Skip to main content

High-Resolution and Microscopic Imaging at High Field

  • Chapter
Ultra High Field Magnetic Resonance Imaging

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 26))

Abstract

The goal of improved spatial resolution in magnetic resonance imaging for better visualization of finer and finer structural details in the body is driven by a long tradition of microscopy in conventional anatomy. Centuries of anatomical studies have underscored the success with which the study of function and dysfunction can be complemented by the study of normal and pathological structure. Since relevant structures in the body span spatial scales from meters to the subcellular level, imaging technology has been pushed toward increasing resolution. Although there are solid motivations for imaging biological samples and small animal models with MR, a principal attraction of MR technology is the potential that advances in methodology can ultimately be adapted for use in living humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Ciobanu L, Webb AG, Pennington CH. 2003. Magnetic resonance imaging of biological cells. J Prog NMR Spectrosc 42:69–93.

    Article  CAS  Google Scholar 

  2. Ahrens ET, Narasimhan PT, Nakada T, Jacobs RE. 2002. Small animal neuroimaging using magnetic resonance microscopy. Prog NMR Spectrosc 40:275–306.

    Article  CAS  Google Scholar 

  3. Webb AG. 1997. Radiofreqency microcoils in magnetic resonance. Prog NMR Spectrosc 31:1–42.

    Article  CAS  Google Scholar 

  4. Gati JS, Menon RS, Ugurbil K, Rutt BK. 1997. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38(2):296–302.

    Article  PubMed  CAS  Google Scholar 

  5. Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim SG, Menon R, Merkle H, Ogawa S. 1993. Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 9(4):259–277.

    PubMed  CAS  Google Scholar 

  6. Robitaille PML, Abduljalil AM, Kangarlu A. 2000. Ultra high resolution imaging of the human head at 8 tesla: 2K × 2K for Y2K. J Comput Assist Tomogr 24(1):2–8.

    Article  PubMed  CAS  Google Scholar 

  7. Robitaille PML, Abduljalil AM, Kangarlu A, Zhang X, Yu Y, Burgess R, Bair S, Noa P, Yang L, Zhu H, Palmer B, Jiang Z, Chakeres DM, Spigos D. 1998. Human magnetic resonance imaging at 8 T. NMR Biomed 11(6):263–265.

    Article  PubMed  CAS  Google Scholar 

  8. Vaughan JT, Garwood M, Collins CM, Liu W, DelaBarre L, Adriany G, Andersen P, Merkle H, Goebel R, Smith MB, Ugurbil K. 2001. 7T vs. 4T: RF power, homo geneity, and signal-to-noise comparison in head images. Magn Reson Med 46(1):24–30.

    Article  PubMed  CAS  Google Scholar 

  9. Hoult DI, Lauterbur PC. 1979. The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34:425.

    CAS  Google Scholar 

  10. Carlson JW. 1989. Power deposition and noise correlation in NMR samples. Magn Reson Med 10(3):399–403.

    Article  PubMed  CAS  Google Scholar 

  11. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. 1990. The NMR phased array. Magn Reson Med 16(2):192–225.

    Article  PubMed  CAS  Google Scholar 

  12. Hayes CE, Hattes N, Roemer PB. 1991. Volume imaging with MR phased arrays. Magn Reson Med 18(2):309–19.

    Article  PubMed  CAS  Google Scholar 

  13. Wald LL, Carvajal L, Moyher SE, Nelson SJ, Grant PE, Barkovich AJ, Vigneron DB. 1995. Phased array detectors and an automated intensity-correction algorithm for high-resolution MR imaging of the human brain. Magn Reson Med 34(3):433–439.

    Article  PubMed  CAS  Google Scholar 

  14. Ledden PJ, Zwart J, Gelderen P, Bodurka J, Duyn J. 2003. Sixteen channel gapped SENSE array for brain imaging at 3T. Proc Int Soc Magn Reson Med 466.

    Google Scholar 

  15. Zhu Y, Hardy C, Giaquinto R, Rohling K, Dumoulin C, Sodickson DK, Ohliger M, Darrow R, Kenwood G. 2003. Highly parallel volumetric imaging with accelerated spatial encoding along two dimensions. Proc Int Soc Magn Reson Med 22.

    Google Scholar 

  16. Wright SM, McDougall M, Brown D. 2003. Single echo acquisition (SEA) MR imaging. Proc Int Soc Magn Reson Med 23.

    Google Scholar 

  17. Hayes CE, Axel L. 1985. Noise performance of surface coils for magnetic resonance imaging at 1.5 T Med Phys. 12(5):604–607.

    Article  CAS  Google Scholar 

  18. Lawry TJ, Weiner MW, Matson GB. 1990. Computer modeling of surface coil sensitivity. Magn Reson Med 16(2):294–302.

    Article  PubMed  CAS  Google Scholar 

  19. Wright SM, Wald LL. 1997. Theory and application of array coils in MR spectroscopy. NMR Biomed 10(8):394–410.

    Article  PubMed  CAS  Google Scholar 

  20. Brodemann K. 1909. Vergleichende Localisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellebaus. Leipzig: Barth.

    Google Scholar 

  21. Vogt C, Vogt O. 1919. Allegemeinere ergbnisse unserer Hirnforschung. J Pyschol Neurol 25:399–462.

    Google Scholar 

  22. Annese J, Pitiot A, Dinov ID, Toga AW. 2004. A myelo-architectonic method for the structural classification of cortical areas. Neuroimage 21(1):15–26.

    Article  PubMed  CAS  Google Scholar 

  23. Logothetis N, Merkle H, Augath M, Trinath T, Ugurbil K. 2002. Ultra highresolution fMRI in monkeys with implanted RF coils. Neuron 35(2):227–242.

    Article  PubMed  CAS  Google Scholar 

  24. Barbier EL, Marrett S, Danek A, Vortmeyer A, van Gelderen P, Duyn J, Bandettini P, Grafman J, Koretsky AP. 2002. Imaging cortical anatomy by high-resolution MR at 3.0T: detection of the stripe of Gennari in visual area 17. Magn Reson Med 48(4):735–738.

    Article  PubMed  Google Scholar 

  25. Clark VP, Courchesne E, Grafe M. 1992. In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb Cortex 2(5):417–424.

    Article  PubMed  CAS  Google Scholar 

  26. Bridge H, Clare S, Jenkinson M, Jezzard P, Parker AJ, Mathews PM. 2005. Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. J Vision 5:93–102.

    Article  Google Scholar 

  27. Yoshiura T, Higano A, Rubio A, Shrier DA, Kwok WE, Iwanaga S, Numaguchi Y. 2000. Heschl and superior temporal gyri: low signal intensity of the cortex on T 2-weighted MR images of the normal brain. Radiology 214(1):217–221.

    PubMed  CAS  Google Scholar 

  28. Grant PE, Barkovich AJ, Wald LL, Dillon WP, Laxer KD, Vigneron DB. 1997. High-resolution surface-coil MR of cortical lesions in medically refractory epilepsy: a prospective study. Am J Neuroradiol 18(2):291–301.

    PubMed  CAS  Google Scholar 

  29. Grant PE, Vigneron DB, Barkovich AJ. 1998. High-resolution imaging of the brain. Magn Reson Imag Clin N Am 6:139–154.

    CAS  Google Scholar 

  30. Johnson GA, Cofer GP, Gewalt SL, Hedlund LW. 2002. Morphologic phenotyping with MR microscopy: the visible mouse. Radiology 222:789–793.

    Article  PubMed  Google Scholar 

  31. Johnson GA, Thompson MB, Drayer BP, Bone SN. 1986. Magnetic resonance microscopy in neurologic models. Acta Radiol Suppl 369:267–268.

    PubMed  CAS  Google Scholar 

  32. Eccles CD, Callaghan PT. 1986. High resolution imaging: the NMR microscope. J Magn Reson Imag 68:393–398.

    CAS  Google Scholar 

  33. Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qu M, Dabringhaus A, Seitz R, Roland PE. 1995. Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor: MRI and PET data. J Anat 187:515–537.

    PubMed  CAS  Google Scholar 

  34. Zhou X, Magin RL, Alameda JC, Reynolds HA, Lauterbur PC. 1993. Threedimensional NMR microscopy of rat spleen and liver. Magn Reson Med 30(1):92–97.

    Article  PubMed  CAS  Google Scholar 

  35. Van der Linden A, Verhoye M, Van Auderkerke J, Peeters R, Eens M, Newman SW, Smulders T, Balthazart J, DeVoogd TJ. 1998. Non invasive in vivo anatomical studies of the oscine brain by high resolution MRI microscopy. J Neurosci Methods 81(1-2):45–52.

    Article  PubMed  Google Scholar 

  36. Fatterpekar GM, Naidich TP, Delman BN, Aguinaldo JG, Gultekin SH, Sherwood CC, Hof PR, Drayer BP, Fayad ZA. 2002. Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. Am J Neuroradiol 23(8):1313–1321.

    PubMed  Google Scholar 

  37. Huesgen CT, Burger PC, Crain BJ, Johnson GA. 1993. In vitro MR microscopy of the hippocampus in Alzheimer’s disease. Neurology 43(1):145–152.

    PubMed  CAS  Google Scholar 

  38. Augustinack JC, van der Kouwe AJW, Blackwell ML, Salat DH, Wiggins CJ, Frosch MP, Wiggins GC, Potthast A, Wald LL, Fischl BR. 2005. Detection of entorhinal layer, II: using 7 Tesla magnetic resonance imaging. Ann Neurol 57(4):489–494.

    Article  PubMed  Google Scholar 

  39. Tovi M, Ericsson A. 1992. Measurements of T 1 and T 2 over time in formalin-fixed human whole-brain specimens. Acta Radiol 33(5):400–404.

    Article  PubMed  CAS  Google Scholar 

  40. Blackwell ML, Rosen BR, Farrar CT, Augustinack JC, van der Kouwe AJW, Salat DH, Wald LL, Fischl B. 2005. Optimization of extrinsic proton staining methods for ex vivo cytological magnetic resonance imaging. Proc Int Soc Magn Reson Med. In press.

    Google Scholar 

  41. Terry RD, Katzman R. 1983. Senile dementia of the Alzheimer type. Ann Neurol 14(5):497–506.

    Article  PubMed  CAS  Google Scholar 

  42. Perry G, Selkoe DJ, Block BR, Stewart D, Autilio-Gambetti L, Gambetti P. 1986. Electron microscopic localization of Alzheimer neurofibrillary tangle components recognized by an antiserum to paired helical filaments. J Neuropathol Exp Neurol 45(2):161–168.

    Article  PubMed  CAS  Google Scholar 

  43. Rogers J, Morrison JH. 1985. Quantitative morphology and regional and laminar distributions of senile plaques in Alzheimer’s disease. J Neurosci 5(10):2801–2808.

    PubMed  CAS  Google Scholar 

  44. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. 1991. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1(1):103–116.

    Article  PubMed  CAS  Google Scholar 

  45. Hyman BT. 1997. The neuropathological diagnosis of Alzheimer’s disease: clinical-pathological studies. Neurobiol Aging 18(4 Suppl):S27–32.

    Article  PubMed  CAS  Google Scholar 

  46. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT. 1992. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639.

    PubMed  CAS  Google Scholar 

  47. Gomez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT. 1996. Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16(14):4491–4500.

    PubMed  CAS  Google Scholar 

  48. Braak H, Braak E. 1991. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259.

    Article  PubMed  CAS  Google Scholar 

  49. Giannakopoulos P, Hof PR, Michel JP, Guimon J, Bouras C. 1997. Cerebral cortex pathology in aging and Alzheimer’s disease: a quantitative survey of large hospitalbased geriatric and psychiatric cohorts. Brain Res Brain Res Rev 25(2):217–245.

    Article  PubMed  CAS  Google Scholar 

  50. Katzman R, Terry R., DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A. 1988. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23(2):138–144.

    Article  PubMed  CAS  Google Scholar 

  51. Berg L, McKeel DW, Miller JP, Storandt M, Rubin EH, Morris JC, Baty J, Coats M, Norton J, Goate AM, Price JL, Gearing M, Mirra SS, Saunders AM. 1998. Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol 55(3):326–335.

    Article  PubMed  CAS  Google Scholar 

  52. Braak H, Braak E. 1997. Staging of Alzheimer-related cortical destruction. Int Psychogeriatr 9(Suppl 1):257–261 and 269–272.

    Article  PubMed  Google Scholar 

  53. Ball MJ. 1977. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia: a quantitative study. Acta Neuropathol (Berlin) 37(2):111–118.

    Article  CAS  Google Scholar 

  54. Terry RD, Peck A, DeTeresa R, Schechter R, Horoupian DS. 1981. Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10(2):184–192.

    Article  PubMed  CAS  Google Scholar 

  55. Mountjoy CQ, Roth M, Evans NJ, Evans HM. 1983. Cortical neuronal counts in normal elderly controls and demented patients. Neurobiol Aging 4(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  56. Grundke-Iqbal I, Fleming J, Tung YC, Lassmann H, Iqbal K, Joshi JG. 1990. Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol (Berlin) 81(2):105–110.

    Article  CAS  Google Scholar 

  57. Budinger TF. 1994. Future research in Alzheimer’s disease using imaging techniques. Neurobiol Aging 15(Suppl 2):S41–48.

    Article  PubMed  Google Scholar 

  58. Poduslo JF, Wengenack TM, Curran GL, Wisniewski T, Sigurdsson EM, Macura SI, Borowski BJ, Jack CR. 2002. Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced magnetic resonance imaging. Neurobiol Dis 11(2):315–329.

    Article  PubMed  CAS  Google Scholar 

  59. Wadghiri YZ, Sigurdsson EM, Sadowski M, Elliott JI, Li Y, Scholtzova H, Tang CY, Aguinaldo G, Pappolla M, Duff K, Wisniewski T, Turnbull DH. 2003. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50(2):293–302.

    Article  PubMed  CAS  Google Scholar 

  60. Higuchi M, Iwata N, Matsuba Y, Sato K, Sasamoto K, Saido T. 2005. 19F and 1H MRI detection of amyloid B plaques in vivo. Nat Neurosci 8(4):527–533.

    Article  PubMed  CAS  Google Scholar 

  61. Jack CR, Garwood M, Wengenack TM, Borowski B, Curran GL, Lin J, Adriany G, Grohn OH, Grimm R, Poduslo JF. 2004. In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 52(6):1263–1271.

    Article  PubMed  Google Scholar 

  62. Lee SP, Falangola MF, Nixon RA, Duff K, Helpern JA. 2004. Visualization of beta-amyloid plaques in a transgenic mouse model of Alzheimer’s disease using MR microscopy without contrast reagents. Magn Reson Med 52(3):538–544.

    Article  PubMed  Google Scholar 

  63. Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA. 1999. Detection of neuritic plaques in Alzheimer’s disease by magnetic resonance microscopy. Proc Natl Acad Sci USA 96(24):14079–14084.

    Article  PubMed  CAS  Google Scholar 

  64. Dhenain M, Privat N, Duyckaerts C, Jacobs RE. 2002. Senile plaques do not induce susceptibility effects in T 2*-weighted MR microscopic images. NMR Biomed 15(3):197–203.

    Article  PubMed  Google Scholar 

  65. Gilissen EP, Jacobs RE, Allman JM. 1999. Magnetic resonance microscopy of iron in the basal forebrain cholinergic structures of the aged mouse lemur. J Neurol Sci 168(1):21–27.

    Article  PubMed  CAS  Google Scholar 

  66. Augustinack JC, van der Kouwe AJW, Salat D, Wald LL, Blackwell M, Wiggins C, Fischl B. 2004. Detection of entorhinal islands using 7T MRI. Paper presented at Human Brain Mapping 2004. Poster MO288.

    Google Scholar 

  67. Hyman BT, Van Horsen GW, Damasio AR, Barnes CL. 1984. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225(4667):1168–1170.

    Article  PubMed  CAS  Google Scholar 

  68. Fischl B, et al. 2005. NeuroImage. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wald, L.L., Fischl, B., Rosen, B.R. (2006). High-Resolution and Microscopic Imaging at High Field. In: Ultra High Field Magnetic Resonance Imaging. Biological Magnetic Resonance, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49648-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49648-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-34231-3

  • Online ISBN: 978-0-387-49648-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics