Skip to main content

Biological Ontologies

  • Chapter
Semantic Web

Abstract

Biological ontologies define the basic terms and relations in biological domains and are being used among others, as community reference, as the basis for interoperability between systems, and for search, integration and exchange of biological data. In this chapter we present examples of biological ontologies and ontology-based knowledge, show how biological ontologies are used and discuss some important issues in ontology engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker C.J.O., Shaban-Nejad A., Su X., Haarslev V., and Butler G. Semantic Web Infrastructure for Fungal Enzyme Biotechnologists, Journal of Web Semantics, Special issue on Semantic Web for the Life Sciences 4(3), 2006.

    Google Scholar 

  2. BioCreAtlvE, Critical Assessment for Information Extraction in Biology; http://biocreative.sourceforge.net/.

    Google Scholar 

  3. BioPAX, Biological Pathway Exchange; http://www.biopax.org/.

    Google Scholar 

  4. Blaschke C., Hirschman L., and Valencia A. Information extraction in molecular biology, Briefings in Bioinformatics 3(2):154–165, 2002.

    Article  PubMed  CAS  Google Scholar 

  5. Coté R., Jones P., Apweiler R., and Hermjakob H. The Ontology Lookup Service, a lightweight cross-platform tool for controlled vocabulary queries, BMC Bioinformatics 7:97, 2006.

    Article  PubMed  CAS  Google Scholar 

  6. Collins F., Green E., Guttmacher A., and Guyer M. A vision for the future of genomics research, Nature 422:835–847, 2003.

    Article  PubMed  CAS  Google Scholar 

  7. GO, The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology, Nature Genetics 25(1):25–29, 2000; http://www.geneontology.org/.

    Article  CAS  Google Scholar 

  8. Goble C, Stevens R., Ng G., Bechhofer S., Paton N., Baker P., Peim M., and Brass A. Transparent access to multiple bioinformatics information sources, IBM Systems Journal 40(2):532–551, 2001.

    Article  Google Scholar 

  9. Gómez-Pérez A. Ontological Engineering: A state of the Art, Expert Update 2(3):33–43, 1999.

    Google Scholar 

  10. Guarino N. and Giaretta P. Ontologies and Knowledge Bases: Towards a Terminological Clarification, in: Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing, Mars, ed., IOS Press, 25–32, 1995.

    Google Scholar 

  11. Hermjakob H., Montecchi-Palazzi L., Bader G., Wojcik J., Salwinski L., Ceol A., et al. The HUPO PSI’s Molecular Interaction format-a community standard for the representation of protein interaction data, Nature Biotechnology 22(2): 177–183, 2004.

    Article  PubMed  CAS  Google Scholar 

  12. Hucka M., Finney A., Sauro H., Bolouri H., Doyle J., Kitano H., and the rest of the SBML Forum. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics 19(4):524–531, 2003.

    Article  PubMed  CAS  Google Scholar 

  13. Jakoniene V. and Lambrix P. Ontology-based integration for bioinformatics, in: Proceedings of the VLDB Workshop on Ontologies-based techniques for DataBases and Information Systems, 55–58, 2005.

    Google Scholar 

  14. Jakoniene V., Rundqvist D., and Lambrix P. A method for similarity-based grouping of biological data, in: Proceedings of the 3rd International Workshop on Data Integration in the Life Sciences, LNBI 4075, 136–151, 2006.

    Google Scholar 

  15. Jasper R. and Uschold M. A Framework for Understanding and Classifying Ontology Applications, in: Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods: Lessons Learned and Future Trends, 1999.

    Google Scholar 

  16. Köhler J., Munn K., Rüegg A., Skusa A, and Smith B. Quality control for terms and definitions in ontologies and taxonomies, BMC Bioinformatics 7:212, 2006.

    Article  PubMed  CAS  Google Scholar 

  17. Lambrix, P. Ontologies in Bioinformatics and Systems Biology, in: Artificial Intelligence Methods and Tools for Systems Biology, Dubitzky and Azuaje, eds., Springer, chapter 8, 129–146, 2004.

    Google Scholar 

  18. Lambrix, P. Towards a Semantic Web for Bioinformatics using Ontology-based Annotation, in: Proceedings of the 14th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises, 3–7. Invited talk, 2005.

    Google Scholar 

  19. Lambrix P. and Tan H. SAMBO-A System for Aligning and Merging Biomedical Ontologies, Journal of Web Semantics, Special issue on Semantic Web for the Life Sciences 4(3), 2006a.

    Google Scholar 

  20. Lambrix, P. and Tan H. Ontology Alignment and Merging, in: Anatomy Ontologies for Bioinformatics: Principles and Practice, Burger, Davidson and Baldock, eds., Springer. To appear, 2006b.

    Google Scholar 

  21. Lord P., Stevens R., Brass A., and Goble C. Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation, Bioinformatics 19(10): 1275–1283, 2003.

    Article  PubMed  CAS  Google Scholar 

  22. MeSH, Medical Subject Headings; http://www.nlm.nih.gov/mesh/.

    Google Scholar 

  23. Mukherjea S. Information retrieval and knowledge discovery utilising a biomedical Semantic Web, Briefings in Bioinformatics 6(3):252–262, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Neches R., Fikes R., Finin T., Gruber T., Senator T., and Swartout, W. Enabling technology for knowledge engineering, AI Magazine 12(3):26–56, 1991.

    Google Scholar 

  25. OBO, Open Biomedical Ontologies; http://obo.sourceforge.net/.

    Google Scholar 

  26. OBO Foundry; http://obofoundry.org/.

    Google Scholar 

  27. OntoWeb, 2002, Deliverable 1.3: A survey on ontology tools; 2002, Deliverable 2.1: Successful Scenarios for Ontology-based Applications; 2002, Deliverable 2.2: Guidelines for the selection of techniques for kinds of ontology-based applications; 2004, Deliverable 1.6: A survey on ontology-based applications. E-commerce, knowledge management, multimedia, information sharing and educational applications; http://www.ontoweb.org/.

    Google Scholar 

  28. Orchard S., Montecchi-Palazzi L., Hermjakob H., and Apweiler R. The Use of Common Ontologies and Controlled Vocabularies to Enable Data Exchange and Deposition for Complex Proteomic Experiments, in: Proceedings of the Pacific Symposium on Biocomputing 10:186–196, 2005.

    Google Scholar 

  29. Protégé; http://protege.stanford.edu/.

    Google Scholar 

  30. REWERSE, EU Network of Excellence on Reasoning on the Web with Rules and Semantics, Working group A2; http://rewerse.net/.

    Google Scholar 

  31. Rojas I., Ratsch E., Saric J., and Wittig U. Notes on the use of ontologies in the biochemical domain, In Silico Biology 4:0009, 2003.

    Google Scholar 

  32. SBML, Systems Biology Markup Language; http://sbml.org.

    Google Scholar 

  33. Schulze-Kremer S. Ontologies for molecular biology and bioinformatics, In Silico Biology 2:0017, 2002.

    Google Scholar 

  34. Smith B., Ceusters W., Klagges B., Köhler J., Kumar A., Lomax J., Mungall C, Neuhaus F., Rector A., and Rosse C. Relations in biomedical ontologies, Genome Biology 6:R46, 2005.

    Article  PubMed  Google Scholar 

  35. SOFG, Standards and Ontologies for Functional Genomics; http://www.sofg.org/.

    Google Scholar 

  36. Stevens R., Goble C., and Bechhofer S. Ontology-based knowledge representation for bioinformatics, Briefings in Bioinformatics 1(4):398–414, 2000.

    Article  PubMed  CAS  Google Scholar 

  37. Strömbäck L., Hall D., and Lambrix P. A review of standards for data exchange within systems biology, Proteomics. Invited contribution. To appear, 2006a.

    Google Scholar 

  38. Strömbäck L., Jakoniene V., Tan H., and Lambrix P. Representing, storing and accessing molecular interaction data: a review of models and tools, Briefings in Bioinformatics. Invited contribution. To appear, 2006b.

    Google Scholar 

  39. Strömbäck L., and Lambrix P. Representations of molecular pathways: An evaluation of SBML, PSI MI and BioPAX, Bioinformatics 21(24):4401–4407, 2005.

    Article  PubMed  Google Scholar 

  40. UMLS, Unified Medical Language System; http://www.nlm.nih.gov/pubs/factsheets/umls.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambrix, P., Tan, H., Jakoniene, V., Strömbäck, L. (2007). Biological Ontologies. In: Baker, C.J.O., Cheung, KH. (eds) Semantic Web. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-48438-9_5

Download citation

Publish with us

Policies and ethics