Skip to main content

The Climate Response to the Astronomical Forcing

  • Chapter
Solar Variability and Planetary Climates

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 23))

Abstract

Links between climate and Earth’s orbit have been proposed for about 160 years. Two decisive advances towards an astronomical theory of palæoclimates were Milankovitch’s theory of insolation (1941) and independent findings, in 1976, of a double precession frequency peak in marine sediment data and from celestial mechanics calculations. The present chapter reviews three essential elements of any astronomical theory of climate: (1) to calculate the orbital elements, (2) to infer insolation changes from climatic precession, obliquity and eccentricity, and (3) to estimate the impact of these variations on climate. The Louvain-la-Neuve climate-ice sheet model has been an important instrument for confirming the relevance of Milankovitch’s theory, but it also evidences the critical role played by greenhouse gases during periods of low eccentricity. It is recognised today that climatic interactions at the global scale were involved in the processes of glacial inception and deglaciation. Three examples are given, related to the responses of the carbon cycle, hydrological cycle, and the terrestrial biosphere, respectively. The chapter concludes on an outlook on future research directions on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, J. F., McIntyre, K., and Schrag, D. P.: 2002, ‘The salinity, temperature, and delta O-18 of the glacial deep ocean’, Science 298, 1769–1773.

    Article  ADS  Google Scholar 

  • Archer, D., Winguth, A., Lea, D., and Mahowald, N.: 2000, ‘What caused the glacial/interglacial atmospheric pCO2 cycles?’, Rev. Geophys. 38, 159–189.

    Article  ADS  Google Scholar 

  • Berger, A.: 1977, ‘Long-term variations of the Earth’s orbital elements’, Celest. Mec. 15, 53–74.

    Article  ADS  Google Scholar 

  • Berger, A.: 1978, ‘Long-term variations of daily insolation and Quaternary climatic changes’, J. Atmos. Sci. 35, 2362–2367.

    Article  ADS  Google Scholar 

  • Berger, A. and Loutre, M. F.: 1991, ‘Insolation values for the climate of the last 10 million years’, Quat. Sci. Rev. 10, 297–317.

    Article  ADS  Google Scholar 

  • Berger, A., Loutre, M. F., and Gallée, H.: 1998, ‘Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 ky’, Clim. Dyn. 14, 615–629.

    Article  Google Scholar 

  • Berger, A., Li, X. S., and Loutre, M. F.: 1999, ‘Modelling northern hemisphere ice volume over the last 3 Ma’, Quat. Sci. Rev. 18, 1–11.

    Article  ADS  Google Scholar 

  • Braconnot, P., Harrison, S. P., Joussaume, S., Hewitt, C. D., Kitoh, A., Kutzbach, J. E., Liu, Z., Otto-Bliesner, B., Syktus, J., and Weber, N.: 2004, ‘Evaluation of PMIP coupled ocean-atmosphere simulations of the mid-holocene’, in R. W. Batterbee, F. Gasse, and C. E. Stickley (eds.), Past Climate Variability Through Europe and Africa, pp. 515–534.

    Google Scholar 

  • Bretagnon, P.: 1974, ‘Termes à longues périodes dans le système solaire’, Astron. Astroph. 30, 141–154.

    ADS  Google Scholar 

  • Broecker, W. S. and Peng, T. H.: 1989, ‘The cause of the glacial to interglacial atmospheric CO2’, Global Biogeochem. Cycles 3, 215–239.

    Article  ADS  Google Scholar 

  • Chapront, J., Bretagnon, P., and Mehl, M.: 1975, ‘Un formulaire pour le calcul des perturbations d’ordres élevés dans les problèmes planétaires’, Celes. Mech. 34, 165–184.

    Article  Google Scholar 

  • Claussen, M., Brovkin, V., Calov, R., Ganopolski, A., and Kubatzki, C.: 2005, ‘Did humankind prevent a Holocene glaciation?’, Clim. Change 69, 409–417.

    Article  Google Scholar 

  • Crucifix, M. and Loutre, M. F.: 2002, ‘Transient simulations over the last interglacial period (126-115 kyr BP): feedback and forcing analysis’, Clim. Dyn. 19, 419–433.

    Google Scholar 

  • Crucifix, M., Loutre, M. F., and Berger, A.: 2005, ‘Commentary on “the anthropogenic greenhouse era began thousands of years ago”’, Clim. Change 69, 419–426.

    Article  Google Scholar 

  • Danjon, A.: 1980, Astronomie générale. Libraire scientifique et technique A. Blanchard.

    Google Scholar 

  • de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F., and Beaufort, L.: 2005, ‘Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years’, Nature 433, 294–298.

    Article  ADS  Google Scholar 

  • de Noblet, N., Braconnot, P., Joussaume, S., and Masson, V.: 1996, ‘Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation at 126, 115 and 6 kBP’, Clim. Dyn. 12, 589–603.

    Article  Google Scholar 

  • EPICA community members: 2004, ‘Eight glacial cycles from an Antarctic ice core’, Nature 429, 623–628.

    Article  Google Scholar 

  • Gallée, H., van Ypersele, J. P. Fichefet, T., Marsiat, I., Tricot, C., and Berger, A.: 1992, ‘Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. Part II: Response to insolation and CO2 variation’, J. Geophys. Res. 97, 15, 713–15, 740.

    ADS  Google Scholar 

  • Ghil, M. and Le Treut, H.: 1981, ‘A climate model with cryodynamics and geodynamics’, J. Geophys. Res. 86, 5262–5270.

    Article  ADS  Google Scholar 

  • Hargreaves, J. C. and Annan, J. D.: 2002, ‘Assimilation of paleo-data in a simple Earth system model’, Clim. Dyn. 19, 371–381.

    Article  Google Scholar 

  • Harrison, S. P., Kutzbach, J. E., Prentice, I. C., Behling, P. J. and Sykes, M. T.: 1995, ‘The response of Northern Hemisphere extratropical climate and vegetation to orbitally induced changes in insolation during the last interglacial’, Quat. Res. 43, 174–184.

    Article  Google Scholar 

  • Hays, J., Imbrie, J. and Shackleton, N.: 1976, ‘Variations in the Earth’s orbit: Pacemaker of ice ages’, Science 194, 1121–1132.

    Article  ADS  Google Scholar 

  • Imbrie, J. and Imbrie, J. Z.: 1980, ‘Modelling the climatic response to orbital variations’, Science 207, 943–953.

    Article  ADS  Google Scholar 

  • Imbrie, J. J., Hays, J. D., Martinson, D. G., McIntyre A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J.: 1984, ‘The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18Orecord’, in A. Berger, J., Imbrie J., Hays, J., Kukla, and B. Saltzman (eds.), Milankovitch and Climate, Part I. Norwell, Mass., pp. 269–305.

    Google Scholar 

  • Joussaume, S. and Braconnot, P.: 1997, ‘Sensitivity of paleoclimate simulation results to season definition’, J. Geophys. Res. 102, 1943–1956.

    Article  ADS  Google Scholar 

  • Kageyama, M., Charbit, S., Ritz, C., Khodri, M., and Ramstein, G.: 2004, ‘Quantifying ice-sheet feedbacks during the last glacial inception’, Geophysical Research Letters 31, L24903, doi:10.1029/2004GL021339.

    Article  Google Scholar 

  • Köhler, P. and Fischer, H.: 2006, ‘Proposing a mechanistic understnading of changes in atmospheric CO2 during the last 740 000 years’, Clim. Past Discussions 2, 1–42.

    Article  ADS  Google Scholar 

  • Kutzbach, J. E.: 1981, ‘Monsoon climate of the early Holocene: Climate experiment using the Earth’s orbital parameters for 9000 years ago’, Science 214, 59–61.

    Article  ADS  Google Scholar 

  • Lagrange, J. L.: 1781, ‘Théorie des variations séculaires des éléments des planètes 1.’, in Nouveaux mémoires de l’Académie Royale des Sciences et Belles-Lettres, Berlin, pp. 199–276.

    Google Scholar 

  • Laplace, P. S.: 1773, ‘Tome VIII’, in Oeuvres complètes. Compilation published by Gauthier-Villars, in 1891, p. 199.

    Google Scholar 

  • Laskar, J.: 1984, ‘Théorie générale planétaire: Eléments orbitaux des planètes sur 1 million d’années’, Ph.D. thesis, Obervatoire de Paris, Meudon, France.

    Google Scholar 

  • Laskar, J.: 1988, ‘Secular evolution of the solar system over 10 millions years’, Astron. Astroph. 198, 341–362.

    ADS  Google Scholar 

  • Laskar, J.: 1999, ‘The limits of Earth orbital calculations for geological time-scale use’, Phil. Trans. R. Soc. Lond. A 357, 1735–1759.

    Article  ADS  Google Scholar 

  • Laskar, J., Joutel, F., and Boudin, F.: 1993, ‘Orbital, precessional, and insolation quantities for the Earth from −20 Myr to +10 Myr’, Astron. Astroph. 270, 522–533.

    ADS  Google Scholar 

  • Laskar, J., Robutel, P., Joutel, F., Boudin, F., Gastineau, M., Correia, A. C. M., and Levrard, B.: 2004, ‘A long-term numerical solution for the insolation quantities of the Earth’, Astron. Astroph. 428, 261–285.

    Article  ADS  Google Scholar 

  • Lourens, L. J., Wehausen, R., and Brumsack, H. J.: 2001, ‘Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years’, Nature 409, 1029–1033.

    Article  ADS  Google Scholar 

  • Loutre, M. F. and Berger, A.: 2003, ‘Marine Isotope Stage 11 as an analogue for the present interglacial’, Glob. Plan. Change 36, 209–217.

    Article  ADS  Google Scholar 

  • Loutre, M. F., Paillard, D., Vimeux, F., and Cortijo, E.: 2004, ‘Does mean annual insolation have the potential to change the climate?’, Earth Planet. Sci. Lett. 221, 1–14.

    Article  ADS  Google Scholar 

  • Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: 1990, ‘Iron in Antarctic waters’, Nature 345, 156–158.

    Article  ADS  Google Scholar 

  • Meissner, K. J., Weaver, A. J., and Matthews, H. D.: 2003, ‘The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model’, Clim. Dyn. 21, 515–537.

    Article  Google Scholar 

  • Milankovitch, M.: 1941, Canon of Insolation and the Ice-Age Problem. Edited and translated by the Serbian Academy of Science and Arts, 1998, Narodna biblioteka Srbije, Beograd.

    Google Scholar 

  • Mudelsee, M. and Schulz, M.: 1997, ‘The Mid-Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build-up by 280 ka’, Earth Planet. Sci. Lett. 151, 117–123.

    Article  ADS  Google Scholar 

  • Otterman, J., Chou, M.-D., and Arking, A.: 1984, ‘Effects of nontropical forest cover on climate’, J. Appl. Meteor. 23, 762–767.

    Article  ADS  Google Scholar 

  • Paillard, D. and Parrenin, F.: 2004, ‘The Antarctic ice sheet and the triggering of deglaciations’, Earth Planet. Sci. Lett. 227, 263–271.

    Article  ADS  Google Scholar 

  • Pälike, H., Shackleton, N. J., and Rohl, U.: 2001, ‘Astronomical forcing in Late Eocene marine sediments’, Earth Planet. Sci. Lett. 193, 589–602.

    Article  ADS  Google Scholar 

  • Parrenin, F. and Paillard, D.: 2003, ‘Amplitude and phase of glacial cycles from a conceptual model’, Earth Planet. Sci. Lett. 214, 243–250.

    Article  ADS  Google Scholar 

  • Parrenin, F., Remy, F., Ritz, C., Siegert, M. J., and Jouzel, J.: 2004, ‘New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core’, J. Geophys. Res. 109, doi:10.1029/2004JD004561.

    Google Scholar 

  • Pearson, P. N. and Palmer, M. R.: 2000, ‘Atmospheric carbon dioxide concentrations over the past 60 million years’, Nature 406, 695–699.

    Article  ADS  Google Scholar 

  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I. Barnola, J.-M. Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M.: 2001, ‘Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica’, Nature 399, 429–436.

    Article  ADS  Google Scholar 

  • Ridgwell, A. J., Watson, A. J., Maslin, M. A., and Kaplan, J.: 2003, ‘Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum’, Paleoceanogr. 18, Art. No. 1083.

    Google Scholar 

  • Ruddiman, W. F.: 2003, ‘The anthropogenic greenhouse era began thousands of years ago’, Clim. Change 61, 261–293.

    Article  Google Scholar 

  • Ruddiman, W. F.: 2005, ‘The early anthropogenic hypothesis a year later — An editorial reply’, Clim. Change 69, 427–434.

    Article  Google Scholar 

  • Ruddiman, W. F., Raymo, M., and McIntyre, A.: 1986, ‘Mutuyama 41, 000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets’, Earth Planet. Sci. Lett. 80, 117–129.

    Article  ADS  Google Scholar 

  • Ruddiman, W. F., Vavrus, S. J., and Kutzbach, J. E.: 2005, ‘Atest of the overdue-glaciation hypothesis’, Quat. Sci. Rev. 24, 1–10.

    Article  ADS  Google Scholar 

  • Sanchez Goñni, M. F., Loutre, M. F., Crucifix, M., Peyron, O., Santos, L., Duprat, J., Turon, J,-L., and Peypouquet, J.-P.: 2005, ‘Increasing vegetation and climate gradient in Western Europe over the Last Glacial Inception (122-110 ka): models-data comparison’, Earth Planet. Sci. Lett. 231, 111–130.

    Article  ADS  Google Scholar 

  • Shackleton, N. J.: 2000, ‘The 100,000-year ice-age cycle identified and found to lag temperature, Carbon Dioxide and orbital eccentricity’, Science 289, 1897–1902.

    Article  ADS  Google Scholar 

  • Siegenthaler, U., Stocker, T. F., Monnin, E., Lüthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Ficher, H., Masson-Delmott, V., and Jouzel, J.: 2005, ‘Stable carbon cycle-climate relationship during the late Pleistocene”’, Science 310, 1313–1317, doi:10.1126/science.1120130.

    Article  ADS  Google Scholar 

  • Stephens, B. B. and Keeling, R. F.: 2000, ‘The influence of Antarctic sea-ice on glacial-interglacial CO2 variations’, Nature 404, 171–174.

    Article  ADS  Google Scholar 

  • Vettoretti, G. and Peltier, W. R.: 2003a, ‘Post-Eemian glacial inception. Part I: the impact of summer seasonal temperature bias’, J. Climate 16, 889–911.

    Article  ADS  Google Scholar 

  • Vettoretti, G. and Peltier, W. R.: 2003b, ‘Post-Eemian glacial inception. Part II: Elements of a cryospheric moisture pump’, J. Climate 16, 912–927.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Crucifix, M., Loutre, M.F., Berger, A. (2007). The Climate Response to the Astronomical Forcing. In: Calisesi, Y., Bonnet, R.M., Gray, L., Langen, J., Lockwood, M. (eds) Solar Variability and Planetary Climates. Space Sciences Series of ISSI, vol 23. Springer, New York, NY. https://doi.org/10.1007/978-0-387-48341-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-48341-2_17

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-48339-9

  • Online ISBN: 978-0-387-48341-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics