Skip to main content

Carbon Nanotubes: Synthesis and Characterization

  • Chapter
  • First Online:
Nanopackaging

Abstract

Carbon can form various types of structurally different frameworks due to the ability of the carbon atoms to form different species of valence bonds. The extremely organized coagulation process of carbon molecules resulting in the formation of the perfectly symmetric fullerene molecule despite the chaotic environment of the carbon arc is truly fascinating. Although many formation theories for the buckyball structure have been suggested, the “pentagon road model” is the most popular amongst many molecular physicists. The prominent features of this model are that carbon sheets have the tendency to accumulate isolated pentagonal carbon ring structures and grow into a carbon sheet with a large number of pentagons supporting its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iijima S. (1991). Helical microtubules of graphitic carbon. Nature, 354: 56–58.

    Article  CAS  Google Scholar 

  2. Wang XK, Lin XW, Dravid VP, Ketterson JB, and Chang RPH. (1995). Stable glow discharge for synthesis of carbon nanotubes. Appl. Phys. Lett., 66: 427–429.

    Article  CAS  Google Scholar 

  3. Iijima S and Ichihashi T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363: 603–605.

    Article  CAS  Google Scholar 

  4. Bethune DS, Klang CH, de Vries MS, Gorman G, Savoy R, Vazquez J, and Beyers R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363: 605–607.

    Article  CAS  Google Scholar 

  5. Dai H. (2002). Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res., 35: 1035–1044.

    Article  CAS  Google Scholar 

  6. Oberlin A, Endo M, and Koyama T. (1976). Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth, 32: 335–349.

    Article  CAS  Google Scholar 

  7. Ebbesen TW and Ajayan PM. (1992). Large-scale synthesis of carbon nanotubes. Nature, 358: 220–222.

    Article  CAS  Google Scholar 

  8. Cheng HM, Li F, Su G, Pan HY, He LL, Sun X, and Dresselhaus MS. (1998). Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett., 72: 3282–3284

    Article  CAS  Google Scholar 

  9. Ando Y, Zhao X, Sugai T, and Kumar M. (2004). Growing carbon nanotubes. Mater. Today, 7: 22–29.

    Article  CAS  Google Scholar 

  10. Gamaly EG and Ebbesen TW. (1995). Mechanism of carbon nanotube formation in the arc discharge. Phys. Rev. B, 52: 2083.

    Article  CAS  Google Scholar 

  11. Harris PJF, Tsang SC, Claridge JB, and Green MLH. (1994). High-resolution electron microscopy studies of a microporous carbon produced by arc-evaporation. J. Chem. Soc. Faraday Trans., 90: 2799–2802.

    Article  CAS  Google Scholar 

  12. Yudasaka M, Yamada R, Sensui N, Wilkins T, Ichihashi T, and Iijima S. (1999). Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation. J. Phys. Chem. B, 103: 6224–6229.

    Article  CAS  Google Scholar 

  13. Uchino T, Bourdakos KN, de Groot CH, Ashburn P, Kiziroglou ME, Dilliway GD, and Smith DC. (2005). Metal catalyst-free low-temperature carbon nanotube growth on SiGe islands. Appl. Phys. Lett., 86: 233110.

    Article  Google Scholar 

  14. Keidar M and Waas AM. (2004). On the conditions of carbon nanotube growth in the arc discharge. Nanotechnology, 15: 1571–1575.

    Article  CAS  Google Scholar 

  15. Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Denlard P, Lee R, and Fischer JE. (1997). Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Lett. Nat, 388: 756–757.

    Article  CAS  Google Scholar 

  16. Zhu HW, Lia XS, Jianga B, Xua C, Zhua Y, and Chenb DWX. (2002). Formation of carbon nanotubes in water by the electric-arc technique. Chem. Phys. Lett., 366: 664–669.

    Article  CAS  Google Scholar 

  17. Guo T, Nikolaev P, Rinzler AG, Colbert DT, Smalley RE, and Tomanek D. (1995). Self-assembly of tubular fullerenes. J. Phys. Chem. B, 99: 10694–10697.

    Article  CAS  Google Scholar 

  18. Guo T, Nikolaev P, Thess A, Colbert DT, and Smalley RE. (1995). Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett., 243: 49–54.

    Article  CAS  Google Scholar 

  19. Scott CD, Arepalli S, Nikolaev P, and Smalley RE. (2001). Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 72: 573–580.

    Article  CAS  Google Scholar 

  20. Mishra LN, Shibata K, Ito H, Yugami N, and Nishida Y. (2004). Pulsed corona discharge as a source of hydrogen and carbon nanotube production. IEEE Trans. Plasma Sci., 32: 1727–1733.

    Article  CAS  Google Scholar 

  21. Sano N and Nobuzawa M. (2007). Localized fabrication of carbon nanotubes forest at a needle electrode by atmospheric pressure corona discharge. Diamond Relat. Mater., 16: 144–148.

    Article  CAS  Google Scholar 

  22. Uhm HS, Hong YC, and Shin DH. (2006). A microwave plasma torch and its applications. Plasma Sources Sci. Technol., 15: S26–S34.

    Article  Google Scholar 

  23. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, and Provencio PN. (1998). Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282: 1105–1107.

    Article  CAS  Google Scholar 

  24. Physorg. (2007). Researchers shatter world records with length of latest carbon nanotube arrays, University of Cincinnati, Cincinnati, OH.

    Google Scholar 

  25. Lee YT, Park J, Choi YS, Ryu H, and Lee HJ. (2002). Temperature-dependent growth of vertically aligned carbon nanotubes in the range 800–1100°C. J. Phys. Chem. B, 106: 7614–7618.

    Article  CAS  Google Scholar 

  26. Lee YT, Kim NS, Park J, Han JB, Choi YS, Ryu H, and Lee HJ. (2003). Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000°C. Chem. Phys. Lett., 372: 853–859.

    Article  CAS  Google Scholar 

  27. Nerushev OA, Morjan RE, Ostrovskii DI, Sveningsson M, Jonsson M, Rohmund F, and Campbell EEB. (2002). The temperature dependence of Fe-catalysed growth of carbon nanotubes on silicon substrates. Paper presented at the Physica B: Condensed Matter, Tsukuba, Japan.

    Google Scholar 

  28. Hsun Lin C, Hsing Lee S, Ming Hsu C, and Tzu Kuo C. (2004). Comparisons on properties and growth mechanisms of carbon nanotubes fabricated by high-pressure and low-pressure plasma-enhanced chemical vapor deposition. Diamond Relat. Mater., 13: 2147–2151.

    Article  Google Scholar 

  29. Tian Y, Hu Z, Yang Y, Wang X, Chen X, Xu H, Wu Q, Ji W, and Chen Y. (2004). In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J. Am. Chem. Soc., 126: 1180–1183.

    Article  CAS  Google Scholar 

  30. Andrews RJ, Smith CF, and Alexander AJ. (2006). Mechanism of carbon nanotube growth from camphor and camphor analogs by chemical vapor deposition. Carbon, 44: 341–347.

    Article  CAS  Google Scholar 

  31. Chhowalla M and Emrah UH. (2005). Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology, 16: 2153–2163.

    Article  Google Scholar 

  32. Nishii T, Murakami Y, Einarsson E, Masuyama N, and Maruyama S. (2005). Synthesis of single-walled carbon nanotube film on quartz substrate from carbon monoxide. Paper presented at the Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Matsushima, Miyagi, Japan.

    Google Scholar 

  33. Liu C, Chang N, Chang Y, Hsu J, and Chang S. (2007). Preheated carbon source for carbon nanotube synthesis. In Proceedings of the 35th International MATADOR Conference, Taipei, Taiwan, pp. 3–6.

    Google Scholar 

  34. Yasuo K, Takeru N, Mizuhisa N, and Michio N. (2007). Infrared reflection absorption spectroscopy investigation of carbon nanotube growth on cobalt catalyst surfaces. Appl. Phys. Lett., 90: 073109.

    Article  Google Scholar 

  35. Lee K-H, Baik K, Bang J-S, Lee S-W, and Sigmund W. (2004). Silicon enhanced carbon nanotube growth on nickel films by chemical vapor deposition. Solid State Commun., 129: 583–587.

    Article  CAS  Google Scholar 

  36. Yunyu W, Zhiquan L, Bin L, Paul SH, Zhen Y, Li S, Eugene NB, and Robert JN. (2007). Comparison study of catalyst nanoparticle formation and carbon nanotube growth: support effect. J. Appl. Phys., 101: 124310.

    Article  Google Scholar 

  37. Shiroishi T, Sawada T, Hosono A, Nakata S, Kanazawa Y, and Takai M. (2003). Low temperature growth of carbon nanotube by thermal CVD with FeZrN catalyst. Paper presented at the Vacuum Microelectronics Conference.

    Google Scholar 

  38. Li Y, Kim W, Zhang Y, Rolandi M, Wang D, and Dai H. (2001). Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B, 105: 11424–11431.

    Article  CAS  Google Scholar 

  39. Grill A, Neumayer D, and Singh D. (2003). US Patent No. 20050089467.

    Google Scholar 

  40. Liao XZ, Serquis A, Jia QX, Peterson DE, Zhu YT, and Xu HF. (2003). Effect of catalyst composition on carbon nanotube growth. Appl. Phys. Lett., 82: 2694–2696.

    Article  CAS  Google Scholar 

  41. Xie SS, Chang BH, Li WZ, Pan ZW, Sun LF, Mao JM, Chen XH, Qian LX, and Zhou WY. (1999). Synthesis and characterization of aligned carbon nanotube arrays. Adv. Mater., 11: 1135–1138.

    Article  CAS  Google Scholar 

  42. Kim SH and Zachariah MR. (2007). Gas-phase growth of diameter-controlled carbon nanotubes. Mater. Lett., 61: 2079–2083.

    Article  CAS  Google Scholar 

  43. Qin LC. (1997). CVD synthesis of carbon nanotubes. J. Mater. Sci. Lett., 16: 457–459.

    Article  CAS  Google Scholar 

  44. Khare R and Bose S. (2005). Carbon nanotube based composites – A review. J. Minerals Mater. Char. Eng., 4: 31–46.

    Google Scholar 

  45. See CH and Harris AT. (2007). A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res., 46: 997–1012.

    Article  CAS  Google Scholar 

  46. Kathyayini H, Nagaraju N, Fonseca A, and Nagy JB. (2004). Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes. J. Mol. Catal. A, 223: 129–136.

    CAS  Google Scholar 

  47. Zeng X, Sun X, Cheng G, Yan X, and Xu X. (2002). Production of multi-wall carbon nanotubes on a large scale. Phys. B, 323: 330–332.

    Article  CAS  Google Scholar 

  48. Baddour CE and Briens C. (2005). Carbon nanotube synthesis: A review. Int. J. Chem. Reactor Eng., 3: R3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yadav, Y., Kunduru, V., Prasad, S. (2008). Carbon Nanotubes: Synthesis and Characterization. In: Morris, J. (eds) Nanopackaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47325-3_15

Download citation

Publish with us

Policies and ethics