Skip to main content

Intrinsic Versus Extrinsic Vascularization in Tissue Engineering

  • Conference paper
Tissue Engineering

Abstract

In-vitro culture of tissues can be regulated by controlled medium administration whereas ex-vivo bioreactors are designed with the capability of providing tissue engineered devices with continuous nutrient support. When these materials or cellular constructs are transferred in vivo they have to rely on processes like interstitial fluid diffusion and blood perfusion. Here recites a core limitation for transfer of tissue engineering models from the in vitro to the in vivo environment. Diffusion is the initial process involved but it can only provide for cell support within a maximum range of 200 μm into the matrix.14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

21.7. References

  1. Horch RE, Bannasch H, Stark GB. Transplantation of cultured autologous keratinocytes in fibrin sealant biomatrix to resurface chronic wounds. Transplant Proc. 33(1–2): 642–4. (2001)

    Article  Google Scholar 

  2. Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials. 22(11): 1279–88. (2001)

    Article  Google Scholar 

  3. Greene HSN. Heterologous transplantation of mammalian tumors. Exp. Med. 73: 461. (1961)

    Article  Google Scholar 

  4. Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 138(4): 745–53. (1973)

    Article  Google Scholar 

  5. Eiselt P, Kim BS, Chacko B, Isenberg B, Peters MC, Greene KG, Roland WD, Loebsack AB, Burg KJ, Culberson C, Halberstadt CR, Holder WD, Mooney DJ. Development of technologies aiding large-tissue engineering. Biotechnol Prog. 14(1): 134–40. (1998)

    Article  Google Scholar 

  6. Cassell OC, Hofer SO, Morrison WA, Knight KR. Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg. 55(8): 603–10. (2002)

    Article  Google Scholar 

  7. Wake MC, Patrick CW, Jr., Mikos AG. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant. 3(4): 339–43. (1994)

    Google Scholar 

  8. Wenger A, Stahl A, Weber H, Finkenzeller G, Augustin HG, Stark GB, Kneser U. Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng. 10(9–10): 1536–47. (2004)

    Google Scholar 

  9. Mooney DJ, Mikos AG. Growing new organs. Sci Am. 280(4): 60–5. (1999)

    Article  Google Scholar 

  10. Kneser U, Voogd A, Ohnolz J, Buettner O, Stangenberg L, Zhang YH, Stark GB, Schaefer DJ. Fibrin gelimmobilized primary osteoblasts in calcium phosphate bone cement: in vivo evaluation with regard to application as injectable biological bone substitute. Cells Tissues Organs. 179(4): 158–69. (2005)

    Article  Google Scholar 

  11. Beier JP, Kneser U, Stern-Strater J, Stark GB, Bach AD. Y chromosome detection of three-dimensional tissue-engineered skeletal muscle constructs in a syngeneic rat animal model. Cell Transplant. 13(1): 45–53. (2004)

    Google Scholar 

  12. Kneser U, Kaufmann PM, Fiegel HC, Pollok JM, Kluth D, Herbst H, Rogiers X. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J Biomed Mater Res. 47(4): 494–503. (1999)

    Article  Google Scholar 

  13. Mimoun M, Hilligot P, Baux S. The nutrient flap: a new concept of the role of the flap and application to the salvage of arteriosclerotic lower limbs. Plast Reconstr Surg. 84(3): 458–67. (1989)

    Google Scholar 

  14. Bach AD, Kopp J, Stark GB, Horch RE. The versatility of the free osteocutaneous fibula flap in the reconstruction of extremities after sarcoma resection. World J Surg Oncol. 2(1): 22. (2004)

    Article  Google Scholar 

  15. Tamai S, Komatsu S, Sakamoto H, Sano S, Sasauchi N. Free muscle transplants in dogs, with microsurgical neurovascular anastomoses. Plast Reconstr Surg. 46(3): 219–25. (1970)

    Article  Google Scholar 

  16. Chuang DC. Functioning free-muscle transplantation for the upper extremity. Hand Clin. 13(2): 279–89. (1997)

    Google Scholar 

  17. McCraw JB. On the transfer of a free dorsalis pedis sensory flap to the hand. Plast Reconstr Surg. 59(5): 738–9. (1977)

    Article  Google Scholar 

  18. Hillsley MV, Frangos JA. Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng. 43(7): 573–81. (1994)

    Article  Google Scholar 

  19. Erol OO, Spira M. New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum. 30: 530–1. (1979)

    Google Scholar 

  20. Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 354Suppl 1: SI32–4. (1999)

    Google Scholar 

  21. Mian R, Morrison WA, Hurley JV, Penington AJ, Romeo R, Tanaka Y, Knight KR. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng. 6(6): 595–603. (2000)

    Article  Google Scholar 

  22. Tanaka Y, Tsutsumi A, Crowe DM, Tajima S, Morrison WA. Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: preliminary report. Br J Plast Surg. 53(1): 51–7. (2000)

    Article  Google Scholar 

  23. Khouri RK, Upton J, Shaw WW. Prefabrication of composite free flaps through staged microvascular transfer: an experimental and clinical study. Plast Reconstr Surg. 87(1): 108–15. (1991)

    Article  Google Scholar 

  24. Akita S, Tamai N, Myoui A, Nishikawa M, Kaito T, Takaoka K, Yoshikawa H. Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics. Tissue Eng. 10(5–6): 789–95. (2004)

    Article  Google Scholar 

  25. Lee JH, Cornelius CP, Schwenzer N. Neo-osseous flaps using demineralized allogeneic bone in a rat model. Ann Plast Surg. 44(2): 195–204. (2000)

    Article  Google Scholar 

  26. Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Grabinger L, Euler S, Amann K, Hess A, Brune K, Greil P, Stürzl M, Horch RE. Engineering of vascularized transplantable bone tissues: Induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Submitted to: Tissue Eng. (2005)

    Google Scholar 

  27. Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Bach A, Kopp J, Horch R. Vascularized bone replacement for the treatment of chronic bone defects-initial results of microsurgical hard tissue vascularization. Zeitschr Wundheilung. 4(3): 62–68. (2004)

    Google Scholar 

  28. Lametschwandtner A, Lametschwandtner U, Weiger T. Scanning electron microscopy of vascular corrosion casts—technique and applications: updated review. Scanning Microsc. 4(4): 889–940; discussion 941. (1990)

    Google Scholar 

  29. Lametschwandtner A, Miodonski A, Simonsberger P. On the prevention of specimen charging in scanning electron microscopy of vascular corrosion casts by attaching conductive bridges. Mikroskopie. 36(9–10): 270–3. (1980)

    Google Scholar 

  30. Macleod TM, Williams G, Sanders R, Green CJ. Histological evaluation of Permacol as a subcutaneous implant over a 20-week period in the rat model. Br J Plast Surg. 58(4): 518–32. (2005)

    Google Scholar 

  31. Tanaka Y, Sung KC, Tsutsumi A, Ohba S, Ueda K, Morrison WA. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg. 112(6): 1636–44. (2003)

    Article  Google Scholar 

  32. Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Jr., Gimbrone MA, Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A. 83(7): 2114–7. (1986)

    Article  Google Scholar 

  33. Westerband A, Crouse D, Richter LC, Aguirre ML, Wixon CC, James DC, Mills JL, Hunter GC, Heimark RL. Vein adaptation to arterialization in an experimental model. J Vasc Surg. 33(3): 561–9. (2001)

    Article  Google Scholar 

  34. Milkiewicz M, Brown MD, Egginton S, Hudlicka O. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation. 8(4): 229–41. (2001)

    Article  Google Scholar 

  35. Makanya AN, Stauffer D, Ribatti D, Burri PH, Djonov V. Microvascular growth, development, and remodeling in the embryonic avian kidney: the interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc Res Tech. 66(6): 275–88. (2005)

    Article  Google Scholar 

  36. Huang YC, Kaigler D, Rice KG, Krebsbach PH, Mooney DJ. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Miner Res. 20(5): 848–57. (2005)

    Article  Google Scholar 

  37. Kirkpatrick CJ, Unger RE, Krump-Konvalinkova V, Peters K, Schmidt H, Kamp G. Experimental approaches to study vascularization in tissue engineering and biomaterial applications. J Mater Sci Mater Med. 14(8): 677–81. (2003)

    Article  Google Scholar 

  38. Westerband A, Gentile AT, Hunter GC, Gooden MA, Aguirre ML, Berman SS, Mills JL. Intimal growth and neovascularization in human stenotic vein grafts. J Am Coll Surg. 191(3): 264–71. (2000)

    Article  Google Scholar 

  39. Masuda H, Kawamura K, Nanjo H, Sho E, Komatsu M, Sugiyama T, Sugita A, Asari Y, Kobayashi M, Ebina T, Hoshi N, Singh TM, Xu C, Zarins CK. Ultrastructure of endothelial cells under flow alteration. Microsc Res Tech. 60(1): 2–12. (2003)

    Article  Google Scholar 

  40. Diaz-Flores L, Gutierrez R, Varela H. Angiogenesis: an update. Histol Histopathol. 9(4): 807–43. (1994)

    Google Scholar 

  41. Patrick CW, Jr., Chauvin PB, Hobley J, Reece GP. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng. 5(2): 139–51. (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Polykandriotis, E. et al. (2006). Intrinsic Versus Extrinsic Vascularization in Tissue Engineering. In: Fisher, J.P. (eds) Tissue Engineering. Advances in Experimental Medicine and Biology, vol 585. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34133-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-34133-0_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-32664-1

  • Online ISBN: 978-0-387-34133-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics