Skip to main content

Land Surface Emissivity

  • Reference work entry
  • First Online:
Encyclopedia of Remote Sensing

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definitions

Land surfaceemissivity (LSE). Average emissivity of an element of the surface of the Earth calculated from measured radiance and land surface temperature (LST) (for a complete definition, see Norman and Becker, 1995).

Atmospheric window. A spectral wavelength region in which the atmosphere is nearly transparent, separated by wavelengths at which atmospheric gases absorb radiation. The three pertinent regions are “visible/near-infrared” (∼0.4–2.5 μm), mid-wave infrared (∼3–5 μm) and long-wave infrared (∼8–14 μm).

Blackbody. An ideal material absorbing all incident energy or emitting all thermal energy possible. A cavity with a pinhole aperture approximates a blackbody.

Brightness temperature. The temperature of a blackbody that would give the radiance measured for a surface.

Color temperature. Temperature satisfying Planck’s law for spectral radiances measured at two different wavelengths.

Contrast stretch. Mathematical transform that adjusts the way in which acquired...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Barducci, A., and Pippi, I., 1996. Temperature and emissivity retrieval from remotely sensed images using the “grey body emissivity” method. IEEE Transactions on Geoscience and Remote Sensing, 34(3), 681–695.

    Google Scholar 

  • Becker, F., and Li, Z. L., 1990. Temperature-independent spectral indices in thermal infrared bands. Remote Sensing of Environment, 32, 17–33.

    Google Scholar 

  • Clark, R. N., Swayze, G. A., Livo, K. E., Kokaly, R. F., Sutley, S. J., Dalton, J. B., McDougal, R. R., and Gent, C. A., 2003. Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems. Journal of Geophysical Research, doi:10.1029/2002JE001847.

    Article  Google Scholar 

  • Dash, P., 2005. Land Surface Temperature and Emissivity Retrieval from satellite Measurements. Dissertation, Forshungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Wissenschaftliche Betichte, FZKA 7095, 99 pp. Available from http://bibliothek.fzk.de/zb/berichte/FZKA7095.pdf. Last Accessed July 7, 2013.

  • Gillespie, A. R., 1985. Lithologic mapping of silicate rocks using TIMS. In The TIMS Data Users’ Workshop, June 18–19, Jet Propulsion Laboratory Publication 86–38. Pasadena, CA: Jet Propulsion Lab, pp. 29–44.

    Google Scholar 

  • Gillespie, A. R., Kahle, A. B., and Walker, R. E., 1986. Color enhancement of highly correlated images I. Decorrelation and HSI contrast stretches. Remote Sensing of Environment, 20, 209–235.

    Google Scholar 

  • Gillespie, A. R., Matsunaga, T., Rokugawa, S., and Hook, S. J., 1998. Temperature and emissivity separation from advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113–1126.

    Google Scholar 

  • Gustafson, W. T., Gillespie, A. R., and Yamada, G., 2006. Revisions to the ASTER temperature/emissivity separation algorithm. In Sobrino, J. A. (ed.), Second Recent Advances in Quantitative Remote Sensing. Spain: Publicacions de la Universitat de València, pp. 770–775, ISBN 84-370-6533-X; 978-84-370-6533-5.

    Google Scholar 

  • Hackwell, J. A., Warren, D. W., Bongiovi, R. P., Hansel, S. J., Hayhurst, T. L., Mabry, D. J., Sivjee, M. G., and Skinner, J. W., 1996. LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing. Proceedings- SPIE The International Society For Optical Engineering, 2819, 102–107.

    Google Scholar 

  • Hook, S. J., Gabell, A. R., Green, A. A., and Kealy, P. S., 1992. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sensing of Environment, 42, 123–135.

    Google Scholar 

  • Hunt, G., 1980. Electromagnetic radiation: the communication link in remote sensing. In Siegal, B. S., and Gillespie, A. R. (eds.), Remote Sensing in Geology. New York: Wiley, pp. 5–45.

    Google Scholar 

  • Jaggi, S., Quattrochi, D., and Baskin, R., 1992. An algorithm for the estimation of bounds on the emissivity and temperatures from thermal multispectral airborne remotely sensed data (Abstract). In Realmuto, V. J. (ed.), Summary of the Third Annual JPL Airborne Geoscience Workshop, June 1–5, Jet Propulsion Laboratory Publication 92–14. Pasadena, CA: Jet Propulsion Lab, pp. 22–24.

    Google Scholar 

  • Kahle, A. B., and Rowan, L. C., 1980. Evaluation of multispectral middle infrared aircraft images for lithological mapping in the east Tintic Mountains, Utah. Geology, 8, 234–239.

    Google Scholar 

  • Kahle, A. B., Madura, D. P., and Soha, J. M., 1980. Middle infrared multispectral aircraft scanner data: analysis for geological applications. Applied Optics, 19, 2279–2290.

    Google Scholar 

  • Kealy, P. S., and Gabell, A. R., 1990. Estimation of emissivity and temperature using alpha coefficients. In Proceedings of the 2nd TIMS Workshop, Jet Propulsion Laboratory Publication 90–55. Pasadena, CA: Jet Propulsion Lab, pp. 11–15.

    Google Scholar 

  • Kealy, P. S., and Hook, S. J., 1993. Separating temperature and emissivity in thermal infrared multispectral scanner data: implication for recovering land surface temperatures. IEEE Transactions on Geoscience and Remote Sensing, 31(6), 1155–1164.

    Google Scholar 

  • Liang, S. L., 1997. Retrieval of land surface temperature and water vapor content from AVHRR thermal imagery using artificial neural network. International Geoscience and Remote Sensing Symposium Proceedings, 3, 1959–1961.

    Google Scholar 

  • Lyon, R. J. P., 1965. Analysis of rocks by spectral infrared emission (8 to 25 microns). Economic Geology, 60, 715–736.

    Google Scholar 

  • Mao, K., Shi, J., Tang, H., Li, Z.-L., Wang, X., and Chen, K.-S., 2008. A neural network technique for separating land surface emissivity and temperature from ASTER imagery. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 200–208.

    Google Scholar 

  • Matsunaga, T., 1994. A temperature-emissivity separation method using an empirical relationship between the mean, the maximum, and the minimum of the thermal infrared emissivity spectrum. Journal of the Remote Sensing Society of Japan, 14(2), 230–241 (in Japanese with English abstract).

    Google Scholar 

  • Mushkin, A., Balick, L. K., and Gillespie, A. R., 2005. Extending surface temperature and emissivity retrieval to the mid-infrared (3–5 μm) using the Multispectral Thermal Imager (MTI). Remote Sensing of Environment, 98, 141–151.

    Google Scholar 

  • Norman, J. M., and Becker, F., 1995. Terminology in thermal infrared remote sensing of natural surfaces. Remote Sensing Reviews, 12, 159–173.

    Google Scholar 

  • Palluconi, F. D., and Meeks, G. R., 1985. Thermal Infrared Multispectral Scanner (TIMS): An Investigator’s Guide to TIMS Data. Jet Propulsion Laboratory Publication 85–32. Pasadena, CA: Jet Propulsion Lab, 14 pp.

    Google Scholar 

  • Realmuto, V. J., 1990. Separating the effects of temperature and emissivity: emissivity spectrum normalization. In Proceedings of the 2nd TIMS Workshop, Jet Propulsion Laboratory Publication 90–55. Pasadena, CA: Jet Propulsion Lab, pp. 31–36.

    Google Scholar 

  • Salisbury, J. W., and D’Aria, D., 1992. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sensing of Environment, 42, 83–106.

    Google Scholar 

  • Slater, P. N., 1980. Remote Sensing, Optics and Optical Systems. Reading, MA: Addison–Wesley, p. 575.

    Google Scholar 

  • Soha, J. M., and Schwartz, A. A., 1978. Multispectral histogram normalization contrast enhancement. In Proceedings of the 5th Canadian Symposium on Remote Sensing, Victoria, British Columbia, Canada, pp. 86–93.

    Google Scholar 

  • Wan, Z., 1999. MODIS land-surface temperature algorithm theoretical basis document (LST ATBD), Version 3.3. NASA Contract NAS5-31370, 37 pp.

    Google Scholar 

  • Watson, K., 1992a. Two-temperature method for measuring emissivity. Remote Sensing of Environment, 42, 117–121.

    Google Scholar 

  • Watson, K., 1992b. Spectral ratio method for measuring emissivity. Remote Sensing of Environment, 42, 113–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Gillespie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Gillespie, A. (2014). Land Surface Emissivity. In: Njoku, E.G. (eds) Encyclopedia of Remote Sensing. Encyclopedia of Earth Sciences Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36699-9_77

Download citation

Publish with us

Policies and ethics