Skip to main content

Human Papillomavirus E6 and E7 Oncogenes

  • Chapter
The Papillomaviruses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdulkarim, B., Sabri, S., Deutsch, E., Chagraoui, H., Maggiorella, L., Thierry, J., Eschwege, F., Vainchenker, W., Chouaib, S., and Bourhis, J. (2002). Antiviral agent Cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene 21:2334–2346.

    Article  PubMed  CAS  Google Scholar 

  • Aisenberg, A.C. (1961). The Glycolysis and Respiration of Tumors. New York: Academic.

    Google Scholar 

  • Alani, R.M., Hasskarl, J., and Munger, K. (1998). Alterations in cyclin-dependent kinase 2 function during differentiation of primary human keratinocytes. Mol. Carcinog. 23:226–233.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, L.G., Garcia-Alai, M.M., Smal, C., Centeno, J.M., Iacono, R., Castano, E., Gualfetti, P., and de Prat-Gay, G. (2004). The HPV16 E7 viral oncoprotein self-assembles into defined spherical oligomers. Biochemistry 43:3310–3317.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Salas, L.M., Arpawong, T.E., and DiPaolo, J.A. (1999). Growth inhibition of cervical tumor cells by antisense oligodeoxynucleotides directed to the human papillomavirus type 16 E6 gene. Antisense Nucleic Acid Drug Dev. 9:441–450.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Salas, L.M., Cullinan, A.E., Siwkowski, A., Hampel, A., and DiPaolo, J.A. (1998). Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. Proc. Natl. Acad. Sci. U. S. A. 95:1189–1194.

    Article  PubMed  CAS  Google Scholar 

  • Angeline, M., Merle, E., and Moroianu, J. (2003). The E7 oncoprotein of high-risk human papillomavirus type 16 enters the nucleus via a nonclassical Ran-dependent pathway. Virology 317:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Antinore, M.J., Birrer, M.J., Patel, D., Nader, L., and McCance, D.J. (1996). The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. EMBO J. 15:1950–1960.

    PubMed  CAS  Google Scholar 

  • Armstrong, D.J., and Roman, A. (1993). The anomalous electrophoretic behavior of the human papillomavirus type-16 E7-protein is due to the high content of acidic amino acid residues. Biochem. Biophys. Res. Commun. 192:1380–1387.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, D.J., and Roman, A. (1997). The relative ability of human papillomavirus type 6 and human papillomavirus type 16 E7 proteins to transactivate E2F-responsive elements is promoter-and cell-dependent. Virology 239:238–246.

    Article  PubMed  CAS  Google Scholar 

  • Avvakumov, N., Torchia, J., and Mymryk, J.S. (2003). Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene 22:3833–3841.

    Article  PubMed  CAS  Google Scholar 

  • Baege, A.C., Disbrow, G.L., and Schlegel, R. (2004). IGFBP-3, a marker of cellular senescence, is overexpressed in human papillomavirus-immortalized cervical cells and enhances IGF-1-induced mitogenesis. J. Virol. 78:5720–5727.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, A., Pirisi, L., and Creek, K.E. (2004). NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression. J. Virol. 78:3953–3964.

    Article  PubMed  CAS  Google Scholar 

  • Balsitis, S.J., Sage, J., Duensing, S., Munger, K., Jacks, T., and Lambert, P.F. (2003). Recapitulation of the effects of the human papillomavirus type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo. Mol. Cell. Biol. 23:9094–9103.

    Article  PubMed  CAS  Google Scholar 

  • Band, V., DeCaprio, J.A., Delmolino, L., Kulesa, V., and Sager, R. (1991). Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J. Virol. 65:6671–6676.

    PubMed  CAS  Google Scholar 

  • Bandara, L.R., Buck, V.M., Zamanian, M., Johnston, L.H., and La Thangue, N.B. (1993). Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F. EMBO J. 12:4317–4324.

    PubMed  CAS  Google Scholar 

  • Banks, L., Edmonds, C., and Vousden, K.H. (1990). Ability of the HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells. Oncogene 5:1383–1389.

    PubMed  CAS  Google Scholar 

  • Bannasch, P., Klimek, F., and Mayer, D. (1997). Early bioenergetic changes in hepatocarcinogenesis: preneoplastic phenotypes mimic responses to insulin and thyroid hormone. J. Bioenerg. Biomembr. 29:303–313.

    Article  PubMed  CAS  Google Scholar 

  • Barbosa, M.S., Edmonds, C., Fisher, C., Schiller, J.T., Lowy, D.R., and Vousden, K.H. (1990). The region of the HPV E7 oncoprotein homologous to adenovirus E1a and SV40 large T antigen contains separate domains for Rb binding and casein kinase II. EMBO J. 9:153–160.

    PubMed  CAS  Google Scholar 

  • Barbosa, M.S., Lowy, D.R., and Schiller, J.T. (1989). Papillomavirus polypeptides E6 and E7 are zinc binding proteins. J. Virol. 63:1404–1407.

    PubMed  CAS  Google Scholar 

  • Barnard, P., and McMillan, N.A. (1999). The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-alpha. Virology 259:305–313.

    Article  PubMed  CAS  Google Scholar 

  • Barnard, P., Payne, E., and McMillan, N.A. (2000). The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha. Virology 277:411–419.

    Article  PubMed  CAS  Google Scholar 

  • Basile, J.R., Eichten, A., Zacny, V., and Munger, K. (2003). NK-kB-mediated induction of p21$cip1 / Waf1$by tumor necrosis factor a induces growth arrest and cytoprotection in normal human keratinocytes. Mol. Cancer Res. 1:262–270.

    PubMed  CAS  Google Scholar 

  • Basile, J.R., Zacny, V., and Munger, K. (2001). The cytokines tumor necrosis factor-alpha (TNF-alpha) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. J. Biol. Chem. 276:22522–22528.

    Article  PubMed  CAS  Google Scholar 

  • Bates, S., Phillips, A.C., Clark, P.A., Stott, F., Peters, G., Ludwig, R.L., and Vousden, K.H. (1998). p14ARF links the tumour suppressors RB and p53. Nature 395:124–125.

    Article  PubMed  CAS  Google Scholar 

  • Be, X., Hong, Y., Wei, J., Androphy, E.J., Chen, J.J., and Baleja, J.D. (2001). Solution structure determination and mutational analysis of the papillomavirus E6 interacting peptide of E6AP. Biochemistry 40:1293–1299.

    Article  PubMed  CAS  Google Scholar 

  • Bedell, M.A., Jones, K.H., Grossman, S.R., and Laimins, L.A. (1989). Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells. J. Virol. 63:1247–1255.

    PubMed  CAS  Google Scholar 

  • Beerheide, W., Bernard, H.U., Tan, Y.J., Ganesan, A., Rice, W.G., and Ting, A.E. (1999). Potential drugs against cervical cancer: zinc-ejecting inhibitors of the human papillomavirus type 16 E6 oncoprotein. J. Natl. Cancer Inst. 91:1211–1220.

    Article  PubMed  CAS  Google Scholar 

  • Beer-Romano, P., Glass, S., and Rolfe, M. (1997). Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells. Oncogene 14:595–602.

    Article  CAS  Google Scholar 

  • Bellanger, S., Blachon, S., Mechali, F., Bonne-Andrea, C., and Thierry, F. (2005). High-risk but not low-risk HPV E2 proteins bind to the APC activators Cdh1 and Cdc20 and cause genomic instability. Cell Cycle 4:1608–1615.

    Article  PubMed  CAS  Google Scholar 

  • Berezutskaya, E., and Bagchi, S. (1998). The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J. Biol. Chem. 272:30135–30140.

    Article  Google Scholar 

  • Berezutskaya, E., Yu, B., Morozov, A., Raychaudhuri, P., and Bagchi, S. (1997). Differential regulation of the pocket domains of the retinoblastoma family proteins by the HPV16 E7 oncoprotein. Cell Growth Differ. 8:1277–1286.

    PubMed  CAS  Google Scholar 

  • Berger, A.J., Baege, A., Guillemette, T., Deeds, J., Meyer, R., Disbrow, G., and Schlegel, R. (2002). Insulin-like growth factor-binding protein 3 expression increases during immortalization of cervical keratinocytes by human papillomavirus type 16 E6 and E7 proteins. Am. J. Pathol. 161:603–610.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, B.A., Bailly, C., Lenoir, M.-C., Darmon, M., Thierry, F., and Yaniv, M. (1989). The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J. Virol. 63:4317–4324.

    PubMed  CAS  Google Scholar 

  • Bernat, A., Avvakumov, N., Mymryk, J.S., and Banks, L. (2003). Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene 22:7871–7881.

    Article  PubMed  CAS  Google Scholar 

  • Bertherat, J. (1996). Insulin-like growth factor binding protein 3 (IGFBP-3): a novel target of the tumor suppressor p53 inhibiting cell growth. Eur. J. Endocrinol. 134:426–427.

    Article  PubMed  CAS  Google Scholar 

  • Bischof, O., Nacerddine, K., and Dejean, A. (2005). Human papillomavirus oncoprotein E7 targets the promyelocytic leukemia protein and circumvents cellular senescence via the Rb and p53 tumor suppressor pathways. Mol. Cell. Biol. 25:1013–1024.

    Article  PubMed  CAS  Google Scholar 

  • Blachon, S., Bellanger, S., Demeret, C., and Thierry, F. (2005). Nucleo-cytoplasmic shuttling of high-risk human papillomavirus E2 proteins induces apoptosis. J. Biol. Chem. 280:36088–36098.

    Article  PubMed  CAS  Google Scholar 

  • Blanton, R.A., Coltrera, M.D., Gown, A.M., Halbert, C.L., and McDougall, J.K. (1992). Expression of the HPV16 E7 gene generates proliferation in stratified squamous cell cultures which is independent of endogenous p53 levels. Cell Growth Differ. 3:791–802.

    PubMed  CAS  Google Scholar 

  • Boccardo, E., Noya, F., Broker, T.R., Chow, L.T., and Villa, L.L. (2004). HPV-18 confers resistance to TNF-alpha in organotypic cultures of human keratinocytes. Virology 328:233–243.

    Article  PubMed  CAS  Google Scholar 

  • Bohl, J., Das, K., Dasgupta, B., and Vande Pol, S.B. (2000). Competitive binding to a charged leucine motif represses transformation by a papillomavirus E6 oncoprotein. Virology 271:163–170.

    Article  PubMed  CAS  Google Scholar 

  • Bohl, J., Hull, B., and Vande Pol, S.B. (2001). Cooperative transformation and coexpression of bovine papillomavirus type 1 E5 and E7 proteins. J. Virol. 75:513–521.

    Article  PubMed  CAS  Google Scholar 

  • Borger, D.R., Mi, Y., Geslani, G., Zyzak, L.L., Batova, A., Engin, T.S., Pirisi, L., and Creek, K.E. (2000). Retinoic acid resistance at late stages of human papillomavirus type 16-mediated transformation of human keratinocytes arises despite intact retinoid signaling and is due to a loss of sensitivity to transforming growth factor-beta. Virology 270:397–407.

    Article  PubMed  CAS  Google Scholar 

  • Bouvard, V., Storey, A., Pim, D., and Banks, L. (1994). Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J. 13:5451–5459.

    PubMed  CAS  Google Scholar 

  • Boyer, S.N., Wazer, D.E., and Band, V. (1996). E7 protein of human papilloma virus16 induces degradation of retinoblastoma protein through the ubiquitin-proteosome pathway. Cancer Res. 56:4620–4624.

    PubMed  CAS  Google Scholar 

  • Braspenning, J., Marchini, A., Albarani, V., Levy, L., Ciccolini, F., Cremonesi, C., Ralston, R., Gissmann, L., and Tommasino, M. (1998). The CXXC Zn binding motifs of the human papillomavirus type 16 E7 oncoprotein are not required for its in vitro transforming activity in rodent cells. Oncogene 16:1085–1089.

    Article  PubMed  CAS  Google Scholar 

  • Brehm, A., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T. (1998). Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–601.

    Article  PubMed  CAS  Google Scholar 

  • Brehm, A., Nielsen, S.J., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T. (1999). The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18:2449–2458.

    Article  PubMed  CAS  Google Scholar 

  • Brokaw, J.L., Yee, C.L., and Munger, K. (1994). A mutational analysis of the amino terminal domain of the human papillomavirus type 16 E7 oncoprotein. Virology 205:603–607.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, J.L., Hurford, R.K., Classon, M., Koh, H., and Dyson, N.J. (2000). Requirements for cell cycle arrest by p16ink4a Mol. Cell 6:737–742.

    Article  PubMed  CAS  Google Scholar 

  • Butz, K., Denk, C., Ullmann, A., Scheffner, M., and Hoppe-Seyler, F. (2000). Induction of apoptosis in human papillomavirus-positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc. Natl. Acad. Sci. U. S. A. 97:6693–6697.

    Article  PubMed  CAS  Google Scholar 

  • Butz, K., Ristriani, T., Hengstermann, A., Denk, C., Scheffner, M., and Hoppe-Seyler, F. (2003). siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 22:5938–5945.

    Article  PubMed  CAS  Google Scholar 

  • Butz, K., Shahabeddin, L., Geisen, C., Spitkovsky, D., Ullmann, A., and Hoppe-Seyler, F. (1995). Functional p53 protein in human papillomavirus-positive cancer cells. Oncogene 10:927–936.

    PubMed  CAS  Google Scholar 

  • Cahill, D.P., Kinzler, K.W., Vogelstein, B., and Lengauer, C. (1999). Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9:M57–60.

    Article  PubMed  CAS  Google Scholar 

  • Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522.

    Article  PubMed  CAS  Google Scholar 

  • Cenci, M., French, D., Pisani, T., Alderisio, M., Lombardi, A.M., Marchese, R., Colelli, F., and Vecchione, A. (2003). p53 polymorphism at codon 72 is not a risk factor for cervical carcinogenesis in central Italy. Anticancer Res. 23:1385–1387.

    PubMed  CAS  Google Scholar 

  • Chen, J.J., Reid, C.E., Band, V., and Androphy, E.J. (1995). Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 269:529–531.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, S., Schmidt-Grimminger, D.C., Murant, T., Broker, T.R., and Chow, L.T. (1995). Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev. 9:2335–2349.

    Article  PubMed  CAS  Google Scholar 

  • Chien, W.M., Parker, J.N., Schmidt-Grimminger, D.C., Broker, T.R., and Chow, L.T. (2000). Casein kinase II phosphorylation of the human papillomavirus-18 E7 protein is critical for promoting S-phase entry. Cell Growth Differ. 11:425–435.

    PubMed  CAS  Google Scholar 

  • Chin, Y.E., Kitagawa, M., Su, W.C., You, Z.H., Iwamoto, Y., and Fu, X.Y. (1996). Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF1/CIP1 mediated by STAT1. Science 272:719–722.

    Article  PubMed  CAS  Google Scholar 

  • Cho, C.W., Poo, H., Cho, Y.S., Cho, M.C., Lee, K.A., Lee, S.J., Park, S.N., Kim, I.K., Jung, Y.K., Choe, Y.K., Yeom, Y.I., Choe, I.S., and Yoon, D.Y. (2002). HPV E6 antisense induces apoptosis in CaSki cells via suppression of E6 splicing. Exp. Mol. Med. 34:159–166.

    PubMed  CAS  Google Scholar 

  • Choo, C.K., Ling, M.T., Suen, C.K., Chan, K.W., and Kwong, Y.L. (2000). Retrovirus-mediated delivery of HPV16 E7 antisense RNA inhibited tumorigenicity of CaSki cells. Gynecol. Oncol. 78:293–301.

    Article  PubMed  CAS  Google Scholar 

  • Ciccolini, F., Dipasquale, G., Carlotti, F., Crawford, L., and Tommasino, M. (1994). Functional studies of E7 proteins from different HPV types. Oncogene 9:2633–2638.

    PubMed  CAS  Google Scholar 

  • Clemens, K.E., Brent, R., Gyuris, J., and Munger, K. (1995). Dimerization of the human papillomavirus E7 oncoprotein in vivo. Virology 214:289–293.

    Article  PubMed  CAS  Google Scholar 

  • Clements, A., Johnston, K., Mazzarelli, J.M., Ricciardi, R.P., and Marmorstein, R. (2000). Oligomerization properties of the viral oncoproteins adenovirus E1A and human papillomavirus E7 and their complexes with the retinoblastoma protein. Biochemistry 39:16033–16045.

    Article  PubMed  CAS  Google Scholar 

  • Cole, S.T., and Danos, O. (1987). Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome: phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J. Mol. Biol. 193:599–608.

    Article  PubMed  CAS  Google Scholar 

  • Creek, K.E., Geslani, G., Batova, A., and Pirisi, L. (1995). Progressive loss of sensitivity to growth control by retinoic acid and transforming growth factor-beta at late stages of human papillomavirus type 16-initiated transformation of human keratinocytes. Adv. Exp. Med. Biol. 375:117–135.

    PubMed  CAS  Google Scholar 

  • Creek, K.E., Jenkins, G.R., Khan, M.A., Batova, A., Hodam, J.R., Tolleson, W.H., and Pirisi, L. (1994). Retinoic acid suppresses human papillomavirus type 16 (HPV16)mediated transformation of human keratinocytes and inhibits the expression of the HPV16 oncogenes. Adv. Exp. Med. Biol. 354:19–35.

    PubMed  CAS  Google Scholar 

  • Darnell, G.A., Antalis, T.M., Rose, B.R., and Suhrbier, A. (2005). Silencing of integrated human papillomavirus type 18 oncogene transcription in cells expressing SerpinB2. J. Virol. 79:4246–4256.

    Article  PubMed  CAS  Google Scholar 

  • Das, K., Bohl, J., and Vande Pol, S.B. (2000). Identification of a second transforming function in bovine papillomavirus type 1 E6 and the role of E6 interactions with paxillin, E6BP, and E6AP. J. Virol. 74:812–816.

    Article  PubMed  CAS  Google Scholar 

  • Datto, M.B., Li, Y., Panus, J.F., Howe, D.J., Xiong, Y., and Wang, X.F. (1995). Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc. Natl. Acad. Sci. U. S. A. 92:5545–5549.

    Article  PubMed  CAS  Google Scholar 

  • Davies, R., Hicks, R., Crook, T., Morris, J., and Vousden, K. (1993). Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. J. Virol. 67:2521–2528.

    PubMed  CAS  Google Scholar 

  • DeFilippis, R.A., Goodwin, E.C., Wu, L., and DiMaio, D. (2003). Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J. Virol. 77:1551–1563.

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt, Y.Y., and Silverstein, S. (2001a). Interaction of zyxin, a focal adhesion protein, with the E6 protein from human papillomavirus type 6 results in its nuclear translocation. J. Virol. 75:11791–11802.

    Article  CAS  Google Scholar 

  • Degenhardt, Y.Y., and Silverstein, S.J. (2001b). Gps2, a protein partner for human papillomavirus E6 proteins. J. Virol. 75:151–160.

    Article  CAS  Google Scholar 

  • De Luca, P., Majello, B., and Lania, L. (1998). Retinoblastoma protein tethered to promoter DNA represses TBP-mediated transcription. J. Cell. Biochem. 70:281–287.

    Article  PubMed  Google Scholar 

  • DeMasi, J., Huh, K.W., Nakatani, Y., Munger, K., and Howley, P.M. (2005). Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc. Natl. Acad. Sci. U. S. A. 102:11486–11491.

    Article  PubMed  CAS  Google Scholar 

  • Demeret, C., Garcia-Carranca, A., and Thierry, F. (2003). Transcription-independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein. Oncogene 22:168–175.

    Article  PubMed  CAS  Google Scholar 

  • Demers, G.W., Foster, S.A., Halbert, C.L., and Galloway, D.A. (1994a). Growth arrest by induction of p53 in DNA damaged keratinocytes is bypasses by human papillomavirus 16 E7. Proc. Natl. Acad. Sci. U. S. A. 91:4382–4386.

    Article  CAS  Google Scholar 

  • Demers, G.W., Halbert, C.L., and Galloway, D.A. (1994b). Elevated wild-type p53 protein levels in human epithelial cell lines immortalized by the human papillomavirus type 16 E7 gene. Virology 198:169–174.

    Article  CAS  Google Scholar 

  • Deng, W., Lin, B.Y., Jin, G., Wheeler, C.G., Ma, T., Harper, J.W., Broker, T.R., and Chow, L.T. (2004). Cyclin/CDK regulates the nucleocytoplasmic localization of the human papillomavirus E1 DNA helicase. J. Virol. 78:13954–13965.

    Article  PubMed  CAS  Google Scholar 

  • Desaintes, C., Demeret, C., Goyat, S., Yaniv, M., and Thierry, F. (1997). Expression of the papillomavirus E2 protein in HeLa cells leads to apoptosis. EMBO J. 16:504–514.

    Article  PubMed  CAS  Google Scholar 

  • Desaintes, C., Goyat, S., Garbay, S., Yaniv, M., and Thierry, F. (1999). Papillomavirus E2 induces p53-independent apoptosis in HeLa cells. Oncogene 18:4538–4545.

    Article  PubMed  CAS  Google Scholar 

  • Dick, F.A., and Dyson, N.J. (2002). Three regions of the pRB pocket domain affect its inactivation by human papillomavirus E7 proteins. J. Virol. 76:6224–6234.

    Article  PubMed  CAS  Google Scholar 

  • Dick, F.A., Sailhamer, E., and Dyson, N.J. (2000). Mutagenesis of the pRB pocket reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. Mol. Cell. Biol. 20:3715–3727.

    Article  PubMed  CAS  Google Scholar 

  • DiCunto, F., Topley, G., Calautti, E., Hsiao, J., Ong, L., Seth, P.K., and Dotto, G.P. (1998). Inhibitory function of p21Cip1/WAF1 in differentiation of primary mouse keratinocytes independent of cell cycle control. Science 280:1069–1072.

    Article  CAS  Google Scholar 

  • Dostatni, N., Lambert, P.F., Sousa, R., Ham, J., Howley, P.M., and Yaniv, M. (1991). The functional BPV-1 E2 trans-activating protein can act as a repressor by preventing formation of the initiation complex. Genes Dev. 5:1657–1671.

    Article  PubMed  CAS  Google Scholar 

  • Dowhanick, J.J., McBride, A.A., and Howley, P.M. (1995). Suppression of cellular proliferation by the papillomavirus E2 protein. J. Virol. 69:7791–7799.

    PubMed  CAS  Google Scholar 

  • Duensing, S., Duensing, A., Crum, C.P., and Munger, K. (2001). Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61:2356–2360.

    PubMed  CAS  Google Scholar 

  • Duensing, S., Lee, L.Y., Duensing, A., Basile, J., Piboonniyom, S.O., Gonzalez, S.L., Crum, C.P., and Munger, K. (2000). The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc. Natl. Acad. Sci. U. S. A. 97:10002–10007.

    Article  PubMed  CAS  Google Scholar 

  • Duensing, S., and Munger, K. (2002). The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62:7075–7082.

    PubMed  CAS  Google Scholar 

  • Duensing, S., and Munger, K. (2003). Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of retinoblastoma protein family members. J. Virol. 77:12331–12335.

    Article  PubMed  CAS  Google Scholar 

  • Duensing, S., and Munger, K. (2004). Mechanisms of genomic instability in human cancer: insights from studies with human papillomavirus oncoproteins. Int. J. Cancer 109:157–162.

    Article  PubMed  CAS  Google Scholar 

  • Dyson, N. (1998). The regulation of E2F by pRB-family proteins. Genes Dev. 12:2245–2262.

    Article  PubMed  CAS  Google Scholar 

  • Dyson, N., Guida, P., Munger, K., and Harlow, E. (1992). Homologous sequences in adenovirus E1A and human papillomavirus E7 proteins mediate interaction with the same set of cellular proteins. J. Virol. 66:6893–6902.

    PubMed  CAS  Google Scholar 

  • Edmonds, C., and Vousden, K.H. (1989). A point mutational analysis of human papillomavirus type 16 E7 protein. J. Virol. 63:2650–2656.

    PubMed  CAS  Google Scholar 

  • Eichten, A., Rud, D.S., Grace, M., Piboonniyom, S.O., Zacny, V., and Munger, K. (2004). Molecular pathways executing the “trophic sentinel” response in HPV-16 E7expressing normal human diploid fibroblasts upon growth factor deprivation. Virology 319:81–93.

    Article  PubMed  CAS  Google Scholar 

  • Eichten, A., Westfall, M., Pietenpol, J.A., and Munger, K. (2002). Stabilization and functional impairment of the tumor suppressor p53 by the human papillomavirus type 16 E7 oncoprotein. Virology 295:74–95.

    Article  PubMed  CAS  Google Scholar 

  • Elbendary, A., Berchuck, A., Davis, P., Havrilesky, L., Bast, R.C., Jr., Iglehart, J.D., and Marks,J.R.(1994). Transforming growthfactor beta 1 can induceCIP1/WAF1 expression independent of the p53 pathway in ovarian cancer cells. Cel Growth Differ. 5:1301–1307.

    CAS  Google Scholar 

  • Favre-Bonvin, A., Reynaud, C., Kretz-Remy, C., and Jalinot, P. (2005). Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome. J. Virol. 79:4229–4237.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira, R., Magnaghi-Jaulin, L., Robin, P., Harel-Bellan, A., and Trouche, D. (1998). The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc. Natl. Acad. Sci. U. S. A. 95:10493–10498.

    Article  PubMed  CAS  Google Scholar 

  • Figge, J., Webster, T., Smith, T.F., and Paucha, E. (1988). Prediction of similar transforming regions in Simian virus 40 large T, adenovirus E1A and myc oncoproteins. J. Virol. 62:1814–1818.

    PubMed  CAS  Google Scholar 

  • Firzlaff, J.M., Luscher, B., and Eisenman, R.N. (1991). Negative charge at the casein kinase II phosphorylation site is important for transformation but not for Rb protein binding by the E7 protein of human papillomavirus type 16. Proc. Natl. Acad. Sci. U. S. A. 88:5187–5191.

    Article  PubMed  CAS  Google Scholar 

  • Flemington, E.K., Speck, S.H., and Kaelin, W.G., Jr. (1993). E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. U. S. A. 90:6914–6918.

    Article  PubMed  CAS  Google Scholar 

  • Flores, E.R., Allen-Hoffmann, B.L., Lee, D., and Lambert, P.F. (2000). The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J. Virol. 74:6622–6631.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine, V., van der Meijden, E., de Graaf, J., ter Schegget, J., and Struyk, L. (2000). A functional NF-kappaB binding site in the human papillomavirus type 16 long control region. Virology 272:40–49.

    Article  PubMed  CAS  Google Scholar 

  • Foster, S.A., and Galloway, D.A. (1996). Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12:1773–1779.

    PubMed  CAS  Google Scholar 

  • Francis, D.A., Schmid, S.I., and Howley, P.M. (2000). Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J. Virol. 74:2679–2686.

    Article  PubMed  CAS  Google Scholar 

  • Frattini, M.G., Hurst, S.D., Lim, H.B., Swaminathan, S., and Laimins, L.A. (1997). Abrogation of a mitotic checkpoint by E2 proteins from oncogenic human papillomaviruses correlates with increased turnover of the p53 tumor suppressor protein. EMBO J. 16:318–331.

    Article  PubMed  CAS  Google Scholar 

  • Frolov, M.V., and Dyson, N.J. (2004). Molecular mechanisms of E2F-dependent activation and pRB-mediated repression. J. Cell Sci. 117:2173–2181.

    Article  PubMed  CAS  Google Scholar 

  • Funk, J.O., Waga, S., Harry, J.B., Espling, E., Stillman, B., and Galloway, D.A. (1997). Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11:2090–2100.

    Article  PubMed  CAS  Google Scholar 

  • Gage, J.R., Meyers, C., and Wettstein, F.O. (1990). The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J. Virol. 64:723–730.

    PubMed  CAS  Google Scholar 

  • Gao, Q., Kumar, A., Singh, L., Huibregtse, J.M., Beaudenon, S., Srinivasan, S., Wazer, D.E., Band, H., and Band, V. (2002). Human papillomavirus E6-induced degradation of E6TP1 is mediated by E6AP ubiquitin ligase. Cancer Res. 62:3315–3321.

    PubMed  CAS  Google Scholar 

  • Gao, Q., Srinivasan, S., Boyer, S.N., Wazer, D.E., and Band, V. (1999). The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol. Cell. Biol. 19:733–744.

    PubMed  CAS  Google Scholar 

  • Gardiol, D., Kuhne, C., Glaunsinger, B., Lee, S.S., Javier, R., and Banks, L. (1999). Oncogenic human papillomavirus E6 proteins target the discs large tumor suppressor for proteasome-mediated degradation. Oncogene 18:5487–5496.

    Article  PubMed  CAS  Google Scholar 

  • Gewin, L., and Galloway, D.A. (2001). E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J. Virol. 75:7198–7201.

    Article  PubMed  CAS  Google Scholar 

  • Gewin, L., Myers, H., Kiyono, T., and Galloway, D.A. (2004). Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 18:2269–2282.

    Article  PubMed  CAS  Google Scholar 

  • Giarre, M., Caldeira, S., Malanchi, I., Ciccolini, F., Leao, M.J., and Tommasino, M. (2001). Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16$INK4a$-imposed G1 cell cycle arrest. J. Virol. 75:4705–4712.

    Article  PubMed  CAS  Google Scholar 

  • Glaunsinger, B.A., Lee, S.S., Thomas, M., Banks, L., and Javier, R. (2000). Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19:5270–5280.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, S.L., Stremlau, M., He, X., Basile, J.R., and Munger, K. (2001). Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol. 75:7583–7591.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, E.C., and DiMaio, D. (2000). Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl. Acad. Sci. U. S. A. 97:12513–12518.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, E.C., and DiMaio, D. (2001). Induced senescence in HeLa cervical carcinoma cells containing elevated telomerase activity and extended telomeres. Cell Growth Differ. 12:525–534.

    PubMed  CAS  Google Scholar 

  • Goodwin, E.C., Naeger, L.K., Breiding, D.E., Androphy, E.J., and DiMaio, D. (1998). Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. J. Virol. 72:3925–3934.

    PubMed  CAS  Google Scholar 

  • Goodwin, E.C., Yang, E., Lee, C.-J., Lee, H.-W., DiMaio, D., and Hwang, E.-S. (2000). Rapid induction of senescence in human cervical carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 97:10978–10983.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, I., Nickerson, J., Penman, S., and Stanley, M. (1991). Human papillomavirus 16 E7 protein is associated with the nuclear matrix. Proc. Natl. Acad. Sci. U. S. A. 88:11217–11221.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, H., Elston, R., Jackson, D., Ansell, K., Coleman, M., Winter, G., and Doorbar, J. (2006). Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting. J. Mol. Biol. 355:360–378.

    Article  PubMed  CAS  Google Scholar 

  • Grinstein, E., Wernet, P., Snijders, P.J., Rosl, F., Weinert, I., Jian, W., Kraft, R., Schewe, C., Schwabe, M., Hauptmann, S., Dietel, M., Meijer, C.J., and Royer, H.D. (2002). Nucleolin as activator of human papillomavirus type 18 oncogene transcription in cervical cancer. J. Exp. Med. 196:1067–1078.

    Article  PubMed  CAS  Google Scholar 

  • Grm, H.S., Massimi, P., Gammoh, N., and Banks, L. (2005). Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein. Oncogene 24:5149–5164.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, S.R., and Laimins, L.A. (1989). E6 protein of human papillomavirus type 18 binds zinc. Oncogene 4:1089–1093.

    PubMed  CAS  Google Scholar 

  • Guarguaglini, G., and Duncan, P.I. (2005). The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol. Biol. Cell 16:1095–1107.

    Article  PubMed  CAS  Google Scholar 

  • Gulliver, G.A., Herber, R.L., Liem, A., and Lambert, P.F. (1997). Both conserved region 1 (CR1) and CR2 of the human papillomavirus type 16 E7 oncogene are required for induction of epidermal hyperplasia and tumor formation in transgenic mice. J. Virol. 71:5905–5914.

    PubMed  CAS  Google Scholar 

  • Hahn, W.C., Stewart, S.A., Brooks, M.W., York, S.G., Eaton, E., Kurachi, A., Beijersbergen, R.L., Knoll, J.H.M., Meyerson, M., and Weinberg, R.A. (1999). Inhibition of telomerase limits the growth of human cancer cells. Nature Med. 5:1164–1170.

    Article  PubMed  CAS  Google Scholar 

  • Halbert, C.L., Demers, G.W., and Galloway, D.A. (1991). The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65:473–478.

    PubMed  CAS  Google Scholar 

  • Halbert, C.L., Demers, G.W., and Galloway, D.A. (1992). The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J. Virol. 66:2125–2134.

    PubMed  CAS  Google Scholar 

  • Hall, A.H.S., and Alexander, K.A. (2003). RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells. J. Virol. 77:6066–6069.

    Article  PubMed  CAS  Google Scholar 

  • Hamada, K., Alemany, R., Zhang, W.W., Hittelman, W.N., Lotan, R., Roth, J.A., and Mitchell, M.F. (1996a). Adenovirus-mediated transfer of a wild-type p53 gene and induction of apoptosis in cervical cancer. Cancer Res. 56:3047–3054.

    Google Scholar 

  • Hamada, K., Sakaue, M., Alemany, R., Zhang, W.W., Horio, Y., Roth, J.A., and Mitchelle, M.F. (1996b). Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA to human cervical cancer cells. Gynecol. Oncol. 63:219–227.

    Article  CAS  Google Scholar 

  • Hannon, G.J., and Beach, D. (1994). p15(INK4B) is a potential effector of TGF-betainduced cell cycle arrest. Nature 371:257–261.

    Article  PubMed  CAS  Google Scholar 

  • Hannon, G.J., Demetrick, D., and Beach, D. (1993). Isolation of the RB-related p130 through its interaction with CDK2 and cyclins. Genes Dev. 7:2378–2391.

    Article  PubMed  CAS  Google Scholar 

  • Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.

    Article  PubMed  CAS  Google Scholar 

  • Havard, L., Rahmouni, S., Boniver, J., and Delvenne, P. (2005). High levels of p105 (NFKB1) and p100 (NFKB2) proteins in HPV16-transformed keratinocytes: role of E6 and E7 oncoproteins. Virology 331:357–366.

    Article  PubMed  CAS  Google Scholar 

  • Havre, P.A., Yuan, J., Hedrick, L., Cho, K.R., and Glazer, P.M. (1995). p53 inactivation by HPV16 E6 results in increased mutagenesis in human cells. Cancer Res. 55:4420–4424.

    PubMed  CAS  Google Scholar 

  • Hawley-Nelson, P., Vousden, K.H., Hubbert, N.L., Lowy, D.R., and Schiller, J.T. (1989). HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8:3905–3910.

    PubMed  CAS  Google Scholar 

  • Heck, D.V., Yee, C.L., Howley, P.M., and Munger, K. (1992). Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc. Natl. Acad. Sci. U. S. A. 89:4442–4446.

    Article  PubMed  CAS  Google Scholar 

  • Helin, K., Lees, J.A., Vidal, M., Dyson, N., Harlow, E., and Fattaey, A. (1992). A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70:337–350.

    Article  PubMed  CAS  Google Scholar 

  • Helin, K., Wu, C.-L., Fattaey, A., Lees, J.A., Dynlacht, B., Ngwu, C., and Harlow, E. (1993). Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev. 7:1850–1861.

    Article  PubMed  CAS  Google Scholar 

  • Helt, A.M., and Galloway, D.A. (2001). Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J. Virol. 75:6737–6747.

    Article  PubMed  CAS  Google Scholar 

  • Hengstermann, A., Linares, L.K., Ciechanover, A., Whitaker, N.J., and Scheffner, M. (2001). Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc. Natl. Acad. Sci. U. S. A. 98:1218–1223.

    Article  PubMed  CAS  Google Scholar 

  • Herber, R., Liem, A., Pitot, H.C., and Lambert, P.F. (1996). Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol. 70:1873–1881.

    PubMed  CAS  Google Scholar 

  • Hernando, E., Nahle, Z., Juan, G., Diaz-Rodriguez, E., Alaminos, M., Hermann, M., Michel, L., Mittal, V., Gerald, W., Benezra, R., Lowe, S.W., and Cordon-Cardo, C. (2004). Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430:797–802.

    Article  PubMed  CAS  Google Scholar 

  • Heselmeyer, K., Schrock, E., du Manoir, S., Blegen, H., Shah, K., Steinbeck, R., Auer, G., and Ried, T. (1996). Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc. Natl. Acad. Sci. U. S. A. 93:479–484.

    Article  PubMed  CAS  Google Scholar 

  • Hickman, E.S., Picksley, S.M., and Vousden, K.H. (1994). Cells expressing HPV16 E7 continue cell cycle progression following DNA damage induced p53 activation. Oncogene 9:2177–2181.

    PubMed  CAS  Google Scholar 

  • Hietanen, S., Lain, S., Krausz, E., Blattner, C., and Lane, D.P. (2000). Activation of p53 in cervical carcinoma cells by small molecules. Proc. Natl. Acad. Sci. U. S. A. 97:8501–8506.

    Google Scholar 

  • Horner, S.M., DeFilippis, R.A., Manuelidis, L., and DiMaio, D. (2004). Repression of the human papillomavirus E6 gene initiates p53-dependent, telomerase-independent senescence and apoptosis in HeLa cervical carcinoma cells. J. Virol. 78:4063–4073.

    Article  PubMed  CAS  Google Scholar 

  • Hu, G., Liu, W., Hanania, E.G., Fu, S., Wang, T., and Deisseroth, A.B. (1995). Suppression of tumorigenesis by transcription units expressing the antisense E6 and E7 messenger RNA (mRNA) for the transforming proteins of the human papilloma virus and the sense mRNA for the retinoblastoma gene in cervical carcinoma cells. Cancer Gene Ther. 2:19–32.

    PubMed  Google Scholar 

  • Huang, L., Kinnucan, E., Wang, G., Beaudenon, S., Howley, P.M., Huibregtse, J.M., and Pavletich, N.P. (1999). Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286:1321–1326.

    Article  PubMed  CAS  Google Scholar 

  • Huang, P.S., Patrick, D.R., Edwards, G., Goodhart, P.J., Huber, H.E., Miles, L., Garsky, V.M., Oliff, A., and Heimbrook, D.C. (1993). Protein domains governing interactions between E2F, the retinoblastoma gene product, and human papillomavirus type 16 E7 protein. Mol. Cell. Biol. 13:953–960.

    PubMed  CAS  Google Scholar 

  • Huang, S.M., and McCance, D.J. (2002). Down regulation of the interleukin-8 promoter by human papillomavirus type 16 E6 and E7 through effects on CREB binding protein/p300 and P/CAF. J. Virol. 76:8710–8721.

    Article  PubMed  CAS  Google Scholar 

  • Hubbert, N.L., Sedman, S.A., and Schiller, J.T. (1992). Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes. J. Virol. 66:6237–6241.

    PubMed  CAS  Google Scholar 

  • Hudson, J.B., Bedell, M.A., McCance, D.J., and Laimins, L.A. (1990). Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J. Virol. 64:519–526.

    Google Scholar 

  • Huh, K.W., DeMasi, J., Ogawa, H., Nakatani, Y., Howley, P.M., and Munger, K. (2005). Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc. Natl. Acad. Sci. U. S. A. 102:11492–11497.

    Article  PubMed  CAS  Google Scholar 

  • Huibregtse, J.M., Scheffner, M., Beaudenon, S., and Howley, P.M. (1995). A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. U. S. A. 92:2563–2567.

    Article  PubMed  CAS  Google Scholar 

  • Huibregtse, J.M., Scheffner, M., and Howley, P.M. (1991). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J. 10:4129–4135.

    PubMed  CAS  Google Scholar 

  • Huibregtse, J.M., Scheffner, M., and Howley, P.M. (1993a). Cloning and expression of the cDNA for E6-AP: a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13:775–784.

    CAS  Google Scholar 

  • Huibregtse, J.M., Scheffner, M., and Howley, P.M. (1993b). Localization of the E6-AP regions that direct HPV E6 binding, association with p53, and ubiquination of associated proteins. Mol. Cell. Biol. 13:4918–4927.

    CAS  Google Scholar 

  • Hwang, E.-S., Naeger, L.K., and DiMaio, D. (1996). Activation of the endogenous p53 growth inhibitory pathway in HeLa cervical carcinoma cells by expression of the bovine papillomavirus E2 gene. Oncogene 12:795–803.

    PubMed  CAS  Google Scholar 

  • Hwang, E.-S., Riese, D.J., II, Settleman, J., Nilson, L.A., Honig, J., Flynn, S., and DiMaio, D. (1993). Inhibition of cervical carcinoma cell line proliferation by introduction of a bovine papillomavirus regulatory gene. J. Virol. 67:3720–3729.

    PubMed  CAS  Google Scholar 

  • Hwang, S.G., Lee, D., Kim, J., Seo, T., and Choe, J. (2002). Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J. Biol. Chem. 277:2923–2930.

    Article  PubMed  CAS  Google Scholar 

  • Iftner, T., Elbel, M., Schopp, B., Hiller, T., Loizou, J.I., Caldecott, K.W., and Stubenrauch, F. (2002). Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J. 21:4741–4748.

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, S., Allen, H.B., and Lambert, P.F. (1995). Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 69:2989–2997.

    PubMed  CAS  Google Scholar 

  • Jewers, R.J., Hildebrandt, P., Ludlow, J.W., Kell, B., and McCance, D.J. (1992). Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J. Virol. 66:1329–1335.

    PubMed  CAS  Google Scholar 

  • Jian, Y., Schmidt-Grimminger, D.-C., Chien, W.-M., Wu, X., Broker, T.R., and Chow, L.T. (1998). Post-transcriptional induction of p21cip1 protein by human papillomavirus E7 inhibits unscheduled DNA synthesis reactivated in differentiated keratinocytes. Oncogene 17:2027–2038.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, M., and Milner, J. (2002). Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21:6041–6048.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D.L., Alani, R.M., and Munger, K. (1997a). The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 11:2101–2111.

    Article  CAS  Google Scholar 

  • Jones, D.L., and Munger, K. (1997). Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein. J. Virol. 71:2905–2912.

    PubMed  CAS  Google Scholar 

  • Jones, D.L., Thompson, D.A., and Munger, K. (1997b). Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 239:97–107.

    Article  CAS  Google Scholar 

  • Jones, D.L., Thompson, D.A., Suh-Burgmann, E., Grace, M., and Munger, K. (1999). Expression of the HPV E7 oncoprotein mimics but does not evoke a p53-dependent cellular DNA damage response pathway. Virology 258:406–414.

    Article  PubMed  CAS  Google Scholar 

  • Kaelin, W.G., Jr., Krek, W., Sellers, W.R., DeCaprio, J.A., Ajchenbaum, F., Fuchs, C.S., Chittenden, T., Li, Y., Farnham, P.J., Blanar, M.A., Livingston, D.M., and Flemington, E.K. (1992). Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70:351–364.

    Article  PubMed  CAS  Google Scholar 

  • Kalejta, R.F., and Shenk, T. (2003). Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc. Natl. Acad. Sci. U. S. A. 100:3263–3268.

    Article  PubMed  CAS  Google Scholar 

  • Kamio, M., Yoshida, T., Ogata, H., Douchi, T., Nagata, Y., Inoue, M., Hasegawa, M., Yonemitsu, Y., and Yoshimura, A. (2004). SOC1 inhibits HPV-E7-mediated transformation by inducing degradation of E7 protein. Oncogene 23:3107–3115.

    Article  PubMed  CAS  Google Scholar 

  • Kanda, T., Furuno, A., and Yoshiike, K. (1988). Human papillomavirus type 16 open reading frame E7 encodes a transforming gene for rat 3Y1 cells. J. Virol.62:610–613.

    PubMed  CAS  Google Scholar 

  • Kang, H.T., Ju, J.W., Cho, J.W., and Hwang, E.S. (2003). Down-regulation of Sp1 activity through modulation of O-glycosylation by treatment with a low glucose mimetic, 2-deoxyglucose. J. Biol. Chem. 278:51223–51231.

    Article  PubMed  CAS  Google Scholar 

  • Kang, H.T., Lee, C.J., Seo, E.J., Bahn, Y.J., Kim, H.J., and Hwang, E.S. (2004). Transition to an irreversible state of senescence in HeLa cells arrested by repression of HPV E6 and E7 genes. Mech. Ageing Dev. 125:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Kao, W.H., Beaudenon, S.L., Talis, A.L., Huibregtse, J.M., and Howley, P.M. (2000). Human papillomavirus type 16 E6 induces self-ubiquitination of the E6AP ubiquitinprotein ligase. J. Virol. 74:6408–6417.

    Article  PubMed  CAS  Google Scholar 

  • Katich, S.C., Zerfass-Thome, K., and Hoffmann, I. (2001). Regulation of the Cdc25A gene by the human papillomavirus type 16 E7 oncogene. Oncogene 20:543–550.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, W.L., and Georgopoulos, C. (1997). The T/t common exon of simian virus 40, JC, and BK polyomavirus T antigens can functionally replace the J-domain of the Escherichia coli DnaJ molecular chaperone. Proc. Natl. Acad. Sci. U. S. A. 94:3679–3684.

    Article  PubMed  CAS  Google Scholar 

  • Kessis, T.D., Connolly, D.C., Hedrick, L., and Cho, K.R. (1996). Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene 13:427–431.

    PubMed  CAS  Google Scholar 

  • Kessis, T.D., Slebos, R.J.C., Nelson, W.G., Kastan, M.B., Plunkett, B.S., Han, S.M., Lorincz, A.T., Hedrick, L., and Cho, K.R. (1993). Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl. Acad. Sci. U. S. A. 90:3988–3992.

    Article  PubMed  CAS  Google Scholar 

  • Khanna, K.K., and Jackson, S.P. (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27:247–254.

    Article  PubMed  CAS  Google Scholar 

  • Khleif, S.N., DeGregori, J., Yee, C.L., Otterson, G.A., Kaye, F.J., Nevins, J.R., and Howley, P.M. (1996). Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc. Natl. Acad. Sci. U. S. A. 93:4350–4354.

    Article  PubMed  CAS  Google Scholar 

  • Kishino, T., Lalande, M., and Wagstaff, J. (1997). UBE3A/E6-AP mutations cause Andelman syndrome. Nature Genet. 15:70–73.

    Article  PubMed  CAS  Google Scholar 

  • Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Kleingelhutz, A.J. (1998). Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88.

    Article  PubMed  CAS  Google Scholar 

  • Kiyono, T., Hiraiwa, A., Fujita, M., Hayashi, Y., Akiyama, T., and Ishibashi, M. (1997). Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci. U. S. A. 94:11612–11616.

    Article  PubMed  CAS  Google Scholar 

  • Klaes, R., Friedrich, T., Spitkovsky, D., Ridder, R., Rudy, W., Petry, U., Dallenbach-Hellweg, G., Schmidt, D., and von Knebel Doeberitz, M. (2001). Overexpression of p16INK4Aas a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int. J. Cancer 92:276–284.

    Article  PubMed  CAS  Google Scholar 

  • Klausner, R.D. (2002). The fabric of cancer cell biology—weaving together the strands. Cancer Cell 1:3–10.

    Article  PubMed  CAS  Google Scholar 

  • Klingelhutz, A.J., Foster, S.A., and McDougall, J.K. (1996). Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Knight, J.S., Sharma, N., and Robertson, E.S. (2005). Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc. Natl. Acad. Sci. U. S. A. 102:18562–18566.

    Article  PubMed  CAS  Google Scholar 

  • Kovelman, R., Bilter, G.K., Glezer, E., Tsou, A.Y., and Barbosa, M.S. (1996). Enhanced transcriptional activation by E2 proteins from the oncogenic human papillomaviruses. J. Virol. 70:7549–7560.

    PubMed  CAS  Google Scholar 

  • Kubbutat, M.H.G., Jones, S.N., and Vousden, K.H. (1997). Regulation of p53 stability by Mdm2. Nature 387:299–303.

    Article  PubMed  CAS  Google Scholar 

  • Kühne, C., and Banks, L. (1998). E3-Ubiquitin Ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G Box. J.Biol. Chem. 273:34302–34309.

    Article  PubMed  Google Scholar 

  • Kumar, A., Zhao, Y., Meng, G., Zeng, M., Srinivasan, S., Delmolino, L.M., Gao, Q., Dimri, G.P., Weber, G.F., Wazer, D.E., Band, H., and Band, V. (2002). Human papillomavirus oncoprotein E6 inactivates the transcriptional coactivator human ADA3. Mol. Cell. Biol. 22:5801–5812.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Kao, W.H., and Howley, P.M. (1997). Physical interaction between specific E2 and HECT E3 enzymes determines functional cooperativity. J. Biol. Chem. 272:13548–13554.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Talis, A.L., and Howley, P.M. (1999). Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J. Biol. Chem. 274:18785–18792.

    Article  PubMed  CAS  Google Scholar 

  • Kyo, S., Inoue, M., Hayasaka, N., Inoue, T., Yutsudo, M., Tanizawa, O., and Hakura, A. (1994). Regulation of early gene expression of human papillomavirus type 16 by inflammatory cytokines. Virology 200:130–139.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C., Chang, J.H., Lee, H.S., and Cho, Y.S. (2002a). Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor. Genes Dev. 16:3199–3212.

    Google Scholar 

  • Lee, C., and Laimins, L.A. (2004). Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31. J. Virol. 78:12366–12377.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.J., Suh, E.J., Kang, H.T., Im, J.S., Um, S.J., Park, J.S., and Hwang, E.S. (2002b). Induction of senescence-like state and suppression of telomerase activity through inhibition of HPV E6/E7 gene expression in cells immortalized by HPV16 DNA. Exp. Cell Res. 277:173–182.

    Article  CAS  Google Scholar 

  • Lee, D., Kim, H.-Z., Jeong, K.W., Shim, Y.S., Horikawa, I., Barrett, J.C., and Choe, J. (2002c). Human papillomavirus E2 down-regulates the human telomerase reverse transcriptase promoter. J. Biol. Chem. 277:27748–27756.

    Article  CAS  Google Scholar 

  • Lee, J.O., Russo, A.A., and Pavletich, N.P. (1998). Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391:859–865.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.J., Cho, Y.S., Cho, M.C., Shim, J.H., Lee, K.A., Ko, K.K., Choe, Y.K., Park, S.N., Hoshino, T., Kim, S., Dinarello, C.A., and Yoon, D.Y. (2001). Both E6 and E7 oncoproteins of human papillomavirus 16 inhibit IL-18-induced IFN-gamma production in human peripheral blood mononuclear and NK cells. J. Immunol. 167:497–504.

    PubMed  CAS  Google Scholar 

  • Lee, S.S., Glaunsinger, B., Mantovani, F., Banks, L., and Javier, R.T. (2000). Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J. Virol. 74:9680–9693.

    Article  PubMed  CAS  Google Scholar 

  • Lees, E., Faha, B., Dulic, V., Reed, S.L., and Harlow, E. (1992). Cyclin E/cdk2 and cyclin A/cdk2 kinases associate with p107 and E2F in a temporally distinct manner. Genes Dev. 6:1874–1885.

    Article  PubMed  CAS  Google Scholar 

  • Li, R., Knight, J.D., Jackson, S.P., Tjian, R., and Botchan, M.R. (1991). Direct interaction between Sp1 and the BPV enhancer E2 protein mediates synergistic activation of transcription. Cell 65:493–505.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Labrecque, S., Gauzzi, M.C., Cuddihy, A.R., Wong, A.H., Pellegrini, S., Matlashewski, G., and Koromilas, A.E. (1999). The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 18:5727–5737.

    Article  PubMed  CAS  Google Scholar 

  • Lin, B.Y., Ma, T., Liu, J.S., Kuo, S.R., Jin, G., Broker, T.R., Harper, J.W., and Chow, L.T. (2000). HeLa cells are phenotypically limiting in cyclin E/CDK2 for efficient human papillomavirus DNA replication. J. Biol. Chem. 275:6167–6174.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Clements, A., Zhao, K., and Marmorstein, R. (2006). Structure of the human papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J. Biol. Chem. 281:578–586.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Yuan, H., Fu, B., Disbrow, G.L., Apolinario, T., Tomaic, V., Kelley, M.L., Baker, C.C., Huibregtse, J., and Schlegel, R. (2005). The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J. Biol. Chem. 280:10807–10816.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Chen, J.J., Gao, Q., Dalal, S., Hong, Y., Mansur, C.P., Band, V., and Androphy, E.J. (1999). Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J. Virol. 73:7297–7307.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Liu, Z., Androphy, E.J., Chen, J., and Baleja, J.D. (2004). Design and characterization of helical peptides that inhibit the E6 protein of papillomavirus. Biochemistry 43:7421–7431.

    Article  PubMed  CAS  Google Scholar 

  • Longworth, M.S., and Laimins, L.A. (2004a). The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J. Virol. 78:3533–3541.

    Article  CAS  Google Scholar 

  • Longworth, M.S., and Laimins, L.A. (2004b). Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol. Mol. Biol. Rev. 68:362–372.

    Article  CAS  Google Scholar 

  • Luo, R.X., Postigo, A.A., and Dean, D.C. (1998). Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473.

    Article  PubMed  CAS  Google Scholar 

  • Luscher-Firzlaff, J.M., Westendorf, J.M., Zwicker, J., Burkhardt, H., Henriksson, M., Muller, R., Pirollet, F., and Luscher, B. (1999). Interaction of the fork head domain transcription factor MPP2 with the human papilloma virus 16 E7 protein: enhancement of transformation and transactivation. Oncogene 18:5620–5630.

    Article  PubMed  CAS  Google Scholar 

  • Madeleine, M.M., Shera, K., Schwartz, S.M., Daling, J.R., Galloway, D.A., Wipf, G.C., Carter, J.J., McKnight, B., and McDougall, J.K. (2000). The p53 Arg72Pro polymorphism, human papillomavirus, and invasive squamous cell cervical cancer. Cancer Epidemiol. Biomarkers Prevent. 9:225–227.

    CAS  Google Scholar 

  • Maehama, T., Patzelt, A., Lengert, M., Hutter, K.J., Kanazawa, K., Hausen, H., and Rosl, F. (1998). Selective down-regulation of human papillomavirus transcription by 2-deoxyglucose. Int. J. Cancer 76:639–646.

    Article  PubMed  CAS  Google Scholar 

  • Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., Le Villain, J.P., Troalen, F., Trouche, D., and Harel-Bellan, A. (1998). Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391:601–605.

    Article  PubMed  CAS  Google Scholar 

  • Mailand, N., Falck, J., Lukas, C., Syljuasen, R.G., Welcker, M., Bartek, J., and Lukas, J. (2000). Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429.

    Article  PubMed  CAS  Google Scholar 

  • Makni, H., Franco, E.L., Kaiano, J., Villa, L.L., Labrecque, S., Dudley, R., Storey, A., and Matlashewski, G. (2000). p53 polymorphism in codon 72 and risk of human papillomavirus induced cervical cancer: effect of inter-laboratory variation. Int. J. Cancer 87:528–533.

    Article  PubMed  CAS  Google Scholar 

  • Mannhardt, B., Weinzimer, S.A., Wagner, M., Fiedler, M., Cohen, P., Jansen-Durr, P., and Zwerschke, W. (2000). Human papillomavirus type 16 E7 oncoprotein binds and inactivates growth-inhibitory insulin-like growth factor binding protein 3. Mol. Cell. Biol. 20:6483–6495.

    Article  PubMed  CAS  Google Scholar 

  • Martin, L.G., Demers, G.W., and Galloway, D.A. (1998). Disruption of the G1/S transition in human papillomavirus type 16 E7-expressing human cells is associated with altered regulation of cyclin E. J. Virol. 72:975–985.

    PubMed  CAS  Google Scholar 

  • Massague, J. (2004). G1 cell-cycle control and cancer. Nature 432:298–306.

    Article  PubMed  CAS  Google Scholar 

  • Massimi, P., and Banks, L. (1997). Repression of p53 transcriptional activity by the HPV E7 proteins. Virology 227:255–259.

    Article  PubMed  CAS  Google Scholar 

  • Massimi, P., and Banks, L. (2000). Differential phosphorylation of the HPV-16 E7 oncoprotein during the cell cycle. Virology 276:388–394.

    Article  PubMed  CAS  Google Scholar 

  • Massimi, P., Pim, D., Storey, A., and Banks, L. (1996). HPV-16 E7 and adenovirus E1a complex formation with TATA box binding protein is enhanced by casein kinase II phosphorylation. Oncogene 12:2325–2330.

    PubMed  CAS  Google Scholar 

  • Matlashewski, G., Schneider, J., Banks, L., Jones, N., Murray, A., and Crawford, L. (1987). Human papillomavirus type 16 cooperates with activated ras in transforming primary cells. EMBO J. 6:1741–1746.

    PubMed  CAS  Google Scholar 

  • Matsuura, T., Sutcliffe, J.S., Fang, P., Galjaard, R.J., Jiang, Y.H., Benton, C.S., Rommens, J.M., and Beaudet, A.L. (1997). De novo truncating mutations in E6AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nature Genet. 15:74–77.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, K., Leong, C.M., Baxter, L., Inglis, E., Yun, K., Backstrom, B.T., Doorbar, J., and Hibma, M. (2003). Depletion of Langerhans cells in human papillomavirus type 16-infected skin is associated with E6-mediated down regulation of E-cadherin. J. Virol. 77:8378–8385.

    Article  PubMed  CAS  Google Scholar 

  • Mavromatis, K.O., Jones, D.L., Mukherjee, R., Yee, C., Grace, M., and Münger, K. (1997). The carboxyl-terminal zinc-binding domain of the human papillomavirus E7 protein can be functionally replaced by the homologous sequences of the E6 protein. Virus Res. 52:109–118.

    Article  PubMed  CAS  Google Scholar 

  • Mazurek, S., Zwerschke, W., Jansen-Durr, P., and Eigenbrodt, E. (2001). Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem. J. 356:247–256.

    Article  PubMed  CAS  Google Scholar 

  • Mazzarelli, J.M., Atkins, G.B., Geisberg, J.V., and Ricciardi, R.P. (1995). The viral oncoproteins Ad5 E1A, HPV16 E7 and SV40 TAg bind a common region of the TBP-associated factor-110. Oncogene 11:1859–1864.

    PubMed  CAS  Google Scholar 

  • McIntyre, M.C., Frattini, M.G., Grossman, S.R., and Laimins, L.A. (1993). Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding. J. Virol. 67:3142–3150.

    PubMed  CAS  Google Scholar 

  • McIntyre, M.C., Ruesch, M.N., and Laimins, L.A. (1996). Human papillomavirus E7 oncoproteins bind a single form of cyclin E in a complex with cdk2 and p107. Virology 215:73–82.

    Article  PubMed  CAS  Google Scholar 

  • McMurray, H.R., and McCance, D.J. (2003). Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J. Virol. 77:9852–9861.

    Article  PubMed  CAS  Google Scholar 

  • McMurray, H.R., and McCance, D.J. (2004). Degradation of p53, not telomerase activation, by E6 is required for bypass of crisis and immortalization by human papillomavirus type 16 E6/E7. J. Virol. 78:5698–5706.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, C., Frattini, M.G., Hudson, J.B., and Laimins, L.A. (1992). Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science 257:971–973.

    Article  PubMed  CAS  Google Scholar 

  • Mi, Y., Borger, D.R., Fernandes, P.R., Pirisi, L., and Creek, K.E. (2000). Loss of transforming growth factor-beta (TGF-beta) receptor type I mediates TGF-beta resistance in human papillomavirus type 16-transformed human keratinocytes at late stages of in vitro progression. Virology 270:408–416.

    Article  PubMed  CAS  Google Scholar 

  • Mietz, J.A., Unger, T., Huibregtse, J.M., and Howley, P.M. (1992). The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 oncoprotein. EMBO J. 11:5013–5020.

    PubMed  CAS  Google Scholar 

  • Missero, C., DiCunto, F., Kiyokawa, H., Koff, A., and Dotto, G.P. (1996). The absence of p21Cip1/WAF1 alters keratinocytes growth and differentiation and promotes ras-tumor progression. Genes Dev. 10:3065–3075.

    Article  PubMed  CAS  Google Scholar 

  • Molinari, M., Mercurio, C., Dominiguez, J., Goubin, F., and Draetta, G.F. (2000). Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep. 1:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Moon, M.S., Lee, C.J., Um, S.J., Park, J.S., Yang, J.M., and Hwang, E.S. (2001). Effect of BPV1 E2-mediated inhibition of E6/E7 expression in HPV16-positive cervical carcinoma cells. Gynecol. Oncol. 80:168–175.

    Article  PubMed  CAS  Google Scholar 

  • Morozov, A., Shiyanov, P., Barr, E., Leiden, J.M., and Raychaudhuri, P. (1997). Accumulation of human papillomavirus type 16 E7 protein bypasses G1 arrest induced by serum deprivation and by the cell cycle inhibitor p21. J. Virol. 71:3451–3457.

    PubMed  CAS  Google Scholar 

  • Mulligan, G.J., Wong, J., and Jacks, T. (1998). p130 is dispensable in peripheral T lymphocytes: evidence for functional compensation by p107 and pRB. Mol. Cell. Biol. 18:206–220.

    PubMed  CAS  Google Scholar 

  • Munger, K., Phelps, W.C., Bubb, V., Howley, P.M., and Schlegel, R. (1989a). The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63:4417–4421.

    CAS  Google Scholar 

  • Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., and Howley, P.M. (1989b). Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8:4099–4105.

    CAS  Google Scholar 

  • Munger, K., Yee, C.L., Phelps, W.C., Pietenpol, J.A., Moses, H.L., and Howley, P.M. (1991). Biochemical and biological differences between E7 oncoproteins of the high-and low-risk human papillomavirus types are determined by amino-terminal sequences. J. Virol. 65:3943–3948.

    PubMed  CAS  Google Scholar 

  • Naeger, L.K., Goodwin, E.C., Hwang, E.-S., DeFilippis, R.A., Zhang, H., and DiMaio, D. (1999). Bovine papillomavirus E2 protein activates a complex growth-inhibitory program in p53-negative HT-3 cervical carcinoma cells that includes repression of cyclin A and cdc25A phosphatase genes and accumulation of hypophosphorylated retinoblastoma protein. Cell Growth Differ. 10:413–422.

    PubMed  CAS  Google Scholar 

  • Nakagawa, S., and Huibregtse, J.M. (2000). Human scribble (vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol. Cell. Biol. 20:8244–8253.

    Article  PubMed  CAS  Google Scholar 

  • Nakatani, Y., Konishi, H., Vassilev, A., Kurooka, H., Ishiguro, K., Sawada, J., Ikura, T., Korsmeyer, S.J., Qin, J., and Herlitz, A.M. (2005). p600, a unique protein required for membrane morphogenesis and cell survival. Proc. Natl. Acad. Sci. U. S. A. 102:15093–15098.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan, B.A., Holladay, E.B., Nixon, D.W., and Mauro, C.T. (1998). The effect of all-trans and 9-cis retinoic acid on the steady state level of HPV16 E6/E7 mRNA and cell cycle in cervical carcinoma cells. Life Sci. 63:565–573.

    Article  PubMed  CAS  Google Scholar 

  • Nauenburg, S., Zwerschke, W., and Jansen-Durr, P. (2001). Induction of apoptosis in cervical carcinoma cells by peptide aptamers that bind to the HPV-16 E7 oncoprotein. FASEB J. 15:592–594.

    PubMed  CAS  Google Scholar 

  • Ndisang, D., Budhram-Mahadeo, V., and Latchman, D.S. (1999). The Brn-3a transcription factor plays a critical role in regulating human papilloma virus gene expression and determining the growth characteristics of cervical cancer cells. J. Biol. Chem. 274:28521–28527.

    Article  PubMed  CAS  Google Scholar 

  • Ndisang, D., Budhram-Mahadeo, V., Pedley, B., and Latchman, D.S. (2001). The Brn-3a transcriptin factor plays a key role in regulating the growth of cervical cancer cells in vivo. Oncogene 20:4899–4903.

    Article  PubMed  CAS  Google Scholar 

  • Neary, K., and DiMaio, D. (1989). Open reading frames E6 and E7 of bovine papillomavirus type 1 are both required for full transformation of mouse C127 cells. J. Virol. 63:259–266.

    PubMed  CAS  Google Scholar 

  • Nguyen, D.X., and McCance, D.J. (2005). Role of the retinoblastoma tumor suppressor protein in cellular differentiation. J. Cell. Biochem. 94:870–879.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, M.L., Nguyen, M.M., Lee, D., Griep, A.E., and Lambert, P.F. (2003). The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6’s induction of epithelial hyperplasia in vivo. J. Virol.77:6957–6964.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, M., Song, S., Liem, A., Androphy, E., Liu, Y., and Lambert, P.F. (2002). A mutant of human papillomavirus type 16 E6 deficient in binding alpha-helix partners displays reduced oncogenic potential in vivo. J. Virol. 76:13039–13048.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, A., Ono, T., Ishimoto, A., Dowhanick, J.J., Frizzell, M.A., Howley, P.M., and Sakai, H. (2000). Mechanisms of human papillomavirus E2-mediated repression of viral oncogene expression and cervical cancer cell growth inhibition. J. Virol. 74:3752–3760.

    Article  PubMed  CAS  Google Scholar 

  • Nomine, Y., Charbonnier, S., Miguet, L., Potier, N., Van Dorsselaer, A., Atkinson, R.A., Trave, G., and Kieffer, B. (2005). 1H and 15N resonance assignment, secondary structure and dynamic behaviour of the C-terminal domain of human papillomavirus oncoprotein E6. J. Biomol. NMR 31:129–141.

    Article  PubMed  CAS  Google Scholar 

  • Noya, F., Chien, W.-M., Broker, T.R., and Chow, L.T. (2001). p21cip1 degradation in differentiated keratinocytes is abrogated by co-stabilization with cyclin E induced by HPV E7. J. Virol. 75:6121–6134.

    Article  PubMed  CAS  Google Scholar 

  • Oda, H., Kumar, S., and Howley, P.M. (1999). Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc. Natl. Acad. Sci. U. S. A. 96:9557–9562.

    Article  PubMed  CAS  Google Scholar 

  • Oh, K.J., Kalinina, A., Wang, J., Nakayama, K., Nakayama, K.I., and Bagchi, S. (2004a). The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1-and Skp2-containing E3 ligase. J. Virol. 78:5338–5346.

    Article  CAS  Google Scholar 

  • Oh, S.T., Kyo, S., and Laimins, L.A. (2001). Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol. 75:5559–5566.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S.T., Longworth, M.S., and Laimins, L.A. (2004b). Roles of the E6 and E7 proteins in the life cycle of low-risk human papillomavirus type 11. J. Virol. 78:2620–2626.

    Google Scholar 

  • Ojeda, J.M., Ampuero, S., Rojas, P., Prado, R., Allende, J.E., Barton, S.A., Chakraborty, R., and Rothhammer, F. (2003). p53 codon 72 polymorphism and risk of cervical cancer. Biol. Res. 36:279–283.

    Article  PubMed  CAS  Google Scholar 

  • Oldak, M., Smola, H., Aumailley, M., Rivero, F., Pfister, H., and Smola-Hess, S. (2004). The human papillomavirus type 8 E2 protein suppresses b4-integrin expression in primary human keratinocytes. J. Virol. 78:10738–10746.

    Article  PubMed  CAS  Google Scholar 

  • Pan, H., and Griep, A.E. (1994). Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev. 8:1285–1299.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.S., Kim, E.J., Kwon, H.J., Hwang, E.S., Namkoong, S.E., and Um, S.J. (2000). Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem. 275:6764–6769.

    Article  PubMed  CAS  Google Scholar 

  • Park, R.B., and Androphy, E.J. (2002). Genetic analysis of high-risk E6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J. Virol. 76:11359–11364.

    Article  PubMed  CAS  Google Scholar 

  • Patel, D., Huang, S.M., Baglia, L.A., and McCance, D.J. (1999). The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 18:5061–5072.

    Article  PubMed  CAS  Google Scholar 

  • Patel, D. Incassati, A., Wang, N., and McCance, D.J. (2004). Human papillomavirus type 16 E6 and E7 cause polyploidy in human keratinocytes and up-regulation of G2-M-phase proteins. Cancer Res. 64:1299–1306.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, D.R., Oliff, A., and Heimbrook, D.C. (1994). Identification of a novel retinoblastoma gene product binding site on human papillomavirus type 16 E7 protein. J. Biol. Chem. 269:6842–6850.

    PubMed  CAS  Google Scholar 

  • Peacock, J.W., Chung, S., Bristow, R.G., Hill, R.P., and Benchimol, S. (1995). The p53-mediated G(1) checkpoint is retained in tumorigenic rat embryo fibroblast clones transformed by the human papillomavirus type 16 E7 gene and EJ-ras. Mol. Cell. Biol. 15:1446–1454.

    PubMed  CAS  Google Scholar 

  • Pedersen, S.N. (1975). Enzymatic studies of glycogen metabolism in nonmalignant and malignant biopsies from the human uterine cervix. Acta Obstet. Gynecol. Scand. 54:443–448.

    Article  PubMed  CAS  Google Scholar 

  • Pennie, W.D., Grindlay, G.J., Cairney, M., and Campo, M.S. (1993). Analysis of the transforming functions of bovine papillomavirus type 4. Virology 193:614–620.

    Article  PubMed  CAS  Google Scholar 

  • Perea, S.E., Massimi, P., and Banks, L. (2000). Human papillomavirus type 16 E7 impairs the activation of the interferon regulatory factor-1. Int. J. Mol. Med. 5:661–666.

    PubMed  CAS  Google Scholar 

  • Phelps, W.C., Bagchi, S., Barnes, J.A., Raychaudhuri, P., Kraus, V.B., Munger, K., Howley, P.M., and Nevins, J.R. (1991). Analysis of trans activation by human papillomavirus type 16 E7 and adenovirus 12S E1A suggests a common mechanism. J. Virol. 65:6922–6930.

    PubMed  CAS  Google Scholar 

  • Phelps, W.C., Munger, K., Yee, C.L., Barnes, J.A., and Howley, P.M. (1992). Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J. Virol. 66:2418–2427.

    PubMed  CAS  Google Scholar 

  • Phelps, W.C., Yee, C.L., Munger, K., and Howley, P.M. (1988). The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to adenovirus E1a. Cell 53:539–547.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, A.C., and Vousden, K.H. (1997). Analysis of the interaction between human papillomavirus type 16 E7 and the TATA-binding protein, TBP. J. Gen. Virol. 78:905–909.

    PubMed  CAS  Google Scholar 

  • Pietenpol, J.A., Stein, R.W., Moran, E., Yaciuk, P., Schlegel, R., Lyons, R.M., Pittelkow, M.R., Münger, K., Howley, P.M., and Moses, H.L. (1990). TGF1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777–785.

    Article  PubMed  CAS  Google Scholar 

  • Polyak, K. (1996). Negative regulation of cell growth by TGF beta. Biochim. Biophys. Acta Rev. Cancer 1242:185–199.

    Article  Google Scholar 

  • Polyak, K., Kato, J.Y., Solomon, M.J., Sherr, C.J., Massague, J., Roberts, J.M., and Koff, A. (1994). p27(kip1), a cyclin-cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 8:9–22.

    Article  PubMed  CAS  Google Scholar 

  • Psyrri, A., DeFilippis, R.A., Edwards, A.P.B., Yates, K.E., Manuelidis, L., and DiMaio, D. (2004). Role of the retinoblastoma pathway in senescence triggered by repression of the human papillomavirus E7 protein in cervical carcinoma cells. Cancer Res. 64:3079–3086.

    Article  PubMed  CAS  Google Scholar 

  • Rehtanz, M., Schmidt, H.M., Warthorst, U., and Steger, G. (2004). Direct interaction between nucleosome assembly protein 1 and the papillomavirus E2 proteins involved in activation of transcription. Mol. Cell. Biol. 24:2153–2168.

    Article  PubMed  CAS  Google Scholar 

  • Reinstein, E., Scheffner, M., Oren, M., Ciechanover, A., and Schwartz, A. (2000). Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene 19:5944–5950.

    Article  PubMed  CAS  Google Scholar 

  • Ren, B., Cam, H., Takahashi, Y., Volkert, T., Terragni, J., Young, R.A., and Dynlacht, B.D. (2002). E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev. 16:245–256.

    Article  PubMed  CAS  Google Scholar 

  • Reshkin, S.J., Bellizzi, A., Caldeira, S., Albarani, V., Malanchi, I., Poignee, M., Alunni-Fabbroni, M., Casavola, V., and Tommasino, M. (2000). Na +/H+exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J. 14:2185–2197.

    Article  PubMed  CAS  Google Scholar 

  • Rey, O., Lee, S., Baluda, M.A., Swee, J., Ackerson, B., Chiu, R., and Park, N.H. (2000). The E7 oncoprotein of human papillomavirus type 16 interacts with F-actin in vitro and in vivo. Virology 268:372–381.

    Article  PubMed  CAS  Google Scholar 

  • Reznikoff, C.A., Belair, C., Savelieva, E., Zhai, Y., Pfeifer, K., Yeager, T., Thompson, K.J., DeVries, S., Bindley, C., and Newton, M.A. (1994). Long-term genome stability and minimal genotypic and phenotypic alterations in HPV-16 E7-, but not E6-immortalized human uroepithelial cells. Genes Dev. 8:2227–2240.

    Article  PubMed  CAS  Google Scholar 

  • Riley, R.R., Duensing, S., Brake, T., Munger, K., Lambert, P.F., and Arbeit, J.M. (2003). Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 63:4862–4871.

    PubMed  CAS  Google Scholar 

  • Roeder, G.E., Parish, J.L., Stern, P.L., and Gaston, K. (2004). Herpes simplex virus VP22human papillomavirus E2 fusion proteins produced in mammalian or bacterial cells enter mammalian cells and induce apoptotic cell death. Biotechnol. Appl. Biochem. 40:157–165.

    Article  PubMed  CAS  Google Scholar 

  • Romanczuk, H., Thierry, F., and Howley, P.M. (1990). Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. J. Virol. 64:2849–2859.

    PubMed  CAS  Google Scholar 

  • Ronco, L.V., Karpova, A.Y., Vidal, M., and Howley, P.M. (1998). Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 12:2061–2072.

    Article  PubMed  CAS  Google Scholar 

  • Rosl, F., Durst, M., and zur Hausen, H. (1988). Selective suppresion of human papillomavirus transcription in non tumorigenic cells by S-azacytidine. EMBO J. 7:1321–1328.

    PubMed  CAS  Google Scholar 

  • Ross, J.F., Liu, X., and Dynlacht, B.D. (1999). Mechanism of transcriptional repression of E2F by the retinoblastoma tumor suppressor protein. Mol. Cell. 3:195–205.

    Article  PubMed  CAS  Google Scholar 

  • Ruesch, M.N., and Laimins, L.A. (1997). Initiation of DNA synthesis by human papillomavirus E7 oncoproteins is resistant to p21-mediated inhibition of cyclin E-cdk2 activity. J. Virol. 71:5570–5578.

    PubMed  CAS  Google Scholar 

  • Ruesch, M.N., and Laimins, L.A. (1998). Human papillomavirus oncoproteins alter differentiation-dependent cell cycle exit on suspension in semisolid medium. Virology 250:19–29.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Perez, A.-M., Soriano, S., Clarke, A.R., and Gaston, K. (1997). Disruption of the human papillomavirus type 16 E2 gene protects cervical carcinoma cells from E2F-induced apoptosis. J. Gen. Virol. 78:3009–3018.

    PubMed  CAS  Google Scholar 

  • Sang, B.-C., and Barbosa, M.S. (1992). Single amino acid substitutions in “low-risk” human papillomavirus (HPV) type 6 E7 protein enhance features characteristic of the “high-risk” HPV E7 oncoprotein. Proc. Natl. Acad. Sci. U. S. A. 89:8063–8067.

    Article  PubMed  CAS  Google Scholar 

  • Sarver, N., Rabson, M.S., Yang, Y.C., Byrne, J.C., and Howley, P.M. (1984). Localization and analysis of bovine papillomavirus type 1 transforming functions. J. Virol. 52:377–388.

    PubMed  CAS  Google Scholar 

  • Sato, H., Watanabe, S., Furuno, A., and Yoshiike, K. (1989). Human papillomavirus type 16 E7 protein expressed in Eschericia coli and monkey COS-1 cells: immunofluorescence detection of the nuclear E7 protein. Virology 170:311–315.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer, A.J., Nguyen, M., Liem, A., Lee, D., Montagna, C., Lambert, P.F., Ried, T., and Difilippantonio, M.J. (2004). E6 and E7 oncoproteins induce distinct patterns of chromosomal aneuploidy in skin tumors from transgenic mice. Cancer Res. 64:538–546.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Huibregtse, J.M., Vierstra, R.D., and Howley, P.M. (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Munger, K., Byrne, J.C., and Howley, P.M. (1991). The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. U. S. A. 88:5523–5527.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Nuber, U., and Huibregtse, J. (1995). Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J., and Howley, P.M. (1990). The E6 oncoprotein encoded by human papillomavirus type 16 and 18 promotes the degradation of p53. Cell 63:1129–1136.

    Article  PubMed  CAS  Google Scholar 

  • Schiller, J.T., Vass, W.C., and Lowy, D.R. (1984). Identification of a second transforming region in bovine papillomavirus DNA. Proc. Natl. Acad. Sci. U. S. A. 81:7880–7884.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, B., De-Medina, T., Syken, J., Vidal, M., and Munger, K. (1998). A novel human DnaJ protein, hTid-1, a homolog of the Drosophila tumor suppressor protein Tid56, can interact with the human papillomavirus type 16 E7 oncoprotein. Virology 247:74–85.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, A., Harry, J.B., Rapp, B., Wettstein, F.O., and Iftner, T. (1994). Comparison of the properties of the E6 and E7 genes of low-and high-risk cutaneous papillomaviruses reveals strongly transforming and high RB-binding activity for the E7 protein of the low-risk human papillomavirus type 1. J. Virol. 68:7051–7059.

    PubMed  CAS  Google Scholar 

  • Schneider-Gädicke, A., and Schwarz, E. (1986). Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J. 5:2285–2292.

    PubMed  Google Scholar 

  • Schneider-Maunoury, S., Croissant, O., and Orth, G. (1987). Integration of human papillomavirus type 16 DNA sequences: a possible early event in the progression of genital tumors. J. Virol. 61:3295–3298.

    PubMed  CAS  Google Scholar 

  • Seavey, S.E., Holubar, M., Saucedo, L.J., and Perry, M.E. (1999). The E7 oncoprotein of human papillomavirus type 16 stabilizes p53 through a mechanism independent of p19(ARF). J. Virol. 73:7590–7598.

    PubMed  CAS  Google Scholar 

  • Sellers, W.R., Novitch, B.G., Miyake, S., Heith, A., Otterson, G.A., Kaye, F.J., Lassar, A.B., and Kaelin, W.G., Jr. (1998). Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev. 12:95–106.

    Article  PubMed  CAS  Google Scholar 

  • Shamanin, V.A., and Androphy, E.J. (2004). Immortalization of human mammary epithelial cells is associated with inactivation of the p14ARF-p53 pathway. Mol. Cell. Biol. 24:2144–2152.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, Q., Denis, D., Ratnofsky, M., Roberts, T.M., DeCaprio, J.A., and Schaffhausen, B. (1997). The DnaJ domain of polyomavirus large T antigen is required to regulate Rb family tumor suppressor function. J. Virol. 71:9410–9416.

    PubMed  CAS  Google Scholar 

  • Silver, P.A., and Way, J.C. (1993). Eukaryotic dnaJ homologs and the specificity of hsp70 activity. Cell 74:5–6.

    Article  PubMed  CAS  Google Scholar 

  • Singh, L., Gao, Q., Kumar, A., Gotoh, T., Wazer, D.E., Band, H., Feig, L.A., and Band, V. (2003). The high-risk human papillomavirus type 16 E6 counters the GAP function of E6TP1 toward small Rap G proteins. J. Virol. 77:1614–1620.

    Article  PubMed  CAS  Google Scholar 

  • Slebos, R.J.C., Lee, M.H., Plunkett, B.S., Kessis, T.D., Williams, B.O., Jacks, T., Hedrick, L., Kastan, M.B., and Cho, K.R. (1994). p53-dependent G(1) arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc. Natl. Acad. Sci. U. S. A. 91:5320–5324.

    Article  PubMed  CAS  Google Scholar 

  • Smith-McCune, K., Kalman, D., Robbins, C., Shivakumar, S., Yuschenkoff, L., and Bishop, J.M. (1999). Intranuclear localization of human papillomavirus 16 E7 during transformation and preferential binding of E7 to the Rb family member p130. Proc. Natl. Acad. Sci. U. S. A. 96:6999–7004.

    Article  PubMed  CAS  Google Scholar 

  • Smotkin, D., and Wettstein, F.O. (1986). Transcription of human papillomavirus type 16 early genes in cervical cancer and a cerivcal cancer derived cell line and identification of the E7 protein. Proc. Natl. Acad. Sci. U. S. A. 83:4680–4684.

    Article  PubMed  CAS  Google Scholar 

  • Smotkin, D., and Wettstein, F.O. (1987). The major human papillomavirus protein in cervical cancers is a cytoplasmic phosphoprotein. J. Virol. 61:1686–1689.

    PubMed  CAS  Google Scholar 

  • Song, S., Gulliver, G.A., and Lambert, P.F. (1998). Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways. Proc. Natl. Acad. Sci. U. S. A. 95:2290–2295.

    Article  PubMed  CAS  Google Scholar 

  • Song, S., Liem, A., Miller, J.A., and Lambert, P.F. (2000). Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology 267:141–150.

    Article  PubMed  CAS  Google Scholar 

  • Song, S., Pitot, H.C., and Lambert, P.F. (1999). The human papillomavirus type 16 E6 alone is sufficient to induce carcinomas in transgenic animals. J. Virol. 73:5887–5893.

    PubMed  CAS  Google Scholar 

  • Southern, S.A., Lewis, M.H., and Herrington, C.S. (2004). Induction of tetrasomy by human papillomavirus type 16 E7 protein is independent of pRb binding and disruption of differentiation. Br. J. Cancer 90:1949–1954.

    Article  PubMed  CAS  Google Scholar 

  • Southern, S.A., Noya, F., Meyers, C., Broker, T.R., Chow, L.T., and Herrington, C.S. (2001). Tetrasomy is induced by human papillomavirus type 18 E7 gene expression in keratinocyte raft cultures. Cancer Res. 61:4858–4863.

    PubMed  CAS  Google Scholar 

  • Spitkovsky, D., Hehner, S.P., Hofmann, T.G., Moller, A., and Schmitz, M.L. (2002). The human papillomavirus oncoprotein E7 attenuates NF-kappa B activation by targeting the Ikappa B kinase complex. J. Biol. Chem. 277:25576–25582.

    Article  PubMed  CAS  Google Scholar 

  • Spruck, C.H., Won, K.A., and Reed, S.I. (1999). Deregulated cyclin E induces chromosome instability. Nature 401:297–300.

    Article  PubMed  CAS  Google Scholar 

  • Srivenugopal, K.S., and Ali-Osman, F. (2002). The DNA repair protein, O(6)-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 21:5940–5945.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, T. (2001). Centrosome duplication: a centriolar pas de deux. Cell 105:417–420.

    Article  PubMed  CAS  Google Scholar 

  • Steele, C., Cowsert, L.M., and Shillitoe, E.J. (1993). Effects of human papillomavirus type 18-specific antisense oligonucleotides on the transformed phenotype of human carcinoma cell lines. Cancer Res. 53:2330–2337.

    PubMed  CAS  Google Scholar 

  • Steele, C., Sacks, P.G., Adler-Storthz, K., and Shillitoe, E.J. (1992). Effect on cancer cells of plasmids that express antisense RNA of human papillomavirus type 18. Cancer Res. 52:4706–4711.

    PubMed  CAS  Google Scholar 

  • Steger, G., and Corbach, S. (1997). Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. J. Virol. 71:50–58.

    PubMed  CAS  Google Scholar 

  • Sterlinko, H., Weber, M., Elston, R., McIntosh, P., Griffin, H., Banks, L., and Doorbar, J. (2004). Inhibition of E6-induced degradation of its cellular substrates by novel blocking peptides. J. Mol. Biol. 335:971–985.

    Article  CAS  Google Scholar 

  • Stoppler, H., Conrad Stoppler, M., Johnson, E., Simbulan-Rosenthal, C.M., Smulson, M.E., Iyer, S., Rosenthal, D.S., and Schlegel, R. (1998). The E7 protein of human papillomavirus type 16 sensitizes primary human keratinocytes to apoptosis. Oncogene 17:1207–1214.

    Article  PubMed  CAS  Google Scholar 

  • Storchova, Z., and Pellman, D. (2004). From polyploidy to aneuploidy, genome instability and cancer. Nature Rev. Mol. Cell. Biol. 5:45–54.

    Article  CAS  Google Scholar 

  • Storey, A., Oates, D., Banks, L., Crawford, L., and Crook, T. (1991). Anti-sense phosphorothioate oligonucleotides have both specific and non-specific effects on cells containing human papillomavirus type 16. Nucleic Acids Res. 19:4109–4114.

    Article  PubMed  CAS  Google Scholar 

  • Storey, A., Thomas, M., Kalita, A., Harwood, C., Gardiol, D., Mantovani, F., Breuer, J., Leigh, I.M., Matlashewski, G., and Banks, L. (1998). Role of a p53 polymorphism in the development of human papillomavirus-assocated cancer. Nature 393:229–234.

    Article  PubMed  CAS  Google Scholar 

  • Stott, F.J., Bates, S., James, M.C., McConnell, B.B., Starborg, M., Brookes, S., Palmero, I., Ryan, K., Hara, E., Vousden, K.H., and Peters, G. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17:5001–5014.

    Article  PubMed  CAS  Google Scholar 

  • Stubdal, H., Zalvide, J., Campbell, K.S., Schweitzer, C., Roberts, T.M., and DeCaprio, J.A. (1997). Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol. Cell. Biol. 17:4979–4990.

    PubMed  CAS  Google Scholar 

  • Stubdal, H., Zalvide, J., and Decaprio, J.A. (1996). Simian virus 40 large T antigen alters the phosphorylation state of the RB-related proteins p130 and p107. J. Virol. 70:2781–2788.

    PubMed  CAS  Google Scholar 

  • Stubenrauch, F., and Laimins, L.A. (1999). Human papillomavirus life cycle: active and latent phases. Sem. Cancer Biol. 9:379–386.

    Article  CAS  Google Scholar 

  • Talis, A.L., Huibregtse, J.M., and Howley, P.M. (1998). The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV) positive and HPV negative cells. J. Biol. Chem. 273:6439–6445.

    Article  PubMed  CAS  Google Scholar 

  • Tan, T.M., and Ting, R.C. (1995). In vitro and in vivo inhibition of human papillomavirus type 16 E6 and E7 genes. Cancer Res. 55:4599–4605.

    PubMed  CAS  Google Scholar 

  • Tasaki, T., Mulder, L.C., Iwamatsu, A., Lee, M.J., Davydov, I.V., Varshavsky, A., Muesing, M., and Kwon, Y.T. (2005). A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol. Cell. Biol. 25:7120–7136.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, F., Benotmane, M.A., Demeret, C., Mori, M., Teissier, S., and Desaintes, C. (2004). A genomic approach reveals a novel mitotic pathway in papillomavirus carcinogenesis. Cancer Res. 64:895–903.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, F., and Howley, P.M. (1991). Functional analysis of E2-mediated repression of the HPV18 P105 promoter. New Biol. 3:90–100.

    PubMed  CAS  Google Scholar 

  • Thierry, F., and Yaniv, M. (1987). The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 6:3391–3397.

    PubMed  CAS  Google Scholar 

  • Thomas, D.M., Yang, H.S., Alexander, K.A., and Hinds, P.W. (2003). Role of the retinoblastoma protein in differentiation and senescence. Cancer Biol. Ther. 2:124–130.

    PubMed  CAS  Google Scholar 

  • Thomas, J.T., Hubert, W.G., Ruesch, M.N., and Laimins, L.A. (1999). Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc. Natl. Acad. Sci. U. S. A. 96:8449–8454.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J.T., and Laimins, L.A. (1998). Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J. Virol. 72:1131–1137.

    PubMed  CAS  Google Scholar 

  • Thomas, M., and Banks, L. (1998). Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 17:2943–2954.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, M., and Banks, L. (1999). Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J. Gen. Virol. 80:1513–1517.

    PubMed  CAS  Google Scholar 

  • Thomas, M., Laura, R., Hepner, K., Guccione, E., Sawyers, C., Lasky, L., and Banks, L. (2002). Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 21:5088–5096.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, D.A., and Belinsky, G. (1997). The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene 15:3025–3036.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, D.A., Zacny, V., Belinsky, G.S., Clason, M., Jones, D.L., Schlegel, R., and Münger, K. (2001). The HPV E7 oncoprotein E7 inhibits tumor necrosis factor a-mediated apoptosis in normal human fibroblasts. Oncogene 20:3629–3640.

    Article  PubMed  CAS  Google Scholar 

  • Tommasino, M., Adamczewski, J.P., Carlotti, F., Barth, C.F., Manetti, R., Contorni, M., Cavalieri, F., Hunt, T., and Crawford, L. (1993). HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene 8:195–202.

    PubMed  CAS  Google Scholar 

  • Tong, X., Boll, W., Kirschhausen, T., and Howley, P.M. (1998). Interaction of the bovine papillomavirus E6 protein with the clatherin adaptor complex AP-1. J. Virol. 72:476–482.

    PubMed  CAS  Google Scholar 

  • Tong, X., and Howley, P.M. (1997). The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc. Natl. Acad. Sci. U. S. A. 94:4412–4417.

    Article  PubMed  CAS  Google Scholar 

  • Tong, X., Salgia, R., Li, J.-L., Griffin, J.D., and Howley, P.M. (1997). The bovine papillomavirus E6 protein binds to the LD motif repeats of paxillin and blocks its interaction with vinculin and the focal adhesion kinase. J. Biol. Chem. 272:33373–33376.

    Article  PubMed  CAS  Google Scholar 

  • Trimarchi, J.M., and Lees, J.A. (2002). Sibling rivalry in the E2F family. Nature Rev. Mol. Cell. Biol. 3:11–20.

    Article  CAS  Google Scholar 

  • Uchida, C., Miwa, S., Kitagawa, K., Hattori, T., Isobe, T., Otani, S., Oda, T., Sugimura, H., Kamijo, T., Ookawa, K., Yasuda, H., and Kitagawa, M. (2005). Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J. 24:160–169.

    Article  PubMed  CAS  Google Scholar 

  • Vande Pol, S.B., Brown, M.C., and Turner, C.E. (1998). Association of bovine papillomavirus type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif. Oncogene 16:43–52.

    Article  PubMed  CAS  Google Scholar 

  • Veldman, T., Horikawa, I., Barrett, J.C., and Schlegel, R. (2001). Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol. 75:4467–4472.

    Article  PubMed  CAS  Google Scholar 

  • Venturini, F., Braspenning, J., Homann, M., Gissmann, L., and Sczakiel, G. (1999). Kinetic selection of HPV 16 E6/E7-directed antisense nucleic acids: anti-proliferative effects on HPV 16-transformed cells. Nucleic Acids Res. 27:1585–1592.

    Article  PubMed  CAS  Google Scholar 

  • Villa, L.L., Vieira, K.-B.-L., Pei, X.F., and Schlegel, R. (1992). Differential effect of tumor necrosis factor on proliferation of primary human keratinocytes and cell lines containing human papillomavirus types 16 and 18. Mol. Carcinog. 6:5–9.

    Article  PubMed  CAS  Google Scholar 

  • von Knebel Doeberitz, M., Bauknecht, T., Bartsch, D., and zur Hausen, H. (1991). Influence of chromosomal integration on glucocorticoid-regulated transcription of growth-stimulating papillomavirus genes E6 and E7 in cervical carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 88:1411–1415.

    Article  Google Scholar 

  • von Knebel Doeberitz, M., Oltersdorf, T., Schwarz, E., and Gissmann, L. (1998). Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. Cancer Res. 48:3780–3786.

    Google Scholar 

  • von Knebel Doeberitz, M., Rittmuller, C., Aengeneyndt, F., Jansen-Durr, P., and Spitkovsky, D. (1994). Reversible repression of papillomavirus oncogene expression in cervical carcinoma cells: consequences for the phenotype and E6-p53 and E7-pRB interactions. J. Virol. 68:2811–2821.

    Google Scholar 

  • von Knebel Doeberitz, M., Rittmuller, C., zur Hausen, H., and Durst, M. (1992). Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6-E7 anti-sense RNA. Int. J. Cancer 51:831–834.

    Article  Google Scholar 

  • Vousden, K.H., Doninger, J., DiPaolo, J.A., and Lowy, D.R. (1988). The E7 open reading frame of human papillomavirus type 16 encodes a transforming gene. Oncogene Res. 3:167–175.

    PubMed  CAS  Google Scholar 

  • Vousden, K.H., and Jat, P.S. (1989). Functional similarity between HPV16 E7, SV40 large T and adenovirus E1a proteins. Oncogene 4:153–158.

    PubMed  CAS  Google Scholar 

  • Vousden, K.H., Vojtesek, B., Fisher, C., and Lane, D. (1993). HPV-16 E7 or adenovirus E1A can overcome the growth arrest of cells immortalized with a temperature-sensitive p53. Oncogene 8:1697–1702.

    PubMed  CAS  Google Scholar 

  • Warburg, O. (1936). Ueber den Stoffwechsel der Tumoren. Berlin: Springer.

    Google Scholar 

  • Watanabe, S., Kanda, T., and Yoshiike, K. (1993). Growth dependence of human papillomavirus 16 DNA-positive cervical cancer cell lines and human papillomavirus 16-transformed human and rat cells on the viral oncoproteins. Jpn. J. Cancer Res. 84:1043–1049.

    Article  PubMed  CAS  Google Scholar 

  • Wathelet, M., Lin, C.H., Parekh, B., Ronco, L.V., Howley, P.M., and Maniatis, T. (1998). Virus infection induces the assembly of coordinately activated transcription factors on the IFN-b enhancer in vivo. Mol. Cell 1:507–518.

    Article  PubMed  CAS  Google Scholar 

  • Wazer, D.E., Liu, X.L., Chu, Q., Gao, Q., and Band, V. (1995). Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. Proc. Natl. Acad. Sci. U. S. A. 92:3687–3691.

    Article  PubMed  CAS  Google Scholar 

  • Webster, K., Parish, J., Pandya, M., Stern, P.L., Clarke, A.R., and Gaston, K. (2000). The human papillomavirus (HPV) 16 E2 protein induces apoptosis in the absence of other HPV proteins and via a p53-dependent pathway. J. Biol. Chem. 275:87–94.

    Article  PubMed  CAS  Google Scholar 

  • Weinmann, A.S., Yan, P.S., Oberley, M.J., Huang, T.H., and Farnham, P.J. (2002). Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 16:235–244.

    Article  PubMed  CAS  Google Scholar 

  • Wells, S.I., Aronow, B.J., Wise, T.M., Williams, S.S., Couget, J.A., and Howley, P.M. (2003). Transcriptome signature of irreversible senescence in human papillomaviruspositive cervical cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100:7093–7098.

    Article  PubMed  CAS  Google Scholar 

  • Wells, S.I., Francis, D.A., Karpova, A.Y., Dowhanick, J.J., Benson, J.D., and Howley, P.M. (2000). Papillomavirus E2 induces senescence in HPV-positive cells via pRB-and p21CIP-dependent pathways. EMBO J. 19:5762–5771.

    Article  PubMed  CAS  Google Scholar 

  • Werness, B.A., Levine, A.J., and Howley, P.M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79.

    Article  PubMed  CAS  Google Scholar 

  • White, A.E., Livanos, E.M., and Tlsty, T.D. (1994). Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8:666–677.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, B., Crum, C.P., Fujii, T., Ferenczy, A., Boon, M., Braun, L., Lancaster, W.D., and Richart, R.M. (1984). Koilocytotic lesions of the cervix: the relationship of mitotic abnormalities to the presence of papillomavirus antigens and nuclear DNA content. Cancer 53:1081–1087.

    Article  PubMed  CAS  Google Scholar 

  • Wise-Draper, T.M., Allen, H.V., Thobe, M.N., Jones, E.E., Habash, K.B., Munger, K., and Wells, S.I. (2005). The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J. Virol. 79:14309–14317.

    Article  PubMed  CAS  Google Scholar 

  • Woodworth, C.D., Lichti, U., Simpson, S., Evans, C.H., and DiPaolo, J.A. (1992). Leukoregulin and gamma-interferon inhibit human papillomavirus type 16 gene transcription in human papillomavirus-immortalized human cervical cells. Cancer Res. 52:456–463.

    PubMed  CAS  Google Scholar 

  • Woodworth, C.D., Notario, V., and DiPaolo, J.A. (1990). Transforming growth factors beta 1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells. J. Virol. 64:4767–4775.

    PubMed  CAS  Google Scholar 

  • Wu, E.W., Clemens, K.E., Heck, D.V., and Munger, K. (1993). The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein. J. Virol. 67:2402–2407.

    PubMed  CAS  Google Scholar 

  • Wu, L., Goodwin, E.C., Naeger, L.K., Vigo, E., Galaktionov, K., Helin, K., and DiMaio, D. (2000). E2F-Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression. Mol. Cell. Biol. 20:7059–7067.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Xiao, W., and Brandsma, J.L. (1994). Papilloma formation by cottontail rabbit papillomavirus requires E1 and E2 regulatory genes in addition to E6 and E7 transforming genes. J. Virol. 68:6097–6102.

    PubMed  CAS  Google Scholar 

  • Xiao, B., Spencer, J., Clements, A., Ali-Khan, N., Mittnacht, S., Bronceno, C., Burghammer, M., Perrakis, A., Marmorstein, R., and Gamblin, S.J. (2003). Crystal structure of the retinoblastoma tumor suppressor protein bound to E2F and the molecular basis of its regulation. Proc. Natl. Acad. Sci. U. S. A. 100:2363–2368.

    Google Scholar 

  • Yang, Y.C., Okayama, H., and Howley, P.M. (1985). Bovine papillomavirus contains multiple transforming genes. Proc. Natl. Acad. Sci. U. S. A. 82:1030–1034.

    Article  PubMed  CAS  Google Scholar 

  • Yasumoto, S., Burkhardt, A.L., Doninger, J., and DiPaolo, J. (1986). Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells. J. Virol. 57:572–577.

    PubMed  CAS  Google Scholar 

  • You, J., Croyle, J.L., Nishimura, A., Ozato, K., and Howley, P.M. (2004). Interaction of the bovine papillomavirus E2 protein with Brd4 tethers the viral DNA to host mitotic chromosomes. Cell 117:349–360.

    Article  PubMed  CAS  Google Scholar 

  • Yutsudo, M., Okamoto, Y., and Hakura, A. (1988). Functional dissociation of transforming genes of human papillomavirus type 16. Virology 166:594–597.

    Article  PubMed  CAS  Google Scholar 

  • Zalvide, J., Stubdal, H., and DeCaprio, J.A. (1998). The J domain of simian virus 40 large T antigen is required to functionally inactivate RB family proteins. Mol. Cell. Biol. 18:1408–1415.

    PubMed  CAS  Google Scholar 

  • Zatsepina, O., Braspenning, J., Robberson, D., Hajibagheri, M.A., Blight, K.J., Ely, S., Hibma, M., Spitkovsky, D., Trendelenburg, M., Crawford, L., and Tommasino, M. (1997). The human papillomavirus type 16 E7 protein is associated with the nucleolus in mammalian and yeast cells. Oncogene 14:1137–1145.

    Article  PubMed  CAS  Google Scholar 

  • Zerfass, K., Schulze, A., Spitkovsky, D., Friedman, V., Henglein, B., and Jansen-Durr, P. (1995). Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J. Gen. Virol. 69:6389–6399.

    CAS  Google Scholar 

  • Zerfass-Thome, K., Zwerschke, W., Mannhardt, B., Tindle, R., Botz, J.W., and Jansen-Durr, P. (1996). Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13:2323–2330.

    PubMed  CAS  Google Scholar 

  • Zhang, B., Chen, W., and Roman, A. (2006). The E7 proteins of low-and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc. Natl. Acad. Sci. U. S. A. 103:437–442.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, B., Laribee, R.N., Klemsz, M.J., and Roman, A. (2004). Human papillomavirus type 16 E7 protein increases acetylation of histone H3 in human foreskin keratinocytes. Virology 329:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Xiong, Y., and Yarbrough, W.G. (1998). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92:725–734.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, H., Degenkolbe, R., Bernard, H.U., and O’Connor, M.J. (1999). The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J. Virol. 73:6209–6219.

    PubMed  CAS  Google Scholar 

  • Zwerschke, W., Mannhardt, B., Massimi, P., Nauenburg, S., Pim, D., Nickel, W., Banks, L., Reuser, A.J., and Jansen-Durr, P. (2000). Allosteric activation of acid alpha-glucosidase by the human papillomavirus E7 protein. J. Biol. Chem. 275:9534–9541.

    Article  PubMed  CAS  Google Scholar 

  • Zwerschke, W., Mazurek, S., Massimi, P., Banks, L., Eigenbrodt, E., and Jansen-Durr, P. (1999). Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc. Natl. Acad. Sci. U. S. A. 96:1291–1296.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Münger, K., Howley, P., DiMaio, D. (2007). Human Papillomavirus E6 and E7 Oncogenes. In: Garcea, R.L., DiMaio, D. (eds) The Papillomaviruses. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36523-7_10

Download citation

Publish with us

Policies and ethics