Skip to main content

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 595))

Abstract

Chemoprevention, which is referred to as the use of nontoxic natural or synthetic chemicals to intervene in multistage carcinogenesis, has emerged as a promising and pragmatic medical approach to reduce the risk of cancer. Numerous components of edible plants, collectively termed “phytochemicals” have been reported to possess substantial chemopreventive properties. Curcumin, a yellow coloring ingredient derived from Curcuma longa L. (Zingiberaceae), is one of the most extensively investigated and well-defined chemopreventive phytochemicals. Curcumin has been shown to protect against skin, oral, intestinal, and colon carcinogenesis and also to suppress angiogenesis and metastasis in a variety animal tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. P. Greenwald, From carcinogenesis to clinical interventions for cancer prevention. Toxicology 166, 37–45 (2001).

    PubMed  CAS  Google Scholar 

  2. 2. G. J. Kelloff, J. A. Crowell, V. E. Steele, R. A. Lubet, W. A. Malone, C. W. Boone, L. Kopelovich, E. T. Hawk, R. Lieberman, J. A. Lawrence, et al., Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr 130, 467S–471S (2000).

    PubMed  CAS  Google Scholar 

  3. 3. Y.-J. Surh, Cancer chemoprevention with dietary phytochemicals. Nature Rev Cancer 3, 768–780 (2003).

    CAS  Google Scholar 

  4. 4. A. H. Conney, T. Lysz, T. Ferraro, T. F. Abidi, P. S. Manchand, J. D. Laskin, and M. T. Huang, Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul 31, 385–396 (1991).

    PubMed  CAS  Google Scholar 

  5. 5. A. Duvoix, R. Blasius, S. Delhalles, M. Schnekenburger, F. Morceau, E. Henry, M. Dicato, M. and M. Diederich, Chemopreventive and therapeutic effects of curcumin. Cancer Lett 223, 181–190 (2005).

    PubMed  CAS  Google Scholar 

  6. 6. M. T. Huang, Z. Y. Wang, C. A. Georgiadis, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene. Carcinogenesis 13, 2183–2186 (1992).

    PubMed  CAS  Google Scholar 

  7. 7. M. Nagabhushan and S. V. Bhide, Curcumin as an inhibitor of cancer. J Am Coll Nutr 11, 192–198.

    Google Scholar 

  8. 8. L. A. Cohen, A review of animal model studies of tomato carotenoids, lycopene, and cancer chemoprevention. Exp Biol Med (Maywood) 227, 864–868 (2002).

    CAS  Google Scholar 

  9. 9. S. Das, S. Banerjee, and P. Saha, The models for assessment of chemopreventive agents: single organ models. Asian Pac J Cancer Prev 5, 15–23 (2004).

    PubMed  Google Scholar 

  10. 10. J. DiGiovanni, Multistage carcinogenesis in mouse skin. Pharmacol Ther 54, 63–128 (1992).

    PubMed  CAS  Google Scholar 

  11. 11. M. T. Huang, Y. R. Lou, J. G. Xie, W. Ma, Y. P. Lu, P. Yen, B. T. Zhu, H. Newmark, and C. T. Ho, Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis 19, 1697–1700 (1998).

    PubMed  CAS  Google Scholar 

  12. 12. M. T. Huang, W. Ma, P. Yen, J. G. Xie, J. Han, K. Frenkel, D. Grunberger, and A. H. Conney, Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis 18, 83–88 (1997).

    PubMed  CAS  Google Scholar 

  13. 13. M. T. Huang, W. Ma, Y. P. Lu, R. L. Chang, C. Fisher, P. S. Manchand, H. L. Newmark, and A. H. Conney, Effects of curcumin, demethoxycurcumin, bisdemethoxycurcumin and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Carcinogenesis 16, 2493–2497 (1995).

    PubMed  CAS  Google Scholar 

  14. 14. M. A. Azuine and S. V. Bhide, Chemopreventive effect of turmeric against stomach and skin tumors induced by chemical carcinogens in Swiss mice. Nutr Cancer 17, 77–83 (1992).

    PubMed  CAS  Google Scholar 

  15. 15. M. A. Pereira, S. L. Herren-Freund, A. L. Britt, and M. M. Khoury, Effect of coadministration of phenobarbital sodium on N-nitrosodiethylamine-induced gamma-glutamyltransferase-positive foci and hepatocellular carcinoma in rats. J Natl Cancer Inst 72, 741–744 (1984).

    PubMed  CAS  Google Scholar 

  16. 16. M. Sreepriya and G. Bali, Chemopreventive effects of embelin and curcumin against N-nitrosodiethylamine/phenobarbital-induced hepatocarcinogenesis in Wistar rats. Fitoterapia 76, 549–555 (2005).

    PubMed  CAS  Google Scholar 

  17. 17. S. E. Chuang, M. L. Kuo, C. H. Hsu, C. R. Chen, J. K. Lin, G. M. Lai, C. Y. Hsieh, and A. L. Cheng, Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis 21, 331–335 (2000).

    PubMed  CAS  Google Scholar 

  18. 18. S. Busquets, N. Carbo, V. Almendro, M. T. Quiles, F. J. Lopez-Soriano, and J. M. Argiles, Curcumin, a natural product present in turmeric, decreases tumor growth but does not behave as an anticachectic compound in a rat model. Cancer Lett 167, 33–38 (2001).

    PubMed  CAS  Google Scholar 

  19. 19. M. B. Thompson, The Min mouse: A genetic model for intestinal carcinogenesis. Toxicol Pathol 25, 329–332 (1997).

    PubMed  CAS  Google Scholar 

  20. 20. A. R. Moser, C. Luongo, K. A. Gould, M. K. McNeley, A. R. Shoemaker, and W. F. Dove, ApcMin:A mouse model for intestinal and mammary tumorigenesis. Eur J Cancer 31A, 1061–1064 (1995).

    PubMed  CAS  Google Scholar 

  21. 21. D. E. Corpet and F. Pierre, Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiol Biomarkers Prev 12, 391–400 (2003).

    PubMed  Google Scholar 

  22. 22. S. Perkins, R. D. Verschoyle, K. Hill, I. Parveen, M. D. Threadgill, R. A. Sharma, M. L. Williams, W. P. Steward, and A. J. Gescher, Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomarkers Prev 11, 535–540 (2002).

    PubMed  CAS  Google Scholar 

  23. 23. N. N. Mahmoud, A. M. Carothers, D. Grunberger, R. T. Bilinski, M. R. Churchill, C. Martucci, H. L. Newmark, and M. M. Bertagnolli, Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis 21, 921–927 (2000).

    PubMed  CAS  Google Scholar 

  24. 24. M. T. Huang, E. E. Deschner, H. L. Newmark, Z. Y. Wang, T. A. Ferraro, and A. H. Conney, Effect of dietary curcumin and ascorbyl palmitate on azoxymethanol-induced colonic epithelial cell proliferation and focal areas of dysplasia. Cancer Lett 64, 117–121 (1992).

    PubMed  CAS  Google Scholar 

  25. 25. M. T. Huang, H. L. Newmark, and K. Frenkel, Inhibitory effects of curcumin on tumorigenesis in mice. J Cell Biochem 27(Suppl), 26–34 (1997).

    CAS  Google Scholar 

  26. 26. C. V. Rao, A. Rivenson, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).

    PubMed  CAS  Google Scholar 

  27. 27. M. A. Pereira, C. J. Grubbs, L. H. Barnes, H. Li, G. R. Olson, I Eto, M. Juliana, L. M. Whitaker, G. J. Kelloff, V. E. Steele, and R. A. Lubet, Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis 17, 1305–1311 (1996).

    PubMed  CAS  Google Scholar 

  28. 28. T. Tanaka, H. Makita, M. Ohnishi, Y. Hirose, A. Wang, H. Mori, K. Satoh, A. Hara, and H. Ogawa, Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: Comparison with the protective effect of beta-carotene. Cancer Res 54, 4653–4659 (1994).

    PubMed  CAS  Google Scholar 

  29. 29. J. Ushida, S. Sugie, K. Kawabata, Q. V. Pham, T. Tanaka, K. Fujii, H. Takeuchi, Y. Ito, and H. Mori, Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Jpn J Cancer Res 91, 893–898 (2000).

    PubMed  CAS  Google Scholar 

  30. 30. M. A. Azuine and S. V. Bhide, Adjuvant chemoprevention of experimental cancer: Catechin and dietary turmeric in forestomach and oral cancer models. J Ethnopharmacol 44, 211–217 (1994).

    PubMed  CAS  Google Scholar 

  31. 31. N Li, X. Chen, J. Liao, G. Yang, S. Wang, Y. Josephson, C. Han, J. Chen, M. T. Huang, and C. S. Yang, Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis 23, 1307–1313 (2002).

    PubMed  CAS  Google Scholar 

  32. 32. S. Ikezaki, A. Nishikawa, F. Furukawa, K. Kudo, H. Nakamura, K. Tamura, and H. Mori, Chemopreventive effects of curcumin on glandular stomach carcinogenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine and sodium chloride in rats. Anticancer Res 21, 3407–3411 (2001).

    PubMed  CAS  Google Scholar 

  33. 33. K. Singletary, C. MacDonald, M. Iovinelli, C. Fisher, and M. Wallig, Effect of the beta-diketones diferuloylmethane (curcumin) and dibenzoylmethane on rat mammary DNA adducts and tumors induced by 7,12-dimethylbenz[a]anthracene. Carcinogenesis 19, 1039–1043 (1998).

    PubMed  CAS  Google Scholar 

  34. 34. K. Singletary, C. MacDonald, M. Wallig, and C. Fisher, Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis and DMBA-DNA adduct formation by curcumin. Cancer Lett 103, 137–141 (1996).

    PubMed  CAS  Google Scholar 

  35. 35. S. S. Hecht, P. M. Kenney, M. Wang, N Trushin, S. Agarwal, A. V. Rao, and P. Upadhyaya, Evaluation of butylated hydroxyanisole, myo-inositol, curcumin, esculetin, resveratrol and lycopene as inhibitors of benzo[a]pyrene plus 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in A/J mice. Cancer Lett 137, 123–130 (1999).

    PubMed  CAS  Google Scholar 

  36. 36. N. Frank, J. Knauft, F. Amelung, J. Nair, H. Wesch, and H. Bartsch, No prevention of liver and kidney tumors in Long-Evans Cinnamon rats by dietary curcumin, but inhibition at other sites and of metastases. Mutat Res 523–524, 127–135 (2003).

    PubMed  Google Scholar 

  37. 37. J. Folkman, Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med 1, 27–31 (1995).

    PubMed  CAS  Google Scholar 

  38. 38. C. Chen, S. Parangi, M. J. Tolentino, and J. Folkman, A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res 55, 4230–4233 (1995).

    PubMed  CAS  Google Scholar 

  39. 39. P. Yoysungnoen, P. Wirachwong, P. Bhattarakosol, H. Niimi, and S. Patumraj, Antiangiogenic activity of curcumin in hepatocellular carcinoma cells implanted nude mice. Clin Hemorheol Microcirc 33, 127–135 (2005).

    PubMed  CAS  Google Scholar 

  40. 40. Y. Ohashi, Y. Tsuchiya, K. Koizumi, H. Sakurai, and I. Saiki, Prevention of intrahepatic metastasis by curcumin in an orthotopic implantation model. Oncology 65, 250–258 (2003).

    PubMed  Google Scholar 

  41. 41. J. H. Hong, K. S. Ahn, E. Bae, S. S. Jeon, and H. Y. Choi, The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis 9, 147–152 (2006)

    PubMed  CAS  Google Scholar 

  42. 42. T. Dorai, Y. C. Cao, B. Dorai, R. Buttyan, and A. E. Katz, Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate 47, 293–303 (2001).

    PubMed  CAS  Google Scholar 

  43. 43. B. B. Aggarwal, S. Shishodia, Y. Takada, S. Banerjee, R. A. Newman, C. E. Bueso-Ramos, and J. E. Price, Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11, 7490–7498 (2005).

    PubMed  CAS  Google Scholar 

  44. 44. L. G. Menon, R. Kuttan, and G. Kuttan, Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett 95, 221–225 (1995).

    PubMed  CAS  Google Scholar 

  45. 45. R. Kuttan, P. C. Sudheeran, and C. D. Josph, Turmeric and curcumin as topical agents in cancer therapy. Tumori 73, 29–31 (1987).

    PubMed  CAS  Google Scholar 

  46. 46. R. A. Sharma, H. R. McLelland, K. A. Hill, C. R. Ireson, S. A. Euden, M. M. Manson, M. Pirmohamed, L. J. Marnett, A. J. Gescher, and W. P. Steward, Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7, 1894–1900 (2001).

    PubMed  CAS  Google Scholar 

  47. 47. R. A. Sharma, S. A. Euden, S. L. Platton, D. N. Cooke, A. Shafayat, H. R. Hewitt, T. H. Marczylo, B. Morgan, D. Hemingway, S. M. Plummer, M. Pirmohamed, A. J. Gescher, and W. P. Steward, Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin Cancer Res 10, 6847–6854 (2004).

    PubMed  CAS  Google Scholar 

  48. 48. A. L. Cheng, C. H. Hsu, J. K. Lin, M. M. Hsu, Y. F. Ho, T. S. Shen, J. Y. Ko, J. T. Lin, B. R. Lin, W. Ming-Shiang, et al., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21, 2895–2900 (2001).

    PubMed  CAS  Google Scholar 

  49. 49. G. Garcea, D. P. Berry, D. J. Jones, R. Singh, A. R. Dennison, P. B. Farmer, R. A. Sharma, W. P. Steward, and A. J. Gescher, Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 14, 120–125 (2005).

    PubMed  CAS  Google Scholar 

  50. 50. H. P. Ciolino, P. J. Daschner, T. T. Wang, and G. C. Yeh, Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol 56, 197–206 (1998).

    PubMed  CAS  Google Scholar 

  51. 51. R. Thapliyal and G. B. Maru, Inhibition of cytochrome P450 isozymes by curcumins in vitro and in vivo. Food Chem Toxicol 39, 541–547 (2001).

    PubMed  CAS  Google Scholar 

  52. 52. R. Thapliyal, S. S. Deshpande, and G. B. Maru, Effects of turmeric on the activities of benzo(a)pyrene-induced cytochrome P-450 isozymes. J Environ Pathol Toxicol Oncol 20, 59–63 (2001).

    PubMed  CAS  Google Scholar 

  53. 53. S. P. Valentine, M. J. Le Nedelec, A. R. Menzies, M. J. Scandlyn, M. G. Goodin, and R. J. Rosengren, Curcumin modulates drug metabolizing enzymes in the female Swiss Webster mouse. Life Sci 78, 2391–2398 (2005).

    PubMed  Google Scholar 

  54. 54. S. V. Singh, X. Hu, S. K. Srivastava, M. Singh, H. Xia, J. L. Orchard, and H. A. Zaren, Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis 19, 1357–1360 (1998).

    PubMed  CAS  Google Scholar 

  55. 55. M. Iqbal, S. D. Sharma, Y. Okazaki, M. Fujisawa, and S. Okada, Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol 92, 33–38 (2003).

    PubMed  CAS  Google Scholar 

  56. 56. S. B. Jones and J. D. Brooks, Modest induction of phase 2 enzyme activity in the F-344 rat prostate. BMC Cancer 6, 62 (2006).

    PubMed  Google Scholar 

  57. 57. E. M. van der Logt, H. M. Roelofs, F. M. Nagengast, and W. H. Peters, Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis 24, 1651–1656 (2003).

    PubMed  Google Scholar 

  58. 58. S. J. McNally, E. M. Harrison, J. A. Ross, O. J. Garden, and S. J. Wigmore, Curcumin induces heme oxygenase-1 in hepatocytes and is protective in simulated cold preservation and warm reperfusion injury. Transplantation 81, 623–626 (2006).

    PubMed  Google Scholar 

  59. 59. E. Balogun, M. Hoque, P. Gong, E. Killeen, C. J. Green, R. Foresti, J. Alam, and R. Motterlini, Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371, 887–895 (2003).

    PubMed  CAS  Google Scholar 

  60. 60. R. Motterlini, R. Foresti, R. Bassi, and C. J. Green, Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical Biol Med 28, 1303–1312 (2000).

    CAS  Google Scholar 

  61. 61. N. Hill-Kapturczak, V. Thamilselvan, F. Liu, H. S. Nick, and A. Agarwal, Mechanism of heme oxygenase-1 gene induction by curcumin in human renal proximal tubule cells. Am J Physiol Renal Physiol 281, F851–F859 (2001).

    PubMed  CAS  Google Scholar 

  62. 62. M. T. Huang, T. Lysz, T. Ferraro, T. F. Abidi, J. D. Laskin, and A. H. Conney, Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 51, 813–819 (1991).

    PubMed  CAS  Google Scholar 

  63. 63. F. Zhang, N. K. Altorki, J. R. Mestre, K. Subbaramaiah, and J. A. Dannenberg, Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis 20, 445–451 (1999).

    PubMed  CAS  Google Scholar 

  64. 64. S. M. Plummer, K. A. Holloway, M. M. Manson, R. J. Munks, A. Kaptein, S. Farrow, and L. Howells, Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18, 6013–6020 (1999).

    PubMed  CAS  Google Scholar 

  65. 65. K. S. Chun, Y. S. Keum, S. S. Han, Y. S. Song, S. H. Kim, and Y.-J. Surh, Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappaB activation. Carcinogenesis 24, 1515–1524 (2003).

    PubMed  CAS  Google Scholar 

  66. 66. G. Kang, P. J. Kong, Y. J. Yuh, S. Y. Lim, S. V. Yim, W. Chun, and S. S. Kim, Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappaB bindings in BV2 microglial cells. J Pharmacol Sci 94, 325–328 (2004).

    PubMed  CAS  Google Scholar 

  67. 67. I. Brouet and H. Ohshima, Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem Biophys Res Commun 206, 533–540 (1995).

    PubMed  CAS  Google Scholar 

  68. 68. M. M. Chan, H. I. Huang, M. R. Fenton, and D. Fong, In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol 55, 1955–1962 (1998).

    PubMed  CAS  Google Scholar 

  69. 69. A. Duvoix, F. Morceau, M. Schnekenburger, S. Delhalle, M. M. Galteau, M. Dicato, and M. Diederich, Curcumin-induced cell death in two leukemia cell lines: K562 and Jurkat. Ann NY Acad Sci 1010, 389–392 (2003).

    PubMed  CAS  Google Scholar 

  70. 70. J. A. Bush, K. J. Cheung, Jr., and G. Li, Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271, 305–314 (2001).

    PubMed  CAS  Google Scholar 

  71. 71. N. R. Jana, P. Dikshit, A. Goswami, and N. Nukina, Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem 279, 11,680–11,685 (2004).

    CAS  Google Scholar 

  72. 72. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, Curcumin (diferuloylmethane) down–regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 69, 195–206 (2006).

    PubMed  CAS  Google Scholar 

  73. 73. J. H. Bae, J. W. Park, and T. K. Kwon, Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem Biophys Res Commun 303, 1073–1079 (2003).

    PubMed  CAS  Google Scholar 

  74. 74. J. H. Woo, Y. H. Kim, Y. J. Choi, D. G. Kim, K. S. Lee, J. H. Bae, S. Min do, J. S. Chang, Y. J. Jeong, Y. H. Lee, et al., Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24, 1199–1208 (2003).

    PubMed  CAS  Google Scholar 

  75. 75. A. Mukhopadhyay, C. Bueso-Ramos, D. Chatterjee, P. Pantazis, and B. B. Aggarwal, Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20, 7597–7609 (2001).

    PubMed  CAS  Google Scholar 

  76. 76. Y. Wu, Y. Chen, and M. He, The influence of curcumin on the cell cycle of HL-60 cells and contrast study. J Tongji Med Univ 20, 123–125 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. 77. A. Simon, D. P. Allais, J. L. Duroux, J. P. Basly, S. Durand-Fontanier, and C. Delage, Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure–activity relationships. Cancer Lett 129, 111–116 (1998).

    PubMed  CAS  Google Scholar 

  78. 78. R. Hanif, L. Qiao, S. J. Shiff, and B. Rigas, Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med 130, 576–584 (1997).

    PubMed  CAS  Google Scholar 

  79. 79. H. Chen, Z. S. Zhang, Y. L. Zhang, and D. Y. Zhou, Curcumin inhibits cell proliferation by interfering with the cell cycle and inducing apoptosis in colon carcinoma cells. Anticancer Res 19, 3675–3680 (1999).

    PubMed  CAS  Google Scholar 

  80. 80. L. Moragoda, R. Jaszewski, and A. P. Majumdar, Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res 21, 873–878 (2001).

    PubMed  CAS  Google Scholar 

  81. 81. M. J. Park, E. H. Kim, I. C. Park, H. C. Lee, S. H. Woo, J. Y. Lee, Y. J. Hong, C. H. Rhee, S. H. Choi, B. S. Shim, et al., Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int J Oncol 21, 379–383 (2002).

    PubMed  CAS  Google Scholar 

  82. 82. A. E. Gururaj, M. Belakavadi, D. A Venkatesh, D. Marme, and B. P. Salimath, Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun 297, 934–942 (2002).

    PubMed  CAS  Google Scholar 

  83. 83. W. H. Chen, Y. Chen, and G. H. Cui, Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells. Chin Med J (Engl) 118, 2052–2057 (2005).

    CAS  Google Scholar 

  84. 84. Z. M. Shao, Z. Z. Shen, C. H. Liu, M. R. Sartippour, V. L. Go, D. Heber, and M. Nguyen, Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 98, 234–240 (2002).

    PubMed  CAS  Google Scholar 

  85. 85. J. S. Shim, J. H. Kim, H. Y. Cho, Y. N. Yum, S. H. Kim, H. J. Park, B. S. Shim, S. H. Choi, and H. J. Kwon, Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem Biol 10, 695–704 (2003).

    PubMed  CAS  Google Scholar 

  86. 86. A. Banerji, J. Chakrabarti, A. Mitra, and A. Chatterjee, Effect of curcumin on gelatinase A (MMP-2) activity in B16F10 melanoma cells. Cancer Lett 211, 235–242 (2004).

    PubMed  CAS  Google Scholar 

  87. 87. L. I. Lin, Y. F. Ke, Y. C. Ko, and J. K. Lin, Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology 55, 349–353 (1998).

    PubMed  CAS  Google Scholar 

  88. 88. K. W. Lee, J. H. Kim, H. J. Lee, and Y. J. Surh, Curcumin inhibits phorbol ester-induced up-regulation of cyclooxygenase-2 and matrix metalloproteinase-9 by blocking ERK1/2 phosphorylation and NF-kappaB transcriptional activity in MCF10A human breast epithelial cells. Antioxid Redox Signal 7, 1612–1620 (2005).

    PubMed  CAS  Google Scholar 

  89. 89. M. S. Woo, S. H. Jung, S. Y. Kim, J. W. Hyun, K. H. Ko, W. K. Kim, and H. S. Kim, Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun 335, 1017–1025 (2005).

    Article  PubMed  CAS  Google Scholar 

  90. 90. S. S. Kakar and D. Roy, Curcumin inhibits TPA induced expression of c-fos, c-jun and c-myc proto-oncogenes messenger RNAs in mouse skin. Cancer Lett 87, 85–89 (1994).

    PubMed  CAS  Google Scholar 

  91. 91. P. Limtrakul, S. Anuchapreeda, S. Lipigorngoson, and F. W. Dunn, Inhibition of carcinogen induced c-Ha-ras and c-fos proto-oncogenes expression by dietary curcumin. BMC Cancer 1, 1 (2001).

    PubMed  CAS  Google Scholar 

  92. 92. Y. P. Lu, R. L. Chang, Y. R. Lou, M. T. Huang, H. L. Newmark, K. R. Reuhl, and A. H. Conney, Effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate- and ultraviolet B light-induced expression of c-Jun and c-Fos in JB6 cells and in mouse epidermis. Carcinogenesis 15, 2363–2370 (1994).

    PubMed  CAS  Google Scholar 

  93. 93. S. S. Han, S. T. Chung, D. A. Robertson, D. Ranjan, and S. Bondada, Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-kB, and p53. Clin Immunol 93, 152–161 (1999).

    PubMed  CAS  Google Scholar 

  94. 94. A. S. Jaiswal, B. P. Marlow, N. Gupta, and S. Narayan, Beta-catenin-mediated transactivation and cell–cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 21, 8414–8427 (2002).

    PubMed  CAS  Google Scholar 

  95. 95. D. Bech-Otschir, R. Kraft, X. Huang, P. Henklein, B. Kapelari, C. Pollmann, and W. Dubiel, COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J 20, 1630–1639 (2001).

    PubMed  CAS  Google Scholar 

  96. 96. T. Choudhuri, S. Pal, M. L. Agwarwal, T. Das, and G. Sa, Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett 512, 334–340 (2002).

    PubMed  CAS  Google Scholar 

  97. 97. A. Liontas and H. Yeger, Curcumin and resveratrol induce apoptosis and nuclear translocation and activation of p53 in human neuroblastoma. Anticancer Res 24, 987–998 (2004).

    PubMed  CAS  Google Scholar 

  98. 98. M. Shi, Q. Cai, L. Yao, Y. Mao, Y. Ming, and G. Ouyang, Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int 30, 221–226 (2006).

    PubMed  CAS  Google Scholar 

  99. 99. G. Song, Y. B. Mao, Q. F. Cai, L. M. Yao, G. L. Ouyang, and S. D. Bao, Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosis-related protein expression. Braz J Med Biol Res 38, 1791–1798 (2005).

    PubMed  CAS  Google Scholar 

  100. 100. T. Prestera and P. Talalay, Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA 92, 8965–8969 (1995).

    PubMed  CAS  Google Scholar 

  101. 101. E. A. Chiocca and D. J. Waxman, Cytochrome P450-based gene therapies for cancer. Methods Mol Med 90, 203–222 (2004).

    PubMed  CAS  Google Scholar 

  102. 102. S. S. Deshpande and G. B. Maru, Effects of curcumin on the formation of benzo[a]pyrene derived DNA adducts in vitro. Cancer Lett 96, 71–80 (1995).

    PubMed  CAS  Google Scholar 

  103. 103. J. S. Lee and Y. J. Surh, Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224, 171–184 (2005).

    PubMed  CAS  Google Scholar 

  104. 104. S. Numazawa and T. Yoshida, Nrf2-dependent gene expressions: A molecular toxicological aspect. J Toxicol Sci 29, 81–89 (2004).

    PubMed  CAS  Google Scholar 

  105. 105. D. A. Dickinson, K. E. Iles, H. Zhang, V. Blank, and H. J. Forman, Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J 17, 473–475 (2003).

    PubMed  CAS  Google Scholar 

  106. 106. Y.-J. Surh, K. S. Chun, H. H. Cha, S. S. Han, Y. S. Keum, K. K. Park, and S. S. Lee, Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappaB activation. Mutat Res 480–481, 243–268 (2001).

    PubMed  Google Scholar 

  107. 107. Y.-J. Surh, Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428, 305–327 (1999).

    PubMed  CAS  Google Scholar 

  108. 108. C. S. Divya and M. R. Pillai, Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkappaB and AP-1 translocation, and modulation of apoptosis. Mol Carcinog 45, 320–332 (2006).

    PubMed  CAS  Google Scholar 

  109. 109. C. Jobin, C. A. Bradham, M. P. Russo, B. Juma, A. S. Narula, D. A. Brenner, and R. B. Sartor, Curcumin blocks cytokine-mediated NF-kappaB activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappaB kinase activity. J Immunol 163, 3474–3483 (1999).

    PubMed  CAS  Google Scholar 

  110. 110. M. Roy, S. Chakraborty, M. Siddiqi, and R. K. Bhattacharya, Induction of apoptosis in tumor cells by natural phenolic compounds. Asian Pacific J Cancer Prev 3, 61–67 (2002).

    Google Scholar 

  111. 111. E. Tourkina, P. Gooz, J. C. Oates, A. Ludwicka-Bradley, R. M. Silver, and S. Hoffman, Curcumin-induced apoptosis in scleroderma lung fibroblasts: role of protein kinase cepsilon. Am J Respir Cell Mol Biol 31, 28–35 (2004).

    PubMed  CAS  Google Scholar 

  112. 112. M. C. Jiang, H. F. Yang-Yen, J. J. Yen, and J. K. Lin, Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26, 111–120 (1996).

    Article  PubMed  CAS  Google Scholar 

  113. 113. H. R. Stennicke and G. S. Salvesen, Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 272, 25719–25723 (1997).

    PubMed  CAS  Google Scholar 

  114. 114. H. Sakahira, M. Enari, and S. Nagata, Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96–99 (1998).

    PubMed  CAS  Google Scholar 

  115. 115. S. N. Farrowand R. Brown, New members of the Bcl-2 family and their protein partners. Curr Opin Genet Dev 6, 45–49 (1996).

    Google Scholar 

  116. 116. R. A. Sharma, A. J. Gescher, and W. P. Steward, Curcumin: the story so far. Eur J Cancer 41, 1955–1968 (2005).

    PubMed  CAS  Google Scholar 

  117. 117. A. R. Hussain, M. Al-Rasheed, P. S. Manogaran, K. A. Al-Hussein, L. C. Platanias, K. A. Kuraya, and S. Uddin, Curcumin induces apoptosis via inhibition of PI3′-kinase/AKT pathway in acute T cell leukemias. Apoptosis 11, 245–254 (2006).

    PubMed  CAS  Google Scholar 

  118. 118. A. Chen and J. Xu, Activation of PPAR′ by curcumin inhibits Moser cell growth and mediates suppression of gene expression of cyclin D1 and EGFR. Am J Physiol Gastrointest Liver Physiol 288, G447–G456 (2005).

    PubMed  CAS  Google Scholar 

  119. 119. J. S. Shim, J. Lee, H. H. Park, S. J. Park, and H. J. Kwon, A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function. Chem Biol 11, 1455–1463 (2004).

    PubMed  CAS  Google Scholar 

  120. 120. J. L. Arbiser, N. Klauber, R. Rohan, R. van Leeuwen, M. T. Huang, C. Fisher, E. Flynn, and H. R. Byers, Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4, 376–383 (1998).

    PubMed  CAS  Google Scholar 

  121. 121. L. A. Liotta and W. G. Stetler-Stevenson, Tumor invasion and metastasis: An imbalance of positive and negative regulation. Cancer Res 51, 5054s–5059s (1991).

    PubMed  CAS  Google Scholar 

  122. 122. A. John and G. Tuszynski, The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7, 14–23 (2001).

    Article  PubMed  CAS  Google Scholar 

  123. 123. M. Egeblad and Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer 2, 161–174 (2002).

    CAS  Google Scholar 

  124. 124. S. Ray, N. Chattopadhyay, A. Mitra, M. Siddiqi, and A. Chatterjee, Curcumin exhibits antimetastatic properties by modulating integrin receptors, collagenase activity, and expression of Nm23 and E-cadherin. J Environ Pathol Toxicol Oncol 22, 49–58 (2003).

    PubMed  CAS  Google Scholar 

  125. 125. J. H. Kim, J. S. Shim, S. K. Lee, K. W. Kim, S. Y. Rha, H. C. Chung, and H J. Kwon, Microarray-based analysis of anti-angiogenic activity of demethoxycurcumin on human umbilical vein endothelial cells: crucial involvement of the down-regulation of matrix metalloproteinase. Jpn J Cancer Res 93, 1378–1385 (2002).

    PubMed  CAS  Google Scholar 

  126. 126. J. L. Bos, Ras oncogenes in human cancer: A review. Cancer Res 49, 4682–4689 (1989).

    PubMed  CAS  Google Scholar 

  127. 127. G. F. Claassen and S. R. Hann, Myc-mediated transformation: the repression connection. Oncogene 18, 2925–2933 (1999).

    PubMed  CAS  Google Scholar 

  128. 128. S. Adhikary and M. Eilers, Transcriptional regulation and transformation by Myc proteins. Nature Rev Mol Cell Biol 6, 635–645 (2005).

    CAS  Google Scholar 

  129. 129. T. Tokino and Y. Nakamura, The role of p53-target genes in human cancer. Crit Rev Oncol Hematol 33, 1–6 (2000).

    PubMed  CAS  Google Scholar 

  130. 130. T. Choudhuri, S. Pal, T. Das, and G. Sa, Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280, 20059–20068 (2005).

    PubMed  CAS  Google Scholar 

  131. 131. P. J. Moos, K. Edes, J. E. Mullally, and F. A. Fitzpatrick, Curcumin impairs tumor suppressor p53 function in colon cancer cells. Carcinogenesis 25, 1611–1617 (2004).

    PubMed  CAS  Google Scholar 

  132. 132. P. Tsvetkov, G. Asher, V. Reiss, Y. Shaul, L Sachs, and J. Lotem, Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc Natl Acad Sci USA 102, 5535–5540 (2005).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Surh, YJ., Chun, KS. (2007). CANCER CHEMOPREVENTIVE EFFECTS OF CURCUMIN. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46401-5_5

Download citation

Publish with us

Policies and ethics