Skip to main content

Abstract

The history of imaging plant cells is intimately related to the very development of microscopes and microscopical techniques. Some of the early microscopists made extensive use of plant specimens, and Hooke’s description of cork microstructure (Fig. 44.1) will stand in the imagination of many as the structural foundation for the cell theory. There are several reasons for this to have happened: in many respects plant tissues are easier to deal with, easier to slice and peel to the necessary thickness for observation, they have more water, and consequently are less optically dense than many other tissues, often they are naturally pigmented and the cells are usually larger. Above all, the existence of a skeletal cell wall composed of cellulose and other molecules makes plant cells extraordinarily geometric and highly regulated in their structural features. In many instances, these structural components of the plant cell form the basis of its function, making microscopical analysis a recurrent method for cell and developmental biology research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bago, B., Zipfel, W., Williams, R.M., Cahmberland, J.G., Lafontaine, J.G., Webb, W.W., and Piche, Y., 1998, In vivo studies on the nuclear behavior of the arbuscular mycorrhizal fungus Gigaspora rosea grown under axenic conditions, Protoplasma 203:1–15

    Article  Google Scholar 

  • Bago, B., Zipfel, W., Williams, R.M., Jun, J., Arreola, R., Lammers, P.J., Pfeffer, P.E., and Shachar-Hill, Y. 2002, Translocation and utilization of fungal storage lipids in the arbuscular mycorrhizal symbiosis, Plant Physiol. 128:108–124

    Article  CAS  PubMed  Google Scholar 

  • Bago, B., Zipfel, W., Williams, R.M., and Piche, Y., 1999, Nuclei of symbiotic arbuscular mycorrhizal fungi as revealed by in vivo two-photon microscopy, Protoplasma 209:77–89.

    Article  CAS  PubMed  Google Scholar 

  • Blancaflor, E.B., and Gilroy, S., 2000, Plant cell biology in the new millennium: New tools and new insights, Am. J. Botany 87:1547–1560.

    Article  CAS  Google Scholar 

  • Bolte, S., Talbot, C., Boutte, Y., Catrice O., Read, N., and Satiat-Jeunemaitre, B., 2004, FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells, J. Microsc. 214:159–173.

    Article  CAS  Google Scholar 

  • Bougourd, S., Marrison, J., and Haseloff, J., 2000, Technical advance: an aniline blue staining procedure for confocal microscopy and 3D imaging of normal and perturbed cellular phenotypes in mature Arabidopsis embryos, Plant J. 24:543–550.

    Article  CAS  PubMed  Google Scholar 

  • Boutet de Monvel, J., Le Calvez, S., and Ulfendahl, M., 2001, Image restoration for confocal microscopy: Improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ, Biophys. J. 80:2455–2470.

    CAS  Google Scholar 

  • Brandizzi, F., Fricker, M., and Hawes, C., 2002, A greener world: The revolution in plant bio-imaging, Nat. Rev. Mol. Cell Biol. 3:520–530.

    Article  CAS  PubMed  Google Scholar 

  • Castleman, K.R., 1979, Digital Imaging Processing, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Chen, C.Y., Cheung, A.Y., and Wu, H.M., 2003, Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth, Plant Cell 15:237–249.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, P.-C., Lin, B.-L., Kao, F.-J., Gu, M., Xu, M.-G., Gan, X., Huang, M.-K., and Wang, Y.-S., 2001a, Multi-photon fluorescence microscopy — The response of plant cells to high intensity illumination, Micron 32:661– 670

    Article  CAS  PubMed  Google Scholar 

  • Cheng, P.C, Sun, C.K., Lin, B.L., Kao, F.J., and Chu, S.W., 2001b, Nonlinear multimodality spectromicroscopy: Multiphoton fluorescence, SHG and THG of biological specimen, Proc. SPIE 4262:98–103.

    Article  Google Scholar 

  • Chiu, W.-L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J., 1996, Engineered GFP as a vital reporter in plants, Curr. Biol. 6:325–330.

    CAS  Google Scholar 

  • Chu, S.W., Chen, I.-H., Liu, T.-M., Sun, C.-K., Lee, S.-P., Lin, B.-L., Cheng, P.-C., Kuo, M.-X., Lin, D.-J., and Liu, H.-L., 2002, Nonlinear bio-photonics crystal effects revealed with multimodal nonlinear microscopy, J. Microsc. 208:190–200.

    Article  Google Scholar 

  • Cox, G., and Sheppard, C., 2004, Practical limits of resolution in confocal and nonlinear microscopy, Microsc. Res. Tech. 62:18–22.

    Article  Google Scholar 

  • Cutler, S.R., Ehrhardt, D.W., Griffitts, J.S., and Somerville, C.R., 2000, Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency, Proc. Natl. Acad. Sci. USA 97:3718–3723.

    Article  CAS  PubMed  Google Scholar 

  • Decho, A.W., and Kawaguchi, T., 1999, Confocal imaging of in situ natural microfibril communities and extracellular polymeric secretions using nanoplast resin, Biotechniques 27:1246–1252.

    CAS  PubMed  Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  CAS  PubMed  Google Scholar 

  • Diaspro, A., and Robello, M., 2000, Two-photon excitation of fluorescence for three-dimensional optical imaging of biological structures, J. Photochem. Photobiol. B 55:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Esau, K., 1977a, Anatomy of Seed Plants, John Wiley and Sons, New York.

    Google Scholar 

  • Esau, K., 1977b, Plant Anatomy, 2nd ed., John Wiley and Sons, New York.

    Google Scholar 

  • Fahn, A., 1990, Plant Anatomy, 4th ed., Pergamon, London.

    Google Scholar 

  • Feijó, J.A., and Cox, G., 2001, Visualization of meiotic events in intact living anthers by means of two-photon microscopy, Micron 32:679–684.

    Article  PubMed  Google Scholar 

  • Feijó, J.A., and Moreno, N., 2004, Imaging plant cells by two-photon excitation, Protoplasma 223:1–23.

    Article  PubMed  Google Scholar 

  • Fricker, M., Parsons, A., Tlalka, M., Blancaflor, E., Gilroy, S., Meyer, A., and Plieth, C., 2001, Fluorescent probes for living plant cells, In: Plant Cell Biology, A Practical Approach (C. Hawes and B. Satiat-Jeunemaitre, eds.), Oxf rd University Press, Oxford, United Kingdom, pp. 35–83.

    Google Scholar 

  • Fricker, M.D., and Meyer, A.J., 2001, Confocal imaging of metabolism in vivo: Pitfalls and possibilities, J. Exp. Botany 52:631–640.

    Article  CAS  Google Scholar 

  • Fricker, M.D., May, M., Meyer, A.J., Sheard, J., and White, N.S., 2000, Measurement of glutathione levels in intact roots of Arabidopsis, J. Microsc. 198:162–173.

    Article  CAS  Google Scholar 

  • Galbraith, D.W., Bohnert, H.J., and Bourque, D.P., eds., 1995, Methods in Cell Biology, Academic Press, New York.

    Google Scholar 

  • Galway, M.E., Heckman, J.W. Jr., Hyde, G.J., and Fowke, L.C., 1995, Advances in high-pressure and plunge-freeze fixation, In: Methods in Plant Cell Biology (D.W. Galbraith, H.J. Bohnert, and D.P. Bourque, eds.), Academic Press, New York, pp. 4–20.

    Google Scholar 

  • Grew, N., 1673, An idea of a phytological history propounded. Together with a continuation of the anatomy of vegetables, particularly prosecuted upon roots. With an account of the vegetation of roots grounded chiefly thereupon. Published by Nehemiah Grew.

    Google Scholar 

  • Gunning, B., 2002, Plant cell biology on CD, Author edition, www.plantcellbiologyoncd.com.

    Google Scholar 

  • Gunning, B.S., and Steer, M.W., 1996, Plant Cell Biology: Structure and Function, Jones and Bartlettt Publishers, Boston.

    Google Scholar 

  • Gutiérrez-Alcalá, G., Gotor, C., Meyer, A.J., Fricker, M., Vega, J.M., and Romero, L.C., 2000, Glutathione biosynthesis in Arabidopsis trichome cells, Proc. Natl. Acad. Sci. USA 97:11108–11113.

    Article  PubMed  Google Scholar 

  • Hake, S., 2001, Mobile proteins signals cell fate, Nature 413:261–263.

    Article  CAS  PubMed  Google Scholar 

  • Haseloff, J., 1999a, GFP variants for multispectral imaging of living cells, Methods Cell Biol., 58:139–151.

    Article  CAS  PubMed  Google Scholar 

  • Haseloff, J., 1999b, Imaging green fluorescent protein in transgenic plants, In: Imaging Living Cell (R. Rizzuto and C. Fasolato, eds.), Springer-Verlag, Berlin, pp. 40–94.

    Google Scholar 

  • Haseloff, J., 2003, Old botanical techniques for new microscopes, Biotechniques 34:1174–1178.

    CAS  PubMed  Google Scholar 

  • Haseloff, J., and Amos, B., 1995, GFP in plants, Trends Genet. 11:328–329.

    Article  CAS  PubMed  Google Scholar 

  • Haseloff, J., Siemering, K.R., Prasher, D.C., and Hodge, S., 1997, Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly, Proc. Natl. Acad. Sci. USA 94:2122–2127.

    Article  CAS  PubMed  Google Scholar 

  • Hawes, C., and Satiat-Jeunemaitre, B., eds., 2001, Plant Cell Biology, A Practical Approach, Oxford University Press, Oxford, United Kingdom.

    Google Scholar 

  • Hepler, P.K., and Gunning, B.E.S., 1998, Confocal fluorescence microscopy of living cells, Protoplasma 201:121–157.

    Article  Google Scholar 

  • Holmes, T.J., Bhattacharyya, S., Cooper, J.A., Hanzel, D., Krishnamurthi, V., Lin, W., Roysam, B., Szarowski, D., and Turner, J., 1995, Light microscopic images reconstructed by maximum likelihood deconvolution, In: Handbook of Biological Confocal Microscopy (J.B. Pawley, ed.), Plenum Press, New York, pp. 389–402.

    Google Scholar 

  • Kam, Z., Hanser, B., Gustafsson, M.G.L., Agard, D.A., and Sedat, J.W., 2001, Computational adaptive optics for live three-dimensional biological imaging, Proc. Natl. Acad. Sci. USA 98:3790–3795.

    Article  CAS  PubMed  Google Scholar 

  • Ketelaar, T., Anthony, R.G., and Hussey, P.J., 2004, Green fluorescent proteinmTalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin de-polymerizing factor’s actin depolymerizing activity in vitro, Plant Physiol. 136:3990–3998.

    Article  CAS  PubMed  Google Scholar 

  • Kodama, H., and Komamine, A., 1995, Synchronization of cell cultures of higher plants, In: Methods in Plant Cell Biology (D.W. Galbraith, H.J. Bohnert, and D.P. Bourque, eds.), Academic Press, New York, pp. 315–330.

    Google Scholar 

  • Köhler, R.H., Zipfel, W.R., Webb, W.W., and Hanson, M.R., 1997, The green fluorescent protein as a marker to visualize plant mitochondria in vivo, Plant J. 11:613–621.

    Article  PubMed  Google Scholar 

  • König, K., 2000, Multiphoton microscopy in life sciences, J. Microsc. 200:83–104.

    Article  Google Scholar 

  • Lloyd, C.W., 1987, The plant cytoskeleton: The impact of fluorescence microscopy, Annu. Rev. Plant Physiol. 38:119–139.

    Article  CAS  Google Scholar 

  • Malkin, R., and Niyogi, K., 2001, Photosynthesis, In: Biochemistry & Molecular Biology of Plants (B.B. Buchanan, W. Gruissem, and R.L. Jones, eds.), American Society of Plant Biologists, New York, pp. 568–628.

    Google Scholar 

  • Mason, W.T., 1993, Fluorescent and luminescent probes for biological activity, Academic Press, London.

    Google Scholar 

  • McInerney, T., and Terzopoulos, D., 1996, Deformable models in medical image analysis: a survey, Med. Image Anal. 2:91–108.

    Article  Google Scholar 

  • McNally, J.G., Karpova, T., Cooper, J., and Conchello, J.A., 1999, Threedimensional imaging by deconvolution, Microsc. Methods 19:373–385.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, A.J., and Fricker, M.D., 2000, Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy, J. Microsc. 198:174–181.

    Article  CAS  Google Scholar 

  • Meyer, A.J., May, M.J., and Fricker, M., 2001, Quantitative in vivo measurement of glutathione in Arabidopsis cells, Plant J. 27:67–78.

    Article  CAS  PubMed  Google Scholar 

  • Monck, J.R., Oberhauser, A.F., Keating, T.J., and Fernandez, J.M., 1992, Thinsection ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells, J. Cell Biol. 116:745–759.

    Article  CAS  Google Scholar 

  • Nakajima, K., Sena, G., Nawy, T., and Benfey, P.N., 2001, Intracellular movement of the putative transcription factor SHR in root patterning, Nature 413:307–311.

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy, M.V., 1995, Freeze-substitution, In: Methods in Plant Cell Biology (D.W. Galbraith, H.J. Bohnert, and D.P. Bourque, eds.), Academic Press, New York, pp. 57–70.

    Google Scholar 

  • Potter, S., 1996, Vital imaging: Two photons are better than one, Curr. Biol. 6:1595–1598.

    CAS  Google Scholar 

  • Raghavan, V., 1995, Manipulation of pollen grains for gametophytic amd sporophytic types of growth, In: Methods in Plant Cell Biology (D.W. Galbraith, H.J. Bohnert, and D.P. Bourque, eds.), Academic Press, New York, pp. 367–377.

    Google Scholar 

  • Reddy, G.V., Heisler, M.G., Ehrhardt, D.W., and Meyerowitz, E.M., 2004, Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana, Development 131:4225–4237.

    Article  CAS  PubMed  Google Scholar 

  • Ruzin, S.E., 1999, Plant microtechnique and microscopy, Oxford University Press, Oxford.

    Google Scholar 

  • Running, M.P, Clark, S.E., and Meyerowitz, E.M., 1995, Confocal microscopy of the shoot apex, In: Methods in Plant Cell Biology (D.W. Galbraith, H.J. Bohnert, and D.P. Bourque, eds.), Academic Press, New York, pp. 217–230.

    Google Scholar 

  • Shav-Tal, Y., Singer, R.H., and Darzacq, X., 2004, Imaging gene expression in single living cells, Nat. Rev. Mol. Cell Biol. 5:856–862.

    Article  Google Scholar 

  • Shaw, P.J., 2001, Introduction to optical microscopy for plant cell biology, In: Plant Cell Biology, A Practical Approach (C. Hawes and B. Satiat- Jeunemaitre, eds.), Oxford University Press, Oxford, United Kingdom, pp. 1–33.

    Google Scholar 

  • Shaw, S.L., Kamyar, R., and Ehrhardt, D.W., 2003, Sustained microtubule treadmilling in Arabidopsis cortical arrays, Science 300:1715–1718.

    Article  CAS  PubMed  Google Scholar 

  • Sheen, J., 1995, Methods for mesophyll and bundle sheath cell separation, In: Methods in Plant Cell Biology (D.W. Galbraith, H.J. Bohnert, and D.P. Bourque, eds.), Academic Press, New York, pp. 305–314.

    Google Scholar 

  • Shimmen, T., and Yokota, E., 2004, Cytoplasmic streaming in plants, Curr. Biol. 16:68–72.

    CAS  Google Scholar 

  • Siemering, K.R., Golbik, R., Sever, R., and Haseloff, J., 1996, Mutations that suppress the thermosensitivity of green fluorescent protein, Curr. Biol. 6:1653–1663.

    CAS  Google Scholar 

  • Spence, J., 2001, Plant histology, In: Plant Cell Biology, A Practical Approach (C. Hawes and B. Satait-Jeunemaitre, eds.), Oxford University Press, Oxford, United Kingdom, pp.189–206.

    Google Scholar 

  • Sun, C.-K., Chu, S.-W., Chen, I.-S., Liu, T.-M., Cheng, P.-C., and Lin, B.-L., 2001, Multi-modality nonlinear microscopy, Conf. Lasers Electro Opt. Eur. Tech. Dig. 2001:222–227.

    Google Scholar 

  • Tirlapur, U., and König, K., 2001, Femtosecond near-infrared lasers as a novel tool for non-invasive real-time high-resolution time-lapse imaging of chloroplast division in living bundle sheat cells of Arabidopsis, Planta 214:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Tirlapur, U., and König, K., 2002, Two-photon near-infrared femtosecond laser scanning microscopy in plant biology, In: Confocal and Two-Photon Microscopy: Foundations, Applications and Advances (A. Diaspro, ed.), Wiley-Liss, New York, pp. 449–468.

    Google Scholar 

  • Volkmer, A., Subramaniam, V., Birch, D.J.S., and Jovin, T.M., 2000, One and two-photon excited fluorescence lifetimes and anisotropy decays of GFPs, Biophys. J. 78:1859–1898.

    Google Scholar 

  • von Arnim, A.G., Deng, X.M., and Stacey, M.G., 1998, Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants, Gene 221:35–43.

    Article  Google Scholar 

  • Vroom, J.M., de Grauw, K.J., Gerritsen, H.C., Bradshaw, D.J., Marsh, P.D.

    Google Scholar 

  • Watson, J.J., Birmingham, C., and Allison, C., 1999, Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy, Appl. Environ. Microbiol. 65:3502–3511.

    PubMed  Google Scholar 

  • Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E., and Benfey, P.N., 2000, Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot, Development, 127:595–603.

    CAS  PubMed  Google Scholar 

  • Xia, A.D., Wada, S., Tashiro, H., and Wuang, W.H., 1999, One and two-photon fluorescence from recombinant GFP, Arch. Biochem. Biophys. 372:280–284.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., and Webb, W., 1996, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B 13:481–491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moreno, N., Bougourd, S., Haseloff, J., Feijó, J.A. (2006). Imaging Plant Cells. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_44

Download citation

Publish with us

Policies and ethics