Skip to main content

Simulating Bacterial Biofilms

  • Chapter
Deformable Models

Biofilms are the most ubiquitous form of life on the planet. More than 90% of bacteria live in biofilms, which are aggregates of cells attached to both biotic and abiotic surfaces [6, 13]. Biofilms are responsible for nitrogen loss from agricultural fertilizers, and they deplete oxygen in streams, cause disease in humans and plants, and foul pipes, heat exchangers, and ship hulls. Biofilms are responsible for a number of human diseases, including cystic fibrosis and Legionnaire’s disease, and are a potential source of nosocomial infections. According to The Biofilm Institute, biofilms cost U.S. industry billions of dollars annually in equipment and product damage, energy losses, and human infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adalsteinsson D, Sethian JA. 1999. The fast construction of extension velocities in level set methods. J Comput Phys 48(1):2-22.

    Article  MathSciNet  Google Scholar 

  2. Bakke R, Characklis WG, Turakhia MH, Yeh A. 1990. Modeling a monopopulation biofilm system: pseudomonas aeruginosa. In Biofilms. New York: John Wiley & Sons.

    Google Scholar 

  3. Belytschko T, Black T. 1999. Elastic crack growth in finite element with minimal remeshing. Int J Num Meth Eng 45:601-620.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bramble J, King J. 1996. A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv Comput Math 6:109-138.

    Article  MathSciNet  Google Scholar 

  5. Chang I, Gilber ES, Eliashberg N, Keasling JD. 2003. A three-dimensional, stochastic sim-ulation of biofilm growth and transport-related factors that affect structure. Microbiol-SGM 149 (10):2859-2871.

    Article  Google Scholar 

  6. Characklis WG, Marshall KC. 1990. Biofilms. New York: John Wiley & Sons.

    Google Scholar 

  7. Chen Z, Zou J. 1998. Finite element methods and their convergence for elliptic and parabolic interface problems. J Num Math 79:175-202.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chopp DL. 2001. Some improvements of the fast marching method. SIAM J Sci Comp 23(1):230-244.

    Article  MATH  MathSciNet  Google Scholar 

  9. Chopp DL, Kirisits MJ, Moran B, Parsek M. 2002. A mathematical model of quorum sensing in a growing P. aeruginosa biofilm. J Ind Microbiol Biotechnol 29(6):339-346.

    Article  Google Scholar 

  10. Chopp DL, Kirisits MJ, Parsek MR, Moran B. 2003. The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol. To appear.

    Google Scholar 

  11. Chopp DL, Sukumar N. 2003. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41:845-869, 2003.

    Article  MathSciNet  Google Scholar 

  12. Chopp DL, Sukumar N. 2003. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41(8):845-869.

    Article  MathSciNet  Google Scholar 

  13. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711-745.

    Article  Google Scholar 

  14. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284:1318-1322.

    Article  Google Scholar 

  15. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The in-volvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295-298.

    Article  Google Scholar 

  16. De Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH. 2001. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865-1873.

    Article  Google Scholar 

  17. Dockery J, Klapper I. 2001. Finger formation in biofilm layers. SIAM J Appl Math 62(3):853-869.

    MATH  MathSciNet  Google Scholar 

  18. Dolbow JE, Moës N, Belytschko T. 2000. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem Anal Des 36:235-260.

    Article  MATH  Google Scholar 

  19. Dolbow JE, Moës N, Belytschko T. 2001. An extended finite element method for modeling crack growth with frictional contact. Comput Meth Appl Mech Eng 190:6825-6846.

    Article  MATH  Google Scholar 

  20. Eberl HJ, Parker DF, van Loosdrecht MCM. 2001. A new deterministic spatiotemporal continuum model for biofilm development. J Theor Med 3:161-175.

    MATH  Google Scholar 

  21. Eberl HJ, Picioreanu C, Heijnen JJ, van Loosdrecht MCM. 2000. A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms. Chem Eng Sci 55:6209-6222.

    Article  Google Scholar 

  22. Chessa J, et. al. 2002. The extended finite element method (xfem) for solidification problems. Int J Num Meth Eng 53:1959-1977.

    Article  MATH  MathSciNet  Google Scholar 

  23. Fuqua C, Greenberg EP. 1995. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr Opin Microbiol 118(2):269-277.

    Google Scholar 

  24. Fuqua C, Parsek MR, Greenberg EP. 2001. Regulation of gene expression by cell-to-cell com- munication: acyl-homoserine lactone quorum sensing. Ann Rev Genet 35:439-468.

    Article  Google Scholar 

  25. Gaul L, Kögl M, Wagner M. 2003. Boundary element methods for engineers and scientists. New York: Springer.

    MATH  Google Scholar 

  26. Gravouil A, Moës N, Belytschko T. 2002. Non-planar 3d crack growth by the extended finite element and the level sets, II: level set update. Int J Num Meth Eng 53(11):2569-2586.

    Article  Google Scholar 

  27. Hermanowicz SW. 1999. Two-dimensional simulations of biofilm development: effect of external environmental conditions. Water Sci Technol 39(7): 107-114.

    Article  Google Scholar 

  28. Hermanowicz SW. 2001. A simple 2D biofilm model yields a variety of morphological features. Math Biosci 169:1-14.

    Article  MATH  MathSciNet  Google Scholar 

  29. Indekeu JO, Giuraniuc CV. 2004. Cellular automaton for bacterial towers. Phys A 336(1-2):14-26.

    Article  MathSciNet  Google Scholar 

  30. Ji H, Chopp D, Dolbow JE. 2002. A hybrid extended finite element/level set method for modeling phase transformations. Int J Num Meth Eng 54:1209-1233.

    Article  MATH  MathSciNet  Google Scholar 

  31. Ji H, Chopp D, Dolbow JE. 2002. A hybrid extended finite element/level set method for modeling phase transformations. Int J Num Meth Eng 54(8):1209-1233.

    Article  MATH  MathSciNet  Google Scholar 

  32. Kreft JU, Booth G, Wimpenny JWT. 1998. BacSim, a simulator for individual-based modeling of bacterial colony growth. Microbiology 144:3275-3287.

    Article  Google Scholar 

  33. Kreft JU, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM. 2001. Individual-based modeling of biofilms. Microbiology-SGM 147:2897-2912.

    Google Scholar 

  34. Laspidou CS, Rittmann BE. 2002. Non-steady state modeling of extracellular polymeric sub-stances, soluble microbial products, and active and inert biomass. Water Res 36:1983-1992.

    Article  Google Scholar 

  35. Laspidou CS, Rittmann BE. 2002. Non-steady state modeling of microbial products and active and inert biomass. Water Res 36:1983-1992.

    Article  Google Scholar 

  36. LeVeque R, Li Z. 1994. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J Num Anal 31:1019-1044.

    Article  MATH  MathSciNet  Google Scholar 

  37. Li Z. 2003. An overview of the immersed interface method and its applications. Taiwan J Math 7:1-49.

    MATH  Google Scholar 

  38. Lide DR, ed. 1990. CRC handbook of chemistry and physics. Boca Raton, FL: CRC Press.

    Google Scholar 

  39. Mobarry BK, Wagner M, UrbainV, Rittmann BE, Stahl DA. 1996. Phylogenetic probes for analyz- ing abundance and spatial organization of nitrifying bacteria. Appl Environ Microb 62(6):2156-2162.

    Google Scholar 

  40. Moës N, Dolbow J, Belytschko T. 1999. A finite element method for crack growth without remeshing. Int J Num Meth Eng 46(1):131-150.

    Article  MATH  Google Scholar 

  41. Moës N, Gravouil A, Belytschko T. 2002. Non-planar 3d crack growth by the extended finite element and the level sets, I: mechanical model. Int J Num Meth Eng 53(11):2549-2568.

    Article  MATH  Google Scholar 

  42. Osher S, Sethian JS. 1988. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79:12-49.

    Article  MATH  MathSciNet  Google Scholar 

  43. Parsek MR. Unpublished data.

    Google Scholar 

  44. Pesci EC, Iglewski BH. 1997. The chain of command in Pseudomonas quorum sensing. Trends Microbiol 5(4):132-135.

    Article  Google Scholar 

  45. Pesci EC, Pearson JP, Seed PC, Iglewski BH. 1997. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179(10):3127-3132.

    Google Scholar 

  46. Peskin CS. 1977. Numerical analysis of blood flow in the heart. J Comput Phys 25:220-252.

    Article  MATH  MathSciNet  Google Scholar 

  47. Peskin CS. 1981. Lecures on mathematical aspects of physiology. Lectures Appl Math 19:69-107.

    MathSciNet  Google Scholar 

  48. Picioreanu C, van Loosdrecht MCM, Heijnen JJ. 1998. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58(1):101-116.

    Article  Google Scholar 

  49. Picioreanu C, van Loosdrecht MCM, Heijnen JJ. 1999. Discrete-differential modeling of biofilm structure. Water Sci Technol 39(7):115-122.

    Article  Google Scholar 

  50. Picioreanu C, van Loosdrecht MCM, Heijnen JJ. 2000. A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng 68(4):355-369.

    Article  Google Scholar 

  51. Piper KR, Beck von Bodman S, Farrand SK. 1993. Conjugation factor of Agrobacterium tume-faciens regulates Ti plasmid transfer by autoinduction. Nature 362:448-450.

    Article  Google Scholar 

  52. Pizarro G, Griffeath D, Noguera DR. 2001. Quantitative cellular automaton model for biofilms. J Environ Eng 127(9):782-789.

    Article  Google Scholar 

  53. Rittmann BE. 2002. Personal communication.

    Google Scholar 

  54. Rittmann BE, McCarty P. 2001. Environmental Biotechnology. New York: McGraw Hill.

    Google Scholar 

  55. Rosenfeld M, Ramsey B. 1992. Evolution of airway microbiology in the infant with cystic fibrosis: role of nonpseudomonal and pseudomonal pathogens. Semin Respir Infect 7:158-167.

    Google Scholar 

  56. SchaeferAL, Hanzelka BL, Parsek MR, Greenberg EP. 2000. Detection, purification and structural elucidation of acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Meth Enzymol 305:288-301.

    Article  Google Scholar 

  57. Sethian JA. 1996. A marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 93(4):1591-1595.

    Article  MATH  MathSciNet  Google Scholar 

  58. Sethia JA. 1999. Fast marching methods. SIAM Rev 41(2):199-235.

    Article  MathSciNet  Google Scholar 

  59. Stewart PS. 2003. Diffusion in biofilms. J Bacteriol 185(5):1485-1491.

    Article  Google Scholar 

  60. Stewart PS, Costerton JW. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135-138.

    Article  Google Scholar 

  61. Stolarska M, Chopp DL. 2003. Modeling spiral cracking due to thermal cycling in integrated circuits. Int J Eng Sci 41(20):2381-2410.

    Article  Google Scholar 

  62. Stolarska M, Chopp DL, Möes N, Belytschko T. 2001. Modelling crack growth by level sets in the extended finite element method. Int J Num Meth Eng 51:943-960.

    Article  MATH  Google Scholar 

  63. Stolarska M, Chopp DL, Moës N, Belytschko T. 2001. Modelling crack growth by level sets in the extended finite element method. Int J Num Meth Eng 51(8):943-960.

    Article  MATH  Google Scholar 

  64. Sukumar N, Chopp DL, Moës N, Belytschko T. 2001. Modeling holes and inclusions by level sets in the extended finite element method. Comput Meth Appl Mech Eng 90(46-47):6183-6200.

    Article  Google Scholar 

  65. Sukumar N, Chopp DL, Moran B. 2003. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fracture Mech 70:29-48.

    Article  Google Scholar 

  66. Sukumar N, Chopp DL, Moran B. 2003. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng Fracture Mech 70(1):29-48.

    Article  Google Scholar 

  67. Szomolay B, Klapper I, Dockery J, Stewart PS. 2005. Adaptive response to antimicrobial agents in biofilms. Environ Microbiol 7(8):1186-1191.

    Article  Google Scholar 

  68. van Loosdrecht MCM, Heijnen JJ, Eberl HJ, Kreft JU, Picioreanu C. 2002. Mathematical mod-eling of biofilm structures. Antonie van Leeuwenhoek 81:245-256.

    Article  Google Scholar 

  69. Vaughan BL, Smith BG, Chopp DL. 2005. A comparison of the extended finite element method and the immersed interface method for elliptic equations with discontinuous coefficients and singular sources. Preprint available at http://www.esam.northwestern.edu/chopp.

  70. Wagner GJ, Moës, N, Liu WK, Belytschko T. 2001. The extended finite element method for rigid particles in Stokes flow. Int J Num Meth Eng 51:293-313.

    Article  MATH  Google Scholar 

  71. Wanner O, Gujer W. 1986. A multispecies biofilm model. Biotechnol Bioeng 28:314-328.

    Article  Google Scholar 

  72. Williamson KJ, McCarty PL. 1976.Verification studies of the biofilm model for bacterial substrate utilization. J Water Pol Control Fed 48:281-289.

    Google Scholar 

  73. Wimpenny JWT, Colasanti R. 1997. A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22(1):1-16.

    Article  Google Scholar 

  74. Xavier JB, Picioreanu C, van Loosdrecht MCM. 2004. Assessment of three-dimensional biofilm models through direct comparison with confocal microscopy imaging. Water Sci Technol 49(11-12):177-185.

    Google Scholar 

  75. Zik O, Moses E. 1999. Fingering instability in combustion: an extended view. Phys. Rev. E 60(1):518-530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chopp, D.L. (2007). Simulating Bacterial Biofilms. In: Deformable Models. Topics in Biomedical Engineering. International Book Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68413-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68413-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-31201-9

  • Online ISBN: 978-0-387-68413-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics