Skip to main content

Membrane Protein Structure and Dynamics Studied by Site-Directed Spin-Labeling ESR

  • Chapter
ESR Spectroscopy in Membrane Biophysics

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 27))

Abstract

ESR spectroscopy of site-directed spin-labeled biomolecules (Site-Directed Spin Labeling, SDSL) has emerged as a powerful method for studying the structure and conformational dynamics of proteins and nucleic acids under conditions relevant to function (for reviews see, e.g., Feix and Klug 1998; Hubbell et al. 1996; Hubbell et al. 1998, 2002). In this technique a spin-label side chain is introduced at a selected site via cysteine substitution mutagenesis followed by modification of the unique sulfhydryl group with a specific paramagnetic nitroxide reagent. The continuous wave (cw) ESR spectrum yields information about the nitroxide side chain mobility, solvent accessibility, the polarity of its immediate environment, and the distance between the nitroxide and another paramagnetic center in the protein. Hence, ESR data analysis of a series of spin-labeled variants of a given protein allows defining elements of secondary structure, including their solvent exposure, to characterize protein topography and to determine orientations of individual segments of the protein. A complete analysis allows modeling of protein structures with a spatial resolution at the level of the backbone fold (Hubbell et al. 1998, 2000; Koteiche and Mchaourab 1999; Mchaourab and Perozo 2000; Perozo et al. 1998; Wegener et al. 2001a). This method is applicable to any protein with a cloned gene that can be expressed. In particular, it has been shown to be very useful in studying large membrane proteins or protein complexes that are not amenable to NMR methods or do not crystallize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Altenbach C, Flitsch SL, Khorana HG, Hubbell WL. 1989a. Structural studies on transmembrane proteins, 2: spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28:7806–7812.

    PubMed  CAS  Google Scholar 

  • Altenbach C, Froncisz W, Hyde JS, Hubbell WL. 1989b. Conformation of spin-labeled melittin at membrane surfaces investigated by pulse saturation recovery and continuous wave power saturation electron-paramagnetic resonance. Biophys J 56:1183–1191.

    PubMed  CAS  Google Scholar 

  • Altenbach C, Greenhalgh DA, Khorana HG, Hubbell WL. 1994. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci USA 91:1667–1671.

    PubMed  CAS  Google Scholar 

  • Altenbach C, Yang K, Farrens DL, Farahbakhsh ZT, Khorana HG, Hubbell WL. 1996. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry 35:12470–12478.

    PubMed  CAS  Google Scholar 

  • Altenbach C, Oh KJ, Trabanino RJ, Hideg K, Hubbell WL. 2001. Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40:15471–15482.

    PubMed  CAS  Google Scholar 

  • Altenbach C, Froncisz W, Hemker R, Mchaourab H, Hubbell WL. 2005. Accessibility of nitroxide side chains: absolute Heisenberg exchange rates from power saturation EPR. Biophys J 89:2103–2112.

    PubMed  CAS  Google Scholar 

  • Anderson DJ, Hanson P, McNulty J, Millhauser G, Monaco V, Formaggio F, Crisma M, Toniolo C. 1999. Solution structures of TOAC-labeled trichogin GA IV peptides from allowed (g approximate to 2) and half-field electron spin resonance. J Am Chem Soc 121:6919–6927.

    CAS  Google Scholar 

  • Appleman JA, Chen LL, Stewart V. 2003. Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases. J Bacteriol 185:4872–4882.

    PubMed  CAS  Google Scholar 

  • Ayers B, Blaschke UK, Camarero JA, Cotton GJ, Holford M, Muir TW. 1999. Introduction of unnatural amino acids into proteins using expressed protein ligation. Biopolymers 51:343–354.

    PubMed  CAS  Google Scholar 

  • Balog M, Kalai T, Jeko J, Berente Z, Steinhoff HJ, Engelhard M, Hideg K. 2003. Synthesis of new conformationally rigid paramagnetic alpha-amino acids. Tetrahedron Lett 44:9213–9217.

    CAS  Google Scholar 

  • Balog MR, Kalai TK, Jeko J, Steinhoff HJ, Engelhard M, Hideg K. 2004. Synthesis of new 2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl radicals and 2-substituted-2,5,5-trimethylpyrrolidin-1-yloxyl radicals based alpha-amino acids. Synlett 14:2591–2593.

    Google Scholar 

  • Barbosa SR, Cilli EM, Lamy-Freund MT, Castrucci AML, Nakaie CR. 1999. First synthesis of a fully active spin-labeled peptide hormone. FEBS Lett 446:45–48.

    PubMed  CAS  Google Scholar 

  • Barnes JP, Liang ZC, Mchaourab HS, Freed JH, Hubbell WL. 1999. A multifrequency electron spin resonance study of T4 lysozyme dynamics. Biophys J 76:3298–3306.

    PubMed  CAS  Google Scholar 

  • Becker CFW, Hunter CL, Seidel R, Kent SBH, Goody RS, Engelhard M. 2003. Total chemical synthesis of a functional interacting protein pair: the protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Proc Natl Acad Sci USA 100:5075–5080.

    PubMed  CAS  Google Scholar 

  • Becker CFW, Lausecker K, Balog M, Kalai T, Hideg K, Steinhoff HJ, Engelhard M. 2005. Incorporation of spin-labelled amino acids into proteins. Magn Reson Chem 43:S34–S39.

    PubMed  CAS  Google Scholar 

  • Berliner LJ, ed. 1976. Spin labeling: theory and applications. New York: Academic Press.

    Google Scholar 

  • Berliner LJ, ed. 1979. Spin labeling II: theory and applications. New York: Academic Press.

    Google Scholar 

  • Berliner LJ, Reuben J, eds. 1989. Spin labeling theory and applications, Vol. 8: Biological magnetic resonance. New York: Plenum Press.

    Google Scholar 

  • Berliner LJ, Grunwald J, Hankovszky HO, Hideg K. 1982. A novel reversible thiol-specific spin label: papain active-site labeling and inhibition. Anal Biochem 119:450–455.

    PubMed  CAS  Google Scholar 

  • Berliner LJ, Eaton SS, Eaton GR, eds. 2000. Distance measurements in biological systems by EPR: biological magnetic resonance. New York: Kluwer Academic/Plenum.

    Google Scholar 

  • Bolin KA, Anderson DJ, Trulson JA, Thompson DA, Wilken J, Kent SBH, Gantz I, Millhauser GL. 1999. NMR structure of a minimized human agouti related protein prepared by total chemical synthesis. FEBS Lett 451:125–131.

    PubMed  CAS  Google Scholar 

  • Borbat PP, Freed JH. 1999. Multiple-quantum ESR and distance measurements. Chem Phys Lett 313:145–154.

    CAS  Google Scholar 

  • Borbat PP, Costa-Filho AJ, Earle KA, Moscicki JK, Freed JH. 2001. Electron spin resonance in studies of membranes and proteins. Science 291:266–269.

    PubMed  CAS  Google Scholar 

  • Bordignon E, Klare JP, Doebber M, Wegener AA, Martell S, Engelhard M, Steinhoff HJ. 2005. Structural analysis of a HAMP domain: the linker region of the phototransducer in complex with sensory rhodopsin II. J Biol Chem 280:38767–38775.

    PubMed  CAS  Google Scholar 

  • Burghaus O, Rohrer M, Gotzinger T, Plato M, Möbius K. 1992. A novel high-field high-frequency EPR and ENDOR spectrometer operating at 3 mm wavelength. Meas Sci Technol 33:765–774.

    Google Scholar 

  • Cai KW, Langen R, Hubbell WL, Khorana HG. 1997. Structure and function in rhodopsin: topology of the C-terminal polypeptide chain in relation to the cytoplasmic loops. Proc Natl Acad Sci USA 94:14267–14272.

    PubMed  CAS  Google Scholar 

  • Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang ZW, Schultz PG. 2003. An expanded eukaryotic genetic code. Science 301:964–967.

    PubMed  CAS  Google Scholar 

  • Closs GL, Forbes MDE, Piotrowiak P. 1992. Spin and reaction dynamics in flexible polymethylene biradicals as studied by EPR, NMR, and optical spectroscopy and magneticfield effects: measurements and mechanisms of scalar electron-spin spin coupling. J Am Chem Soc 114:3285–3294.

    CAS  Google Scholar 

  • Cornish VW, Benson DR, Altenbach CA, Hideg K, Hubbell WL, Schultz PG. 1994. Sitespecific incorporation of biophysical probes into proteins. Proc Natl Acad Sci USA 91:2910–2914.

    PubMed  CAS  Google Scholar 

  • Cuello LG, Cortes DM, Perozo E. 2004. Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer. Science 306:491–495.

    PubMed  CAS  Google Scholar 

  • Dawson PE, Kent SBH. 2000. Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960.

    PubMed  CAS  Google Scholar 

  • Elsaber C, Monien B, Haehnel W, Bittl R. 2005. Orientation of spin labels in de novo peptides. Magn Reson Chem 43:S26–S33.

    Google Scholar 

  • Essen LO, Siegert R, Lehmann WD, Oesterhelt D. 1998. Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. Proc Natl Acad Sci USA 95:11673–11678.

    PubMed  CAS  Google Scholar 

  • Farahbakhsh ZT, Altenbach C, Hubbell WL. 1992. Spin labeled cysteines as sensors for protein lipid interaction and conformation in rhodopsin. Photochem Photobiol 56:1019–1033.

    PubMed  CAS  Google Scholar 

  • Farahbakhsh ZT, Hideg K, Hubbell WL. 1993. Photoactivated conformational changes in rhodopsin: a time-resolved spin-label study. Science 262:1416–1419.

    PubMed  CAS  Google Scholar 

  • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. 1996. Requirement of rigidbody motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770.

    PubMed  CAS  Google Scholar 

  • Feix JB, Klug CS. 1998. Site directed spin labeling of membrane proteins and pepti-demembrane interactions. In Spin labeling: the next millennium, Vol. 14, pp. 251–281. Ed LJ Berliner. New York: Plenum.

    Google Scholar 

  • Feix JB, Popp CA, Venkataramu SD, Beth AH, Park JH, Hyde JS. 1984. An electron-electron double-resonance study of interactions between [N-14]stearic and [N-15]stearic acid spin-label pairs: lateral diffusion and vertical fluctuations in dimyristoylphosphatidylcholine. Biochemistry 23:2293–2299.

    PubMed  CAS  Google Scholar 

  • Fiori WR, Millhauser GL. 1995. Exploring the peptide 3(10)-helix-reversible-arrow-alphahelix equilibrium with double-label electron-spin-resonance. Biopolymers 37:243–250.

    PubMed  CAS  Google Scholar 

  • Freed JH. 1976. Theory of slow tumbing ESR spectra for nitroxides. In Spin labeling: theory and applications, pp. 53–132. Ed LJ Berliner. New York: Academic Press.

    Google Scholar 

  • Gordeliy VI, Labahn J, Moukhametzianov R, Efremov R, Granzin J, Schlesinger R, Büldt G, Savopol T, Scheidig AJ, Klare JP, Engelhard M. 2002. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419:484–487.

    PubMed  CAS  Google Scholar 

  • Griffith OH, Dehlinger PJ, Van SP. 1974. Shape of hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological-membranes). J Membr Biol 15:159–192.

    PubMed  CAS  Google Scholar 

  • Gross A, Columbus L, Hideg K, Altenbach C, Hubbell WL. 1999. Structure of the KcsA potassium channel from Streptomyces lividans: a site-directed spin labeling study of the second transmembrane segment. Biochemistry 38:10324–10335.

    PubMed  CAS  Google Scholar 

  • Hahn ME, Muir TW. 2005. Manipulating proteins with chemistry: a cross-section of chemical biology. Trends Biochem Sci 30:26–34.

    PubMed  CAS  Google Scholar 

  • Hanson P, Martinez G, Millhauser G, Formaggio F, Crisma M, Toniolo C, Vita C. 1996a. Distinguishing helix conformations in alanine-rich peptides using the unnatural amino acid TOAC and electron spin resonance. J Am Chem Soc 118:271–272.

    CAS  Google Scholar 

  • Hanson P, Millhauser G, Formaggio F, Crisma M, Toniolo C. 1996b. ESR characterization of hexameric, helical peptides using double TOAC spin labeling. J Am Chem Soc 118:7618–7625.

    CAS  Google Scholar 

  • Hubbell WL, Mchaourab HS, Altenbach C, Lietzow MA. 1996. Watching proteins move using site-directed spin labeling. Structure 4:779–783.

    PubMed  CAS  Google Scholar 

  • Hubbell WL, Gross A, Langen R, Lietzow MA. 1998. Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8:649–656.

    PubMed  CAS  Google Scholar 

  • Hubbell WL, Cafiso DS, Altenbach C. 2000. Identifying conformational changes with sitedirected spin labeling. Nat Struct Biol 7:735–739.

    PubMed  CAS  Google Scholar 

  • Huber M, Törring JT. 1995. High-field EPR on the primary electron-donor cation-radical in single-crystals of heterodimer mutant reaction centers of photosynthetic bacteria: first characterization of the g-tensor. Chem Phys 194:379–385.

    CAS  Google Scholar 

  • Hustedt EJ, Beth AH. 1999. Nitroxide spin-spin interactions: applications to protein structure and dynamics. Ann Rev Biophys Biomol Struct 28:129–153.

    CAS  Google Scholar 

  • Hustedt EJ, Smirnov AI, Laub CF, Cobb CE, Beth AH. 1997. Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys J 72:1861–1877.

    PubMed  CAS  Google Scholar 

  • Isas JM, Langen R, Haigler HT, Hubbell WL. 2002. Structure and dynamics of a helical hairpin and loop region in annexin 12: a site-directed spin labeling study. Biochemistry 41:1464–1473.

    PubMed  CAS  Google Scholar 

  • Jeschke G. 2002. Distance measurements in the nanometer range by pulse EPR. Chem Phys Chem 3:927–932.

    PubMed  CAS  Google Scholar 

  • Kim KK, Yokota H, Kim SH. 1999. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787–792.

    PubMed  CAS  Google Scholar 

  • Klare JP, Bordignon E, Engelhard M, Steinhoff HJ. 2004a. Sensory rhodopsin II and bacteriorhodopsin: light activated helix F movement. Photochem Photobiol Sci 3:543–547.

    PubMed  CAS  Google Scholar 

  • Klare JP, Gordeliy VI, Labahn J, Büldt G, Steinhoff HJ, Engelhard M. 2004b. The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett 564:219–224.

    PubMed  CAS  Google Scholar 

  • Kochendoerfer GG, Chen SY, Mao F, Cressman S, Traviglia S, Shao HY, Hunter CL, Low DW, Cagle EN, Carnevali M, Gueriguian V, Keogh PJ, Porter H, Stratton SM, Wiedeke MC, Wilken J, Tang J, Levy JJ, Miranda LP, Crnogorac MM, Kalbag S, Botti P, Schindler-Horvat J, Savatski L, Adamson JW, Kung A, Kent SBH, Bradburne JA. 2003. Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 299:884–887.

    PubMed  CAS  Google Scholar 

  • Kochendoerfer GG, Jones DH, Lee S, Oblatt-Montal M, Opella SJ, Montal M. 2004. Functional characterization and NMR Spectroscopy on full-length Vpu from HIV-1 prepared by total chemical synthesis. J Am Chem Soc 126:2439–2446.

    PubMed  CAS  Google Scholar 

  • Koteiche HA, Mchaourab HS. 1999. Folding pattern of the alpha-crystallin domain in alpha A-crystallin determined by site-directed spin labeling. J Mol Biol 294:561–577.

    PubMed  CAS  Google Scholar 

  • Koteiche HA, Berengian AR, Mchaourab HS. 1998. Identification of protein folding patterns using site-directed spin labeling: structural characterization of a beta-sheet and putative substrate binding regions in the conserved domain of alpha A-crystallin. Biochemistry 37:12681–12688.

    PubMed  CAS  Google Scholar 

  • LaConte LEW, Voelz V, Nelson W, Enz M, Thomas DD. 2002. Molecular dynamics simulation of site-directed spin labeling: experimental validation in muscle fibers. Biophys J 83:1854–1866.

    PubMed  CAS  Google Scholar 

  • Likhtenshtein GI. 1976. Spin labeling methods in molecular biology. New York: John Wiley & Sons.

    Google Scholar 

  • Luecke H, Richter HT, Lanyi JK. 1998. Proton transfer pathways in bacteriorhodopsin at 2.3 Å resolution. Science 280:1934–1937.

    PubMed  CAS  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK. 1999. Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911.

    PubMed  CAS  Google Scholar 

  • Marchetto R, Schreier S, Nakaie CR. 1993. A novel spin-labeled amino-acid derivative for use in peptide-synthesis: (9-Fluorenylmethyloxycarbonyl)-2,2,6,6-tetramethylpiperi-dine-N-oxyl-4-amino-4-carboxylic acid. J Am Chem Soc 115:11042–11043.

    CAS  Google Scholar 

  • Marsh D, Dzikovski BG, Livshits VA. 2006. Oxygen profile in membranes. Biophys J 90:L49–L51.

    PubMed  CAS  Google Scholar 

  • Mchaourab HS, Hyde JS. 1993. Dependence of the multiple-quantum EPR signal on the spin-lattice relaxation-time: effect of oxygen in spin-labeled membranes. J Magn Reson Ser B 101:178–184.

    CAS  Google Scholar 

  • Mchaourab HS, Perozo E. 2000. Determination of protein folds and conformational dynamics using spin labeling EPR spectroscopy. In Distance measurements in biological systems by EPR, pp. 155–218. Ed LJ Berliner, SS Eaton, GR Eaton. New York: Kluwer.

    Google Scholar 

  • Mchaourab HS, Lietzow MA, Hideg K, Hubbell WL. 1996. Motion of spin-labeled side chains in T4 lysozyme, correlation with protein structure and dynamics. Biochemistry 35:7692–7704.

    PubMed  CAS  Google Scholar 

  • Mendel D, Cornish VW, Schultz PG. 1995. Site-directed mutagenesis with an expanded genetic-code. Ann Rev Biophys Biomol Struct 24:435–462.

    CAS  Google Scholar 

  • Merrifield RB. 1963. Solid phase peptide synthesis, 1: synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154.

    CAS  Google Scholar 

  • Möbius K, Savitsky A, Wegener C, Plato M, Fuchs M, Schnegg A, Dubinskii AA, Grishin YA, Grigor’ev IA, Kühn M, Duché D, Zimmermann H, Steinhoff HJ. 2005. Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action. Magn Reson Chem 43:S4–S19.

    PubMed  Google Scholar 

  • Monaco V, Formaggio F, Crisma M, Toniolo C, Hanson P, Millhauser G, George C, Deschamps JR, Flippen-Anderson JL. 1999. Determining the occurrence of a 3(10)-helix and an alpha-helix in two different segments of a lipopeptaibol antibiotic using TOAC, a nitroxide spin-labeled C-alpha-tetrasubstituted alpha-amino acid. Bioorg Med Chem 7:119–131.

    PubMed  CAS  Google Scholar 

  • Moukhametzianov R, Klare JP, Efremov R, Baeken C, Göppner A, Labahn J, Engelhard M, Büldt G, Gordeliy VI. 2006. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440:115–119.

    PubMed  CAS  Google Scholar 

  • Nielsen RD, Canaan S, Gladden JA, Gelb MH, Mailer C, Robinson BH. 2004. Comparing continuous wave progressive saturation EPR and time domain saturation recovery EPR over the entire motional range of nitroxide spin labels. J Magn Reson 169:129–163.

    PubMed  CAS  Google Scholar 

  • O’Donnell MJ, Bennett WD, Wu SD. 1989. The stereoselective synthesis of alpha-aminoacids by phase-transfer catalysis. J Am Chem Soc 111:2353–2355.

    CAS  Google Scholar 

  • Pannier M, Veit S, Godt A, Jeschke G, Spiess HW. 2000. Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340.

    PubMed  CAS  Google Scholar 

  • Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM. 1997. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277:1676–1681.

    PubMed  CAS  Google Scholar 

  • Percival PW, Hyde JS. 1975. Pulsed EPR spectrometer, 2. Rev Sci Instrum 46:1522–1529.

    CAS  Google Scholar 

  • Perozo E, Cortes DM, Cuello LG. 1998. Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol 5:459–469.

    PubMed  CAS  Google Scholar 

  • Pfeiffer M, Rink T, Gerwert K, Oesterhelt D, Steinhoff HJ. 1999. Site-directed spin-labeling reveals the orientation of the amino acid side-chains in the E-F loop of bacteriorhodopsin. J Mol Biol 287:163–171.

    PubMed  CAS  Google Scholar 

  • Plato M, Steinhoff HJ, Wegener C, Törring JT, Savitsky A, Möbius K. 2002. Molecular orbital study of polarity and hydrogen bonding effects on the g and hyperfine tensors of site directed NO spin labelled bacteriorhodopsin. Mol Phys 100:3711–3721.

    CAS  Google Scholar 

  • Poole CP. 1983. Electron spin resonance. New York: Wiley.

    Google Scholar 

  • Prisner TF, Vanderest A, Bittl R, Lubitz W, Stehlik D, Möbius K. 1995. Time-resolved W-band (95 GHz) EPR spectroscopy of Zn-substituted reaction centers of rhodobacter-sphaeroides R-26. Chem Phys 194:361–370.

    CAS  Google Scholar 

  • Pyka J, Ilnicki J, Altenbach C, Hubbell WL, Froncisz W. 2005. Accessibility and dynamics of nitroxide side chains in T4 lysozyme measured by saturation recovery EPR. Biophys J 89:2059–2068.

    PubMed  CAS  Google Scholar 

  • Qin PZ, Hideg K, Feigon J, Hubbell WL. 2003. Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry 42:6772–6783.

    PubMed  CAS  Google Scholar 

  • Rabenstein MD, Shin YK. 1995. Determination of the distance between 2 spin labels attached to a macromolecule. Proc Natl Acad Sci USA 92:8239–8243.

    PubMed  CAS  Google Scholar 

  • Radzwill N, Gerwert K, Steinhoff HJ. 2001. Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin. Biophys J 80:2856–2866.

    PubMed  CAS  Google Scholar 

  • Rassat A, Rey P. 1967. Nitroxides, 23: preparation of amino-acid free radicals and their complex salts. Bull Soc Chim Fr 3:815–818.

    PubMed  CAS  Google Scholar 

  • Sale K, Song LK, Liu YS, Perozo E, Fajer P. 2005. Explicit treatment of spin labels in modeling of distance constraints from dipolar EPR and DEER. J Am Chem Soc 127:9334–9335.

    PubMed  CAS  Google Scholar 

  • Shafer AM, Kalai T, Liu SQB, Hideg K, Voss JC. 2004. Site-specific insertion of spin-labeled L-amino acids in Xenopus oocytes. Biochemistry 43:8470–8482.

    PubMed  CAS  Google Scholar 

  • Shin YK, Hubbell WL. 1992. Determination of electrostatic potentials at biological interfaces using electron electron double-resonance. Biophys J 61:1443–1453.

    PubMed  CAS  Google Scholar 

  • Shin YK, Levinthal C, Levinthal F, Hubbell WL. 1993. Colicin-E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science 259:960–963.

    PubMed  CAS  Google Scholar 

  • Steinhoff HJ. 2002. Methods for study of protein dynamics and protein-protein interaction in protein ubiquitination by electron paramagnetic resonance spectroscopy. Front Biosci 7:C97–C110.

    PubMed  CAS  Google Scholar 

  • Steinhoff HJ, Hubbell WL. 1996. Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins. Biophys J 71:2201–2212.

    PubMed  CAS  Google Scholar 

  • Steinhoff HJ, Karim C. 1993. Protein dynamics and EPR-spectroscopy: comparison of molecular dynamic simulations with experiments. Ber Bunsenges Phys Chem 97:163–171.

    CAS  Google Scholar 

  • Steinhoff HJ, Lieutenant K, Schlitter J. 1989. Residual motion of hemoglobin-bound spin labels as a probe for protein dynamics. Z Naturforschung C: J Biosci 44:280–288.

    CAS  Google Scholar 

  • Steinhoff HJ, Dombrowsky O, Karim C, Schneiderhahn C. 1991. Two-dimensional diffusion of small molecules on protein surfaces: an EPR study of the restricted translational diffusion of protein-bound spin labels. Eur Biophys J Biophy Lett 20:293–303.

    CAS  Google Scholar 

  • Steinhoff HJ, Mollaaghababa R, Altenbach C, Hideg K, Krebs M, Khorana HG, Hubbell WL. 1994. Time-resolved detection of structural changes during the photocycle of spin-labeled bacteriorhodopsin. Science 266:105–107.

    PubMed  CAS  Google Scholar 

  • Steinhoff HJ, Radzwill N, Thevis W, Lenz V, Brandenburg D, Antson A, Dodson G, Wollmer A. 1997. Determination of interspin distances between spin labels attached to insulin: Comparison of electron paramagnetic resonance data with the x-ray structure. Biophys J 73:3287–3298.

    PubMed  CAS  Google Scholar 

  • Steinhoff HJ, Pfeiffer M, Rink T, Burlon O, Kurz M, Riesle J, Heuberger E, Gerwert K, Oesterhelt D. 1999. Azide reduces the hydrophobic barrier of the bacteriorhodopsin proton channel. Biophys J 76:2702–2710.

    PubMed  CAS  Google Scholar 

  • Steinhoff HJ, Müller M, Beier C, Pfeiffer M. 2000a. Molecular dynamics simulation and EPR spectroscopy of nitroxide side chains in bacteriorhodopsin. J Mol Liq 84:17–27.

    CAS  Google Scholar 

  • Steinhoff HJ, Savitsky A, Wegener C, Pfeiffer M, Plato M, Möbius K. 2000b. High-field EPR studies of the structure and conformational changes of site-directed spin labeled bacteriorhodopsin. Biochim Biophys Acta Bioenerg 1457:253–262.

    CAS  Google Scholar 

  • Stone AJ. 1963. Gauge invariance of g tensor. Proc Roy Soc London A 271:424–434.

    Google Scholar 

  • Thorgeirsson TE, Xiao WZ, Brown LS, Needleman R, Lanyi JK, Shin YK. 1997. Transient channel-opening in bacteriorhodopsin: an EPR study. J Mol Biol 273:951–957.

    PubMed  CAS  Google Scholar 

  • Voet D, Voet JG. 2004. Biochemistry, 3rd ed. New York: John Wiley & Sons.

    Google Scholar 

  • Voss J, Hubbell WL, Kaback HR. 1998. Helix packing in the lactose permease determined by metal-nitroxide interaction. Biochemistry 37:211–216.

    PubMed  CAS  Google Scholar 

  • Wegener AA, Chizhov I, Engelhard M, Steinhoff HJ. 2000. Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. J Mol Biol 301:881–891.

    PubMed  CAS  Google Scholar 

  • Wegener AA, Klare JP, Engelhard M, Steinhoff HJ. 2001a. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 20:5312–5319.

    PubMed  CAS  Google Scholar 

  • Wegener C, Savitsky A, Pfeiffer M, Möbius K, Steinhoff HJ. 2001b. High-field EPR-detected shifts of magnetic tensor components of spin label side chains reveal protein conformational changes: the proton entrance channel of bacteriorhodopsin. Appl Magn Reson 21:441–452.

    CAS  Google Scholar 

  • Yin JJ, Pasenkiewiczgierula M, Hyde JS. 1987. Lateral diffusion of lipids in membranes by pulse saturation recovery electron-spin-resonance. Proc Natl Acad Sci USA 84:964–968.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bordignon, E., Steinhoff, HJ. (2007). Membrane Protein Structure and Dynamics Studied by Site-Directed Spin-Labeling ESR. In: ESR Spectroscopy in Membrane Biophysics. Biological Magnetic Resonance, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49367-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49367-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25066-3

  • Online ISBN: 978-0-387-49367-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics