Skip to main content

Thermomechanical Characterization of Shape Memory Alloy Materials

  • Chapter
  • First Online:
Shape Memory Alloys

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. BuehleR, R. Wiley, The properties of TiNi and associated phases, Tech. rep., U.S. Naval Ordnance Laboratory (1961).

    Google Scholar 

  2. C. M. JacksoH, H. J. WagneR, R. J. Wasilewski, 55-Nitinol—The alloy with a memory: Its physical metallurgy, properties and applications, Tech. Rep. NASA SP-5110, NASA Technology Utilization Office, Washington, D.C. (1972).

    Google Scholar 

  3. K. OtsukC, C. M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  4. J. Perkins, Shape Memory Effects in Alloys, Plenum Press, New York, 1975.

    Google Scholar 

  5. H. Funakubo (Ed.), Shape Memory Alloys, Gordon and Breach Science Publishers, 1987.

    Google Scholar 

  6. X. ReK, K. Otsuka, Universal symmetry property of point defects in crystals, Physical Review Letters 85 (5) (2000) 1016–1019.

    Article  Google Scholar 

  7. S. MiyazakK, K. OtsukY, Y. Suzuki, Transformation pseudoelasticity and deformation behavior in a Ti-50.6at Ni alloy, Scripta Materialia 15 (1981) 287–292.

    Article  Google Scholar 

  8. Z. BD, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: Theoretical Derivations, International Journal of Engineering Science 37 (1999) 1089–1140.

    Article  Google Scholar 

  9. D. C. LagoudaZ, Z. Bo, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II: Material characterization and experimental results for a stable transformation cycle, International Journal of Engineering Science 37 (1999) 1141–1173.

    Article  Google Scholar 

  10. Z. BD, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: Evolution of plastic strains and two-way shape memory effect, International Journal of Engineering Science 37 (1999) 1175–1203.

    Article  Google Scholar 

  11. Z. BD, D. C. Lagoudas, Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: Modeling of minor hysteresis loops, International Journal of Engineering Science 37 (1999) 1205–1249.

    Article  Google Scholar 

  12. J. ShaS, S. Kyriakides, Thermomechanical aspects of NiTi, Journal of the Mechanics and Physics of Solids 43 (8) (1995) 1243–1281.

    Article  Google Scholar 

  13. T. DueriK, K. MeltoD, D. StockeC, C. Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, 1990.

    Google Scholar 

  14. ASTM International, Standard Terminology for Nickel-Titanium Shape Memory Alloys (2005).

    Google Scholar 

  15. ASTM International, Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants (2005).

    Google Scholar 

  16. ASTM International, Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis (2005).

    Google Scholar 

  17. ASTM International, Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery (2003).

    Google Scholar 

  18. ASTM International, Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials (2006).

    Google Scholar 

  19. ASTM International, Standard Test Method for Tension Testing of Metallic Materials (2004).

    Google Scholar 

  20. H. SehitoglI, I. KaramaR, R. AndersoX, X. ZhanK, K. GalH, H. J. MaieY, Y. Chumlyakov, Compressive response of NiTi single crystals, Acta Materialia 48 (13) (2000) 3311–3326.

    Article  Google Scholar 

  21. H. SehitoglI, I. KaramaX, X. Y. ZhanH, H. KiY, Y. I. ChumlyakoH, H. J. Hans MaieI, I. Kireeva, Deformation of NiTiCu single crystals in compression, Metallurgical and Material Transactions A 32 (2001) 477–489.

    Google Scholar 

  22. ASTM International, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature (2000).

    Google Scholar 

  23. J. T. LiD, D. L. McDowell, Mechanical behavior of a Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading, Journal of Engineering Materials and Technology 121 (1999) 9–18.

    Article  Google Scholar 

  24. A. KeefG, G. Carman, Thermo-mechanical characterization of shape memory alloy torque tube actuators, Smart Materials and Structures 9 (2000) 665–672.

    Article  Google Scholar 

  25. K. OtsukX, X. Ren, Physical metallurgy of Ti– Ni-based shape memory alloys, Progress in Materials Science 50 (2005)511–678.

    Article  Google Scholar 

  26. E. PatooD, D. C. LagoudaP, P. B. EntcheL, L. C. BrinsoX, X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials 38 (5–6) (2006) 391–429.

    Article  Google Scholar 

  27. D. C. LagoudaP, P. B. EntcheP, P. PopoE, E. PatooL, L. C. BrinsoX, X. Gao, Shape memory alloys, Part II: Modeling of polycrystals, Mechanics of Materials 38 (5–6) (2006) 430–462.

    Article  Google Scholar 

  28. B. ChanJ, J. ShaM, M. Iadicola, Thermodynamics of shape memory alloy wire: Modeling, experiments, and application, Continuum Mechanics and Thermodynamics 18 (1–2) (2006) 83–118.

    Article  Google Scholar 

  29. C. LexcellenJ, J. Rejzner, Modeling of the strain rate effect, creep, and relaxation of a Ni- Ti shape memory alloy under tension (compression)-torsional proportional loading in the pseudoelastic range, Smart Materials and Structures 9 (2000) 613–621.

    Article  Google Scholar 

  30. Y. LiY, Y. LK, K. Ramesh, Rate dependence of deformation mechanisms in a shape memory alloy, Philosophical Magazine A 82 (12) (2002) 2461–2473.

    Google Scholar 

  31. P. PopoK, K. Ravi-ChandaD, D. Lagoudas, Dynamic loading of polycrystalline shape memory alloy rods, Mechanics of Materials 35 (7) (2003) 689–716.

    Article  Google Scholar 

  32. J. Nemat-NasseW, W. ChoG, G. GuJ, J. Isaacs, Very high strain-rate response of a Ni Ti shape-memory alloy, Mechanics of Materials 37 (2–3) (2005) 287–298.

    Article  Google Scholar 

  33. J. EscobaR, R. Clifton, On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations, Material Science & Engineering A 170 (1993) 125–142.

    Article  Google Scholar 

  34. P. FenQ, Q. Sun, Experimental investigation on macroscopic domain formation and evolution in polycrystalline Ni Ti microtubing under mechanical force, Journal of the Mechanics and Physics of Solids 54 (8) (2006) 1568–1603.

    Article  Google Scholar 

  35. D. A. MilleD, D. C. Lagoudas, Thermo-mechanical characterization of NiTiCu and NiTi SMA actuators: Influence of plastic strains, Smart Materials and Structures 9 (5) (2000) 640–652.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag US

About this chapter

Cite this chapter

Hartl, D., Lagoudas, D. (2008). Thermomechanical Characterization of Shape Memory Alloy Materials. In: Shape Memory Alloys., vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47685-8_2

Download citation

Publish with us

Policies and ethics