Press, New York, 1995.

    Google Scholar 

  35. J. Kelemen: Bodouci Altamira (The New Altamira). Votobia, Olomouc, 1996.

    Google Scholar 

  36. J. Kelemen: Kybergolem (Cybergolem). Votobia, Olomouc, 2001.

    Google Scholar 

  37. H. Kitano: Systems biology: A brief overview. Science, 295 (March 2002), 1662-1664.

    Article  Google Scholar 

  38. H. Kitano: Computational systems biology. Nature, 420 (Nov. 2002), 206-210.

    Article  Google Scholar 

  39. V. Kreinovich, L. Longprè: Fast quantum algorithms for handling probabilistic and interval uncertainty. Math. Logic Quart., 50 (2004), 405-416.

    Article  MATH  Google Scholar 

  40. W.R. Loewenstein: The Touchstone of Life. Molecular Information, Cell Communication, and the Foundations of Life. Oxford University Press, New York, Oxford, 1999.

    Google Scholar 

  41. S. Marcus: Bridging P systems and genomics: A preliminary approach. In Membrane Computing. International Workshop, WMC-CdeA 2002, Curtea de Arges, Romania, Re-vised Papers (Gh. P ăun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), Lecture Notes in Computer Science, 2597, Springer, Berlin, 2003, 371-376.

    Google Scholar 

  42. W. Mass: Networks of spiking neurons: The third generation of neural network models. Neural Networks, 10, 9 (1997), 1659-1671.

    Article  Google Scholar 

  43. M.D. Mesarovi ć : System theory and biology - view of a theoretician. In System Theory and Biology (M.D. Mesarovi ć , ed.), Springer, New York, 1968, 59-87.

    Google Scholar 

  44. T.Y. Nishida: An application of P system: A new algorithm for NP-complete optimization problems. In Proceedings of the 8th World Multi-Conference on Systems, Cybernetics and Informatics (N. Callaos et al, eds.), vol. V, 2004, 109-112.

    Google Scholar 

  45. T. Ord: Hypercomputation: Computing More Than the Turing Machine. Honours Thesis, Department of Computer Science, University of Melbourne, 2003.

    Google Scholar 

  46. C.H. Papadimitriou: Computational Complexity. Addison-Wesley, Reading, MA., 1994.

    MATH  Google Scholar 

  47. A. P ăun, Gh. P ăun: The power of communication: P systems with symport/antiport. New Generation Computing, 20, 3 (2002), 295-306.

    Article  Google Scholar 

  48. Gh. P ăun: On the splicing operation. Discrete Appl. Math., 70 (1996), 57-79

    Google Scholar 

  49. Gh. P ăun: Computing with membranes. Journal of Computer and System Sciences, 61, 1 (2000),108-143 (and Turku Center for Computer Science-TUCS Report 208, November 1998, www.tucs.fi).

  50. Gh. P ăun: Membrane Computing: An Introduction. Springer, Berlin, 2002.

    Google Scholar 

  51. Gh. P ăun, R. P ăun: Membrane computing and economics: Numerical P systems. Submitted, 2005 (available at [65]).

    Google Scholar 

  52. Gh. P ăun, G. Rozenberg, A. Salomaa: DNA Computing. New Computing Paradigms. Springer, Berlin, 1998.

    Google Scholar 

  53. R. Penrose: The Emperor’s New Mind. Concerning Computers, Minds, and the Laws of Physics. Oxford University Press, Oxford, 1989.

    Google Scholar 

  54. J.H. Reif, T.H. LaBean, S. Sahu, H. Yan, P. Yin: Design, simulation, and experimental demonstration of self-assembled DNA nanostructures and motors. Proceedings of the Workshop on Unconventional Programming Paradigms, UPP04, Le Mont Saint-Michel, September 2004, Springer, Berlin, 2005.

    Google Scholar 

  55. G. Rozenberg, A. Salomaa: Watson-Crick complementarity, universal computations, and genetic engineering. Techn. Report 96-28, Department of Computer Science, Leiden Univ., Oct. 1996.

    Google Scholar 

  56. P. Sosik: The computational power of cell division in P systems: Beating down parallel computers? Natural Computing, 2, 3 (2003), 287-298.

    Article  MATH  MathSciNet  Google Scholar 

  57. C. Teuscher, ed.: Alan Turing. Life and Legacy of a Great Thinker. Springer, Berlin, 2003.

    Google Scholar 

  58. C. Teuscher, E. Sanchez: A revival of Turing’s forgotten connectionist ideas: exploring unorganized machines. Proc. Connectionist Models of Learning, Development and Evo-lution, Liege, Belgium, 2000 (R.M. French, J.J. Sougne, eds.), Springer-Verlag, London, 2001,153-162.

    Google Scholar 

  59. F. Tipler: The Physics of Immortality. Doubleday, New York, 1994.

    Google Scholar 

  60. T. Toffoli: Nothing makes sense in computing except in the light of evolution. Int. J. of Unconventional Computing, 1 (2005), 3-29.

    Google Scholar 

  61. M. Tomita: Whole-cell simulation: A grand challenge of the 21st century. Trends in Biotechnology, 19 (2001), 205-210.

    Article  Google Scholar 

  62. A.M. Turing: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Ser. 2, 42 (1936), 230-265; a correc tion, 43 (1936), 544-546.

    Google Scholar 

  63. V. Vinge: Technological singularity. VISION-21 Symposium, March 1993 (available at http://www.frc.ri.cmu.edu/ hpm/book98/com.chl/vinge.singularity.html.

  64. O. Wolkenhauer: Systems biology: The reincarnation of systems theory applied in biol ogy? Briefings in Bioinformatics, 2, 3 (2001), 258-270.

    Article  Google Scholar 

  65. The Web Page of Membrane Computing: http://psystems.disco.unimib.it

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Păun, G. (2008). From Cells to (Silicon) Computers, and Back. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) New Computational Paradigms. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68546-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68546-5_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-36033-1

  • Online ISBN: 978-0-387-68546-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics