Skip to main content

Population Learning Algorithm for the Resource-Constrained Project Scheduling

  • Chapter
Perspectives in Modern Project Scheduling

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 92))

Abstract

The paper proposes applying the population-learning algorithm to solving both the single-mode and the multi-mode resource-constrained pro-ject scheduling problems (denoted as RCPSP and MRCPSP, respectively) with makespan minimization as an objective function. The paper contains problem formulation and a description of the proposed implementation of the population learning algorithm (PLA). To validate the approach a computational experiment has been carried out. It has involved 1440 instances of the RCPSP and 3842 instances of the MRCPSP obtained from the available benchmark data sets. Results of the experiment show that the proposed PLA implementation is an effective tool for solving the resource-constrained project scheduling problems. In case of the RCPSP instances the algorithm in a single run limited to 50000 solutions generated has produced results close to the results of the best known algorithms as compared with average deviation from critical path. In case of the MRCPSP instances the proposed algorithm in a single run has produced solutions with mean relative error value below 1.6% as compared with optimal or best known solutions for benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blazewicz, J., Lenstra, J. and Rinnooy Kan, A. (1983). Scheduling subject to resource constraints: Classification and complexity, Discrete Applied Mathematics 5:11–24.

    Article  MathSciNet  Google Scholar 

  • Czarnowski, I., Forkiewicz, M., Jedrzejowicz, P., Ratajczak, E., Skakowski, A. and Wierzbowska, I. (2001). Population-based scheduling on multiple processors, in: Proc. 4th Metaheuristics Internetional Conference, MIC 2001, Porto, Portugal, pp. 613–618.

    Google Scholar 

  • Czarnowski, I., Gutjahr, W.J, Jedrzejowicz, P., Ratajczak, E., Skakowski, A. and Wierzbowska, I. (2001). Scheduling multiprocessor tasks in presence of the correlated failures, in: The Proceedings of the Second International Workshop on Soft Computing Applied to Software Engineering, SCASE, Enschede, The Netherlands.

    Google Scholar 

  • Czarnowski, I., Jedrzejowicz, P. and Ratajczak, E. (2001). Population Learning Algorithm-example implementations and experiments, in: Proc. 4th Metaheuristics Internetional Conference, MIC 2001, Porto, Portugal, pp. 607–612.

    Google Scholar 

  • Davis, E.W. and Heidorn, G.E. (1971). An algorithm for optimal project scheduling under multiple resource constraints, Management Science, 17:B803–B816.

    Article  Google Scholar 

  • Debels, D., De Reyck, B., Leus, R. and Vanhoucke, M. (2004). A Hybrid Scatter Search / Electromagnetism Meta-Heuristic for Project Scheduling, Univeriteit Gent, Faculteit Ekonomie en Bedrijfskunde Working Paper 04/237.

    Google Scholar 

  • Debels, D. and Vanhoucke, M. (2005). A Bi-Population Based Genetic Algorithm for the Resource-Constrained Project Scheduling Problem, Univeriteit Gent, Faculteit Ekonomie en Bedrijfskunde Working Paper 05/294.

    Google Scholar 

  • Hartmann, S. (2001). Project Scheduling with Multiple Modes: A Genetic Algorithm, Annals of Operations Research 102:11–135.

    Article  MathSciNet  Google Scholar 

  • Hartmann, S. and Drexl, A. (1998). Project Scheduling with Multiple Modes: A Comparison of Exact Algorithms, Networks 32:283–297.

    Article  MathSciNet  Google Scholar 

  • Hartmann, S. and Kolisch, R. (1999). Heuristic Algorithms for Solving the Resource-Constrained Project Scheduling Problem: Classification and Computational Analysis, in: Project scheduling: Recent models, algorithms and applications, J. Weglarz, ed, Kluwer, Amsterdam, pp. 147–178.

    Google Scholar 

  • Hartmann, S. and Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem, European Journal of Operational Research 127:394–407.

    Article  Google Scholar 

  • Hartmann, S. and Kolisch, R. (2005). Experimental Investigation of Heuristics for Resource-Constrained Project Scheduling: An Update, European Journal of Operational Research, to apopear.

    Google Scholar 

  • Jedrzejowicz, P. (1999). Social Learning Algorithm as a Tool for Solving Some Difficult Scheduling Problems, Foundation of Computing and Decision Sciences, 24(2):51–66.

    MathSciNet  Google Scholar 

  • Jedrzejowicz, J. and Jedrzejowicz, P. (2002). Permutation Scheduling Using Population Learning Algorithm, in: Knowledge-Based Itelligent Information Engineering Systems and Allied Technologies, E. Damiani et al, eds, IOS Press, Amsterdam, pp. 93–97.

    Google Scholar 

  • Jedrzejowicz, P. and Skakowski, A. (2000). An island-based evolutionary algorithm for scheduling multiple-variant tasks, Proceedings of ICSC Symposium Engineering of Intelligent Systems — EEIS’2000, ICSC Academic Press, Paisley, pp. 1–9.

    Google Scholar 

  • Jozefowska, J., Mika, M., Rozycki, R., Waligora, G. and Weglarz, J. (2001). Simulated annealing for multi-mode resource-constrained project scheduling, Annals of Operations Research, 102:137–155.

    Article  MathSciNet  Google Scholar 

  • Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs, Springer, Berlin.

    Google Scholar 

  • Moscato, P. (1999). Memetic Algorithms: A short introduction, in: New Ideas in Optimization, D. Corne, M. Dorigo, F. Glover, eds., McGraw-Hill, New York, pp. 219–234.

    Google Scholar 

  • Nonobe, K. and Ibaraki T. (2002). Formulation and tabu search algorithm for the resource constrained project scheduling problem, in: Essays and Surveys in Metaheuristics, C.C. Ribeiro and P. Hansen, eds., Kluwer Academic Publishers, pp. 557–588.

    Google Scholar 

  • Reynolds R.G. (1994). An Introduction to Cultural Algorithms, in: Proceedings of the Third Annual Conference on Evolutionary Programming, A.V. Sebald, L.J. Fogel, eds., World Scientific, River Edge, pp. 131–139.

    Google Scholar 

  • Sprecher, A. and Drexl, A. (1998). Solving multi-mode resource-constrained project scheduling problems by a simple, general and powerful sequencing algorithm, European Journal of Operational Research 107:431–450.

    Article  Google Scholar 

  • Valls, V., Ballestin F., and Quintanilla, S. (2004). A Population-Based Approach to the Resource-Constrained Project Scheduling Problem, Annals of Operations Research 131:305–324.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jedrzejowicz, P., Ratajczak, E. (2006). Population Learning Algorithm for the Resource-Constrained Project Scheduling. In: Józefowska, J., Weglarz, J. (eds) Perspectives in Modern Project Scheduling. International Series in Operations Research & Management Science, vol 92. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33768-5_11

Download citation

Publish with us

Policies and ethics