Skip to main content

Biotransformations with Crude Enzymes and Whole Cells

  • Chapter
Enzyme Technology

Abstract

Biotransformation can be defined as a process dealing with the conversion of a compound, often called precursor, into structurally related compound(s) by a biocatalyst in a limited number of enzymatic steps. Such operation is also called microbial transformation or even bioconversion. Straathof et al (2002) thus define biotransformation as “a reaction or a set of simultaneous reactions in which a pre-formed precursor molecule is converted, in contrast to a fermentation process with de novo production from a carbon and energy source such as glucose via primary metabolism”. The biocatalyst can be whole cells, spores, crude enzymes or purified enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham WR, Arfman HA, Stumpf B, Washington P & Kieslich K, 1988, Microbial transformation of some terpenoids and natural compounds, Bioflavour 87, Proceedings of the International Conference, 399–414

    Google Scholar 

  • Adams A, Demyttenaere JCR & de Kimpe R, 2003, Biotransformation of (R)-(+)- and (S)-(-)-limonene to α-terpineol by Penicillium digitatum - investigation of the culture conditions, Food Chemistry, 80, 525–534

    CAS  Google Scholar 

  • Asano Y, 2002, Overview of screening for new microbial catalysts and their uses in organic synthesis—selection and optimization of biocatalysts, Journal of Biotechnology, 94, 65–72

    PubMed  CAS  Google Scholar 

  • Babicka J & Volf J, 1955, Czechoslovak Patent 84 320

    Google Scholar 

  • Bais HP, Sudha G, Suresh B & Ravishankar GA, 2001, Permeabilization and in situ adsorption studies during growth and coumarin production in hairy root cultures of Cichorium intybus L. Indian Journal of Experimental Biology, 39, 564–571

    PubMed  CAS  Google Scholar 

  • Berger RG, 1995, Biotransformation/Bioconversion, In- Aroma biotechnology, Springer-Verlag, Berlin, Heidelberg, New York, pp 79–91

    Google Scholar 

  • Berger RG, de Boot JAM, Eggink G, da Fonseca M, Gehrke M, Gros JB, van Keulen F, Krings U, Larroche C, Leak DJ & van der Werf M, 1999, Biotransformations in the flavour industry. In- Current Topics in flavours and fragrances, KAD Swift (ed), Kluwer Academic Publishers, Dordrecht, pp 139–170

    Google Scholar 

  • Best DJ, Floyd NC, Magalhaes A, Burfield A & Rhodes PM, 1987, Initial enzymatic steps in the degradation of alpha-pinene by Pseudomonas fluorescens NCIMB 11671, Biocatalysis, 1, 147–159

    CAS  Google Scholar 

  • Bhattacharyya PK & Ganapathy K, 1965, Microbiological tranformation of terpenes, part VI: Studies on the mechanism of some fungal hydroxylation reactions with the aid of model systems, Indian Journal of Biochemistry, 2, 137

    PubMed  CAS  Google Scholar 

  • Brennecke JF & Maginn EJ, 2001, Ionic liquids: innovative fluids for chemical processing. AIChE Journal, 47, 2384–2389

    CAS  Google Scholar 

  • Bucke C, 1883, Immobilized cells, Philosophic Transactions of the Royal Society of London, B300, 369–389

    Google Scholar 

  • Burfield AG, Best DJ & Davis KJ, 1989, Production of 2-methyl-5isopropylhexa-2,5-dien-l-al and of 2-methyl-5-isopropyl-hexa-2,4-dien-l-al in microorganisms, European Patent 0 304 318

    Google Scholar 

  • Cabral J.M.S. (2001). Biotransformation. In. Basic Biotechnology, 2nd edition, Ratledge C., Kristiansen B. (eds), Cambridge University Press, Cambridge, pp 471–501

    Google Scholar 

  • Cadwallader KR, Braddock RJ, Parish ME & Higgins DP, 1989, Bioconversion of (+)-limonene by Pseudomonas gladioli, Journal of Food Science, 54, 1241–1245

    CAS  Google Scholar 

  • Champagne CP, Lacroix C & Dodini-Gallot I, 1994, Immobilized cell technologies for industries. Critical Reviews in Biotechnology, 14, 109–134

    PubMed  CAS  Google Scholar 

  • Chang HC, Cage DA & Oriel PJ, 1995, Cloning and expression of a limonene degradation pathway from Bacillus stearothermophilus in Escherichia coli. Journal of Food Science, 60, 551–553

    CAS  Google Scholar 

  • ChatterjeeT & Bhattacharyya DK, 2001, Biotransformation of limonene by Pseudomonas putida, Applied Microbiology and Biotechnology, 55, 541–546

    Google Scholar 

  • Colocousi A, Saqib KM & Leak DJ, 1996, Mutants of Pseudomonas fluorescens NCIMB 11671 defective in the catabolism of α-pinene, Applied Microbiology and Biotechnology, 45, 822–830

    CAS  Google Scholar 

  • Crameri A, Raillard SA, Bermudez E & Stemmer WP, 1998, DNA shuffling of a family of genes from diverse species accelerates directed evolution, Nature, 15, 391, 288–91

    Google Scholar 

  • Demirjian DC, Morís-Varas F & Cassidy CS, 2001, Enzymes from extremophiles, Current Opinion in Chemical Biology, 5, 144–151

    PubMed  CAS  Google Scholar 

  • Demyttenaere JCR & de Pooter HL, 1998, Biotransformation of citral and nerol by spores of Penicillium digitatum, Flavour and Fragrance Journal, 13, 173–176

    CAS  Google Scholar 

  • Demyttenaere JCR, del Carmen Herrera M & de Kimpe N, 2000, Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp., Phytochemistry, 55, 363–373

    PubMed  CAS  Google Scholar 

  • Dhavalikar RS & Bhattacharyya PK, 1966, Microbial transformations of terpenes: Part VIII- Fermentation of limonene in a soil pseudomonad, Indian Journal of Biochemistry, 3, 144–157

    PubMed  CAS  Google Scholar 

  • Dhavalikar RS, Rangachari PN & Bhattacharyya PK, 1966, Microbial transformations of terpenes: Part IX-pathways of limonene degradation by a soil pseudomonad, Indian Journal of Biochemistry, 3, 158–164

    PubMed  CAS  Google Scholar 

  • Divies C, Cachon R, Cavin JF & Prevost H, 1994, Theme 4: immobilized cell technology in wine production, Critical Reviews in Biotechnology, 14, 135–153

    CAS  Google Scholar 

  • Draczynska B, Cagara CZ, Siewinski A, Rymkiewicz A, Zabza A & Leufven A, 1985, Biotransformation of pinenes XVII. Transformation of α- and β-pinenes by means of Armillariella mellae (honey fungus), a parasite of woodlands. Journal of Basic Microbiology, 8, 487–492

    Google Scholar 

  • Duetz WA, Bouwmeester H, van Bellen JB & Witholt B, 2003, Biotransformation of limonene by bacteria, fungi, yeasts, and plants, Applied Microbiology and Biotechnology, 61, 269–77

    PubMed  CAS  Google Scholar 

  • Duetz WA, van Beilen JB & Witholt B, 2001a, Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis, Current Opinion in Biotechnology, 12, 419–25

    PubMed  CAS  Google Scholar 

  • Duetz WA, Jourdat C & Witholt B, 2001b, Process for the preparation of perillyl alcohol. European Patent EP1236802

    Google Scholar 

  • Engesser K-H & Plaggemeier T, 2000, Microbiological aspects of biological waste gas purification, In Biotechnology, 2nd edition, H-J Rehm, G. Reed (eds), vol. 11c, Wiley-VCH, Weinhain, pp 275–302

    Google Scholar 

  • Entzeroth M, 2003, Emerging trends in high-throughput screening, Current Opinion in Pharmacology, 3, 522–529

    PubMed  CAS  Google Scholar 

  • Erbeldinger M, Mesiano AJ & Russell AJ, 2000, Enzymatic catalysis of formation of Z-aspartame in ionic liquid - an alternative to enzymatic catalysis in organic solvents, Biotechnology Progress, 16, 1129–1131

    PubMed  CAS  Google Scholar 

  • Felix H, 1982, Permeabilized cells, Analytical Biochemistry, 120, 211–234

    PubMed  CAS  Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM & Cabral JMS, 2003, Microbial conversion of steroid compounds: recent developments, In- Enzyme and Microbial Technology, Volume 32, pp 688–705

    CAS  Google Scholar 

  • Ferrer P, Hedegaard L, Halkier T, Diers I, Savva D & Asenjo JA, 1996, Molecular cloning of a lytic β-l,3-glucanase gene from Derskovia xanthineolytica LLG109: a β-1,3-glucanase able to selectively permeabilize the yeast cell wall, Annals of New-York Academy of Sciences, 782, 555–565

    CAS  Google Scholar 

  • Firestine SM, Salinas F, Nixon AE, Baker SJ & Benkovic SJ, 2000, Using an AraC-based three-hybrid system to detect biocatalysts in vivo, Nat. Biotechnol, 18, 544–547

    PubMed  CAS  Google Scholar 

  • Fontanille P & Larroche C, 2002, Pseudomonas rhodesiae sp.: a new and efficient biocatalyst for production of isonovalal from α-pinene oxide, Biocatalysis and Biotransformation, 20, 413–421

    CAS  Google Scholar 

  • Fontanille P & Larroche C, 2003, Optimisation of isonovalal production from α-pinene oxide using permeabilized cells of Pseudomonas rhodesiae CIP 107491, Applied Microbiology and Biotechnology, 60, 534–540

    PubMed  CAS  Google Scholar 

  • Freire AP, Martins AM & Cordeiro C, 1998, A practical experiment on cell permeabilization and biochemical characterization in situ, Biochemical Education, 26, 66–68

    CAS  Google Scholar 

  • Galabova D, Tuleva B & Spasova D, 1996, Permeabilization of Yarrowia lipolytica cells by Triton X-100, Enzyme Microbiology and Technology, 18, 18–22

    CAS  Google Scholar 

  • Gibbon GH & Pirt SJ, 1971, Dégradation of α-pinene by Pseudomonas PX1, FEBS Letters, 18, 103–105

    PubMed  CAS  Google Scholar 

  • Greenbaum D, Medzihradszky KF, Burlingame A & Bogyo M, 2000, Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools, Chemical Biology, 7, 569–581

    CAS  Google Scholar 

  • Griffith KL & Wolf RE Jr, 2002, Measuring β-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme essay in 96-well arrays, Biochemical and Biophysical Research Communication, 290, 397–402

    CAS  Google Scholar 

  • Griffiths ET, Bociek SM, Harries PC, Jeffcoat R, Sissous DJ & Trugdill PW, 1987a, Bacterial metabolism of α-pinene: pathway from α-pinene oxide to acyclic metabolites in Norcadia sp. strain P18.3, Journal of Bacteriology, 169, 4972–4979

    PubMed  PubMed Central  CAS  Google Scholar 

  • Griffiths ET, Harries PC, Jeffcoat R & Trugdill PW, 1987b, Purification and properties of α-pinene oxide lyase from Norcadia sp. Strain P18.3, Journal of Bacteriology, 169, 4980–4983

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grivel F & Larroche C, 2001, Phase transfer and biocatalyst behaviour during biotransformation of β-ionone in a two phase liquid system by immobilised Aspergillus niger, Biochemical Engeneering Journal, 7, 27–34

    CAS  Google Scholar 

  • Grivel F, Larroche C & Gros JB, 1999, Determination of the reaction yield during biotransformation of the volatile and chemically unstable compound β-ionone by Aspergillus niger, Biotechnology Progress, 15, 697–705

    PubMed  CAS  Google Scholar 

  • Groboillot A, Boadi DK, Poncelet D & Neufeld RJ, 1994, Immobilization of cells for application in the food industry, Critical Reviews in Biotechnology, 14, 75–107

    PubMed  CAS  Google Scholar 

  • Gros JB, Larroche C & Detest P, 1996, Preparation de pyrazines par bioconversion, French Patent 2728913

    Google Scholar 

  • Harayama S, Kok M & Niedle EL, 1992, Functional and evolutionary relationships among diverse oxygenases, Annual Review of Microbiology, 46, 565–601

    PubMed  CAS  Google Scholar 

  • Harries PC, Jeffcoat R, Griffiths ET & Trudgill PW, 1989, Monoterpene aldehyde or alcohol derivatives and their use as perfumes or flavouring agents, European patent EP86202335.5

    Google Scholar 

  • Hartmeier W, 1985, Immobilized biocatalyst- from simple to complex systems, Trends in Biotechnology, 3, 149–153

    CAS  Google Scholar 

  • Hasekawa Co, 1972, Japanese Patent 7 238 998

    Google Scholar 

  • Holwarth A, Schmidt H-W & Maier WF, 1998, Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by using capillary array electrophoresis, Angewandte Chemie, International Edition in English, 37, 2644–2647

    Google Scholar 

  • Howarth J, James P & Dai J, 2001, Immobilized baker’s yeast reduction ofketones in an ionic liquid, [bmim] PF6 and water mix, Tetrahedron Letters, 42, 7517–7519

    CAS  Google Scholar 

  • Jackson RW & Demoss JA, 1965, Effect of toluene on Escherichia coli, Journal of Bacteriololgy, 90, 1420–1425

    CAS  Google Scholar 

  • Johnson BH & Hecht MH, 1994, Recombinant proteins can be isolated from Escherichia coli by repeated cycles of freezing and thawing, Bio/Technology, 12, 1357–1360

    PubMed  CAS  Google Scholar 

  • Katsuragi T & Tani Y, 2000, Screening for microorganisms with specific characteristics by flow cytometry and single-cell sorting, Journal of Biosciences and Bioengineering, 89, 217–222

    CAS  Google Scholar 

  • Kelly DR, 1998, Biotransformation - Practical aspects, In- Biotechnology, vol 8a, DR Kelly (ed), VCH-Wiley, Weinheim, pp 25–34

    Google Scholar 

  • Kieslich K, 1976, Terpenoids, In- Microbial Transformation of Non-steroid Cyclic Compounds, Georg Thieme Verlag, Stuttgart, 56–84

    Google Scholar 

  • Kleinheinz GT & Bagley ST, 1997, A filter-plate method for the recovery and cultivation of microorganisms utilizing volatile organic compounds, Journal of Microbiological Methods, 29, 139–144

    CAS  Google Scholar 

  • Krasnobajew V, 1984, Terpenoids, In- Biotechnology, Kieslich K. (ed), Verlag chemie, Weinheim, 6a, pp 98–125

    Google Scholar 

  • Larroche C & Gros JB, 1997, Special transformation processes using fungal spores and immobilized cells, Advanced in Biochemical Engineering and Biotechnology, 55, 179–220

    CAS  Google Scholar 

  • Larroche C, Besson I & Gros JB, 1999, High pyrazine production by Bacillus subtilis in solid substrate fermentation on ground soybeans, Process Biochemistry, 34, 667–674

    CAS  Google Scholar 

  • Larroche C, Creuly C & Gros JB, 1992, 2-heptanone production by spores of Penicillium roquefortii in a water-organic solvent two-phase system, Biocatalysis, 5, 163–173

    CAS  Google Scholar 

  • Lozano P, De Diego T, Guegan JP, Vaultier M & Iborra JL, 2001, Stabilization of α-chymotrypsin by ionic liquids in transesterification reactions, Biotechnology and Bioengeneering, 75, 563–569

    CAS  Google Scholar 

  • Mahato SB & Garai S, 1997, Advances in microbial steroid biotransformation, Steroids, 62, 332–345

    PubMed  CAS  Google Scholar 

  • Marrs B, Delagrave S & Murphy D, 1999, Novel approaches for discovering industrial enzymes, Current Opinion in Microbiology, 2, 241–245

    PubMed  CAS  Google Scholar 

  • Martin & Skerman, 1972, World directory of culture collections of microorganisms, Wiley-lnterscience, new-York

    Google Scholar 

  • Masschelein CA, Ryder DS & Simon JP, 1994, Immobilized cell technology in beer production, Critical Reviews in Biotechnology, 14, 155–177.

    CAS  Google Scholar 

  • McBeath G & Hilvert D, 1994, Monitoring catalytic activity by immunoassay: implications for screening, Journal of the American Chemical Society, 116, 6101–6106

    Google Scholar 

  • Michaelis L & Menten ML, 1913, The kinetics of invertin action, Biochemistry Z., 49, 333–369

    CAS  Google Scholar 

  • Mihara Y, Utagawa T, Yamada H & Asano Y, 2000, Phosphorylation of nucleosides by the mutated acid phosphatase from Morganella morganii, Applied and Environmental Microbiology, 66, 2811–2816

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mikami Y, 1988, Microbial conversion of terpenoïds, Biotechnological Genetic and Engineering Reviews, 6, 271–320

    CAS  Google Scholar 

  • Murray HC & Peterson DH, 1952, Oxygenation of steroids by mucorales fungi, U.S. Patent 2602769 (Upjohn Co., Kalamazoo, Michigan, USA)

    Google Scholar 

  • Norton S & Vuillemard JC, 1994, Food bioconversions and metabolite production using immobilized cell technology, Critical Review of Biotechnology, 14, 193–224

    CAS  Google Scholar 

  • Olsen M, Iverson B & Georgiou G, 2000, High-throughput screening of enzyme libraries, Current Opinion in Biotechnology, 11, 331–337

    PubMed  CAS  Google Scholar 

  • Overhage J, Steinbuchel A & Priefert H, 2003, Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli, Applied and Environmental Microbiology, 69, 6569–6576

    PubMed  PubMed Central  CAS  Google Scholar 

  • Patel RN, 2001, Enzymatic synthesis of chiral intermediates for Omapatrilat, an antihypertensive drug, Biomolecular Engineering, 17, 167–182

    PubMed  CAS  Google Scholar 

  • Ratledge C, (ed), 1994, Biochemistry of microbial degradation, Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Reetz MT, Kühling KM, Wilensek S, Husmann H, Häusig UH & Hermes M, 2000, A Ge-based method for high-throughput screening of enantioselective catalysts, Catalysis Today, 67, 389–396

    Google Scholar 

  • Richard J & Benoit JP, 2000, Microencapsulation, In- Techniques de l’Ingénieur - Traité Génie des Procédés, J2-I210, 1-20

    Google Scholar 

  • Rosevear A, 1984, Immobilised biocatalyst - a critical review, Journal of Chemical and Technical Biotechnology, 348, 127–150

    Google Scholar 

  • Sangiliyandi G & Gunasekaran P, 1998, A simple method for purification of thermostable levansucrase of Zymomonas mobilis from a recombinant Escherichia coli. Journal of Microbiological Methods, 33, 153–156

    CAS  Google Scholar 

  • Sangiliyandi G & Gunasekaran P, 2000, A simple method for the purification of over-expressed extracellular sucrase of Zymomonas mobilis from a recombinant Escherichia coli, Biotechnology Letters, 22, 1059–1062

    CAS  Google Scholar 

  • Schrader J & Berger RG, 2001, Biotechnological production of terpenoid flavor and fragrance compounds, In- Biotechnology, vol 10, H-J Rehm (ed), VCH-Wiley, Weinheim, pp 374–415

    Google Scholar 

  • Seitz EW, 1994, Fermentation production of pyrazines and terpenoids for flavours and fragrances, In- Bioprocess production of flavour, fragrance, and color ingredients, A Gabelman (ed), John Wiley & sons New York, pp 95–134

    Google Scholar 

  • Shukla OP & Battacharyya PK, 1968a, Microbial transformations of terpenes: Part X- pathways of degradation of α- and β-pinenes in a soil pseudomonad (PL- strain), Indian Journal of Biochemistry, 5, 92–101

    CAS  Google Scholar 

  • Shukla OP, Moholay MN & Battacharyya PK, 1968b, Microbial transformations of terpenes: Part IX-Fermentation of α- and β-pinenes by a soil pseudomonad (PL-strain), Indian Journal of Biochemistry 5, 79–91

    CAS  Google Scholar 

  • Sikkema J, de Boot JAM & Poolman B, 1995, Membrane toxicity of cyclic hydrocarbons, Microbiological Reviews, 59, 201–222

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smidsrød O & Skjåk-Braek G, 1990, Alginate as immobilization matrix for cells, Trends in Biotechnology, 8, 71–78

    PubMed  Google Scholar 

  • Souza de Pereira R, 1998, The use of baker’s yeast in the generation of asymmetric centers to produce chiral drugs and other compounds, Critical Reviews in Biotechnology, 18, 25–64

    Google Scholar 

  • Stahl S, Greasham R & Chartrain M, 2000, Implementation of a rapid screening procedure for biotransformation activities, Journal of Biosciences and Bioengineering, 89, 367–371

    CAS  Google Scholar 

  • Straathof AJJ, Panke S & Schmid A, 2002, The production of fine chemicals by biotransformations, Current Opinions in Biotechnology, 13, 548–556

    CAS  Google Scholar 

  • Tan Q & Day DF, 1998, Bioconversion of limonene to α-terpineol by immobilized Pennicillium digitatum, Applied Microbiology and Biotechnology, 49, 96–101

    CAS  Google Scholar 

  • Tawfik DS, Green BS, Chap R, Sela M & Eshhar Z, 1993, CatELISA: a facile general route to catalytic antibodies. Proceedings of the National Academy of Sciences, USA, 90: 373–377

    CAS  Google Scholar 

  • Taylor SJC, Brown RC, Keene PA & Taylor IN, 1999, Novel screening methods—the key to cloning commercially successful biocatalysts, Bioorganic & Medicinal Chemistry., 7, 2163–2168

    CAS  Google Scholar 

  • Trudgill PW, 1986, Terpenoid metabolism by Pseudomonas, In-The bacteria, Vol.X: The biology of Pseudomonas, JR Sokatch (ed), Academic Press

    Google Scholar 

  • Trudgill PW, 1994, Microbial metabolism and transformation of selected monoterpenes, In- Biochemistry of microbial degradation, C Ratledge (ed), Kluwer Academic Publishers, Dordrecht, pp 33–61

    Google Scholar 

  • Tudrozen NJ, Kelly DP & Millis NF, 1977, α-pinene metabolism by Pseudomonas putida, Biochemical Journal, 168, 312–318

    Google Scholar 

  • van der Werf MJ, Hartrnans S & van den Tweel WJJ, 1995, Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by Triton X-100 for efficient production of D-malate, Applied Microbiology and Biotechnology, 43, 590–594

    CAS  Google Scholar 

  • van der Werf MJ, de Boot JAM & Leak DJ, 1997, Opportunities in microbial biotransformation of monoterpenes, Advanced in Biochemistry Engineering and Biotechnology, 55, 147–177

    CAS  Google Scholar 

  • van der Werf MJ, Swarts HJ & de Boot JA, 1999, Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene, Applied and Environmental Microbiology, 65, 2092–102

    PubMed  PubMed Central  CAS  Google Scholar 

  • van der Werf MJ, Keijzer PM & van der Schaft PH, 2001, Xanthobacter sp. C20 contains a novel bioconversion pathway for limonene, Journal of Biotechnology, 84, 133–143

    PubMed  CAS  Google Scholar 

  • van Dyk MS, van Rensburg E & Moleleki N, 1998, Hydroxylation of ( +) limonene, (-) α-pinene and (-) β-pinene by Hormonema sp., Biotechnology Letters, 20, 431–436

    CAS  Google Scholar 

  • Vanderbergh PA, 1989, Bacterial method and compositions for linalool degradation, U.S. Patent, 4, 800, 158

    Google Scholar 

  • Vasic-Racki D, 2000, History of industrial biotransformations- dreams and realities, In- Industrial Biotransformations, A Liese, K Seelbach, C Wandrey (eds), VCH-Wiley, Weinheim, pp 3–27

    Google Scholar 

  • Wackett LP & Hershberger CD, 2001a, General concepts in biodegradation and biocatalysis, In- Biocatalysis and Biodegradations, LP Wackett & CD Hershberger (eds), ASM Press, Washington, pp 1–5

    Google Scholar 

  • Wackett LP & Hershberger CD, 2001b, A history of concepts in biodegradation and microbial catalysis, In- Biocatalysis and Biodegradations,. LP Wackett & CD Hershberger (eds), ASM Press, Washington, pp 7–23

    Google Scholar 

  • Wahler D & Reymond JL, 2001a, High-throughput screening for biocatalysts, Current Opinion in Biotechnology, 12, 535–44

    PubMed  CAS  Google Scholar 

  • Wahler D & Reymond JL, 2001b, Novel methods for biocatalyst screening, Current Opinion in Chemistry and Biology, 5, 152–158

    CAS  Google Scholar 

  • Willaers RG & Baron GV, 1996, Gel entrapment and micro-encapsulation: methods, application and engineering principles, Reviews in Chemical Engineering, 12, 1–204

    Google Scholar 

  • Wise ML & Croteau RB, 1999, Monoterpene biosynthesis, In- Comprehensive natural product chemistry: isoprenoids, Cane (ed), Elsevier, Oxford, pp 9715

    Google Scholar 

  • Yoo SK & Day DF, 2002, Bacterial metabolism of α- and β-pinene and related monoterpenes by Pseudomonas sp. Strain PIN, Process Biochemistry, 37, 739–745

    CAS  Google Scholar 

  • Zorn H, Neuser F & Berger RG, 2004, Degradation of alpha-pinene oxide and [2 H(7)]- 2,5,6-trimethyl-hept(2E)-enoic acid by Pseudomonas fluorescens NCIMB 11761, Journal of Biotechnology, 107, 255–263

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Ashok Pandey Colin Webb Carlos Ricardo Soccol Christian Larroche

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc. and Asiatech Publishers, Inc.

About this chapter

Cite this chapter

Fontanille, P., Gros, JB., Larroche, C. (2006). Biotransformations with Crude Enzymes and Whole Cells. In: Pandey, A., Webb, C., Soccol, C.R., Larroche, C. (eds) Enzyme Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35141-4_7

Download citation

Publish with us

Policies and ethics