Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angel P, Karin M (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072: 129–157.

    PubMed  CAS  Google Scholar 

  • Bisler S, Schleicher A, Gass P, Stehle JH, Zilles K, Staiger JF (2002). Expression of c-Fos, ICER, Krox-24 and JunB in the whisker-to-barrel pathway of rats: time course of induction upon whisker stimulation by tactile exploration of an enriched environment. J Chem Neuroanat 23: 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Burke SN, Chawla MK, Penner MR, Crowell BE, Worley PF, Barnes CA, McNaughton BL (2005). Differential encoding of behavior and spatial context in deep and superficial layers of the neocortex. Neuron 45: 667–674.

    Article  PubMed  CAS  Google Scholar 

  • Carrasco-Serrano C, Viniegra S, Ballesta JJ, Criado M (2000). Phorbol ester activation of the neuronal nicotinic acetylcholine receptor alpha7 subunit gene: involvement of transcription factor Egr-1. J Neurochem 74: 932–939.

    Article  PubMed  CAS  Google Scholar 

  • Caston-Balderrama AL, Cameron JL, Hoffman GE (1998). Immunocytochemical localization of Fos in perfused nonhuman primate brain tissue: fixation and antisera selection. J Histochem Cytochem 46: 547–556.

    PubMed  CAS  Google Scholar 

  • Chaudhuri A (1997). Neural activity mapping with inducible transcription factors. Neuroreport 8: v–ix.

    PubMed  CAS  Google Scholar 

  • Chaudhuri A, Zangenehpour S (2002). Molecular activity maps of sensory function. In: Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction (Kaczmarek L, Robertson HA, eds), pp. 103–145. Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Clayton DF (2000). The genomic action potential. Neurobiol Learn Mem 74: 185–216.

    Article  PubMed  CAS  Google Scholar 

  • Curran T, Morgan JI (1987). Memories of fos. Bioessays 7: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Curran T, Franza BR, Jr. (1988). Fos and Jun: the AP-1 connection. Cell 55: 395–397.

    Article  PubMed  CAS  Google Scholar 

  • D’Hondt E, Vermeiren J, Peeters K, Balthazart J, Tlemcani O, Ball GF, Duffy DL, Vandesande F, Berghman LR (1999). Validation of a new antiserum directed towards the synthetic c-terminus of the FOS protein in avian species: immunological, physiological and behavioral evidence. J Neurosci Methods 91: 31–45.

    Article  PubMed  CAS  Google Scholar 

  • Ennulat DJ, Babb S, Cohen BM (1994). Persistent reduction of immediate early gene mRNA in rat forebrain following single or multiple doses of cocaine. Brain Res Mol Brain Res 26: 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner S, Greenberg ME (1998). Ca2+ channel-regulated neuronal gene expression. J Neurobiol 37: 171–189.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2: 1120–1124.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, McNaughton BL, Barnes CA, Worley PF (2001a). Imaging neural activity with temporal and cellular resolution using FISH. Curr Opin Neurobiol 11: 579–584.

    Article  PubMed  CAS  Google Scholar 

  • Guzowski JF, Setlow B, Wagner EK, McGaugh JL (2001b) Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J Neurosci 21: 5089–5098.

    PubMed  CAS  Google Scholar 

  • Herdegen T, Leah JD (1998). Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev 28: 370–490.

    Article  PubMed  CAS  Google Scholar 

  • Hughes P, Dragunow M (1995). Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47: 133–178.

    PubMed  CAS  Google Scholar 

  • Kaczmarek L, Chaudhuri A (1997). Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23: 237–256.

    Article  PubMed  CAS  Google Scholar 

  • Kaminska B, Pyrzynska B, Ciechomska I, Wisniewska M (2000). Modulation of the composition of AP-1 complex and its impact on transcriptional activity. Acta Neurobiol Exp (Wars) 60: 395–402.

    CAS  Google Scholar 

  • Keefe KA, Gerfen CR (1996). D1 dopamine receptor-mediated induction of zif268 and c-fos in the dopamine-depleted striatum: differential regulation and independence from NMDA receptors. J Comp Neurol 367: 165–176.

    Article  PubMed  CAS  Google Scholar 

  • Kobierski LA, Chu HM, Tan Y, Comb MJ (1991). cAMP-dependent regulation of proenkephalin by JunD and JunB: positive and negative effects of AP-1 proteins. Proc Natl Acad Sci USA 88: 10222–10226.

    Article  PubMed  CAS  Google Scholar 

  • Lanahan A, Worley P (1998). Immediate-early genes and synaptic function. Neurobiol Learn Mem 70: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14: 433–445.

    Article  PubMed  CAS  Google Scholar 

  • Mataga N, Fujishima S, Condie BG, Hensch TK (2001). Experience-dependent plasticity of mouse visual cortex in the absence of the neuronal activity-dependent marker egr1/zif268. J Neurosci 21: 9724–9732.

    PubMed  CAS  Google Scholar 

  • Mello CV, Ribeiro S (1998). ZENK protein regulation by song in the brain of songbirds. J Comp Neurol 393: 426–438.

    Article  PubMed  CAS  Google Scholar 

  • Mello CV, Velho TA, Pinaud R (2004) Song-induced gene expression: a window on song auditory processing and perception. Ann N Y Acad Sci 1016: 263–281.

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt J (1987). A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238: 797–799.

    Article  PubMed  CAS  Google Scholar 

  • Mokin M, Keifer J (2005). Expression of the immediate-early gene-encoded protein Egr-1 (zif268) during in vitro classical conditioning. Learn Mem 12: 144–149.

    Article  PubMed  Google Scholar 

  • Morgan JI, Curran T (1989). Stimulus-transcription coupling in neurons: role of cellular immediateearly genes. Trends Neurosci 12: 459–462.

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Curran T (1991). Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14: 421–451.

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Cohen DR, Hempstead JL, Curran T (1987). Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237: 192–197.

    Article  PubMed  CAS  Google Scholar 

  • Nedivi E, Hevroni D, Naot D, Israeli D, Citri Y (1993). Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nature 363: 718–722.

    Article  PubMed  CAS  Google Scholar 

  • O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM (1999). The EGR family of transcriptionregulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22: 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Petersohn D, Thiel G (1996). Role of zinc-finger proteins Sp1 and zif268/egr-1 in transcriptional regulation of the human synaptobrevin II gene. Eur J Biochem 239: 827–834.

    Article  PubMed  CAS  Google Scholar 

  • Petersohn D, Schoch S, Brinkmann DR, Thiel G (1995). The human synapsin II gene promoter. Possible role for the transcription factor zif268/egr-1, polyoma enhancer activator 3, and AP2. J Biol Chem 270: 24361–24369.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud R (2004). Experience-dependent immediate early gene expression in the adult central nervous system: evidence from enriched-environment studies. Int J Neurosci 114: 321–333.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud R (2005). Critical calcium-regulated biochemical and gene expression programs involved in experience-dependent plasticity. In: Plasticity in the Visual System: From Genes to Circuits (Pinaud R, Tremere LA, De Weerd P, eds), pp. 153–180. New York: Springer-Verlag.

    Google Scholar 

  • Pinaud R, Tremere LA, Penner MR (2000). Light-induced zif268 expression is dependent on noradrenergic input in rat visual cortex. Brain Res 882: 251–255.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud R, Penner MR, Robertson HA, Currie RW (2001). Upregulation of the immediate early gene arc in the brains of rats exposed to environmental enrichment: implications for molecular plasticity. Brain Res Mol Brain Res 91: 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud R, Fortes AF, Lovell P, Mello CV (2006). Calbindin-positive neurons reveal a sexual dimorphism within the songbird analogue of the mammalian auditory cortex. J Neurobiol 66: 182–195.

    Article  PubMed  Google Scholar 

  • Pinaud R, Tremere LA, Penner MR, Hess FF, Robertson HA, Currie RW (2002). Complexity of sensory environment drives the expression of candidate-plasticity gene, nerve growth factor induced-A. Neuroscience 112: 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Pinaud R, Velho TA, Jeong JK, Tremere LA, Leao RM, von Gersdorff H, Mello CV (2004). GABAergic neurons participate in the brain’s response to birdsong auditory stimulation. Eur J Neurosci 20: 1318–1330.

    Article  PubMed  Google Scholar 

  • Pospelov VA, Pospelova TV, Julien JP (1994). AP-1 and Krox-24 transcription factors activate the neurofilament light gene promoter in P19 embryonal carcinoma cells. Cell Growth Differ 5: 187–196.

    PubMed  CAS  Google Scholar 

  • Sagar SM, Sharp FR, Curran T (1988). Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 240: 1328–1331.

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Greenberg ME (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4: 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Staiger JF, Masanneck C, Bisler S, Schleicher A, Zuschratter W, Zilles K (2002). Excitatory and inhibitory neurons express c-Fos in barrel-related columns after exploration of a novel environment. Neuroscience 109: 687–699.

    Article  PubMed  CAS  Google Scholar 

  • Steward O, Worley PF (2001a). A cellular mechanism for targeting newly synthesized mRNAs to synaptic sites on dendrites. Proc Natl Acad Sci U S A 98: 7062–7068.

    Article  PubMed  CAS  Google Scholar 

  • Steward O, Worley PF (2001b). Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30: 227–240.

    Article  PubMed  CAS  Google Scholar 

  • Steward O, Wallace CS, Lyford GL, Worley PF (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21: 741–751.

    Article  PubMed  CAS  Google Scholar 

  • Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, Cohen DR, Edwards SA, Shows TB, Curran T, et al. (1988). A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Thiel G, Schoch S, Petersohn D (1994). Regulation of synapsin I gene expression by the zinc finger transcription factor zif268/egr-1. J Biol Chem 269: 15294–15301.

    PubMed  CAS  Google Scholar 

  • Tischmeyer W, Grimm R (1999). Activation of immediate early genes and memory formation. Cell Mol Life Sci 55: 564–574.

    Article  PubMed  CAS  Google Scholar 

  • Van Der Gucht E, Vandenbussche E, Orban GA, Vandesande F, Arckens L (2000). A new cat Fos antibody to localize the immediate early gene c-fos in mammalian visual cortex after sensory stimulation. J Histochem Cytochem 48: 671–684.

    Google Scholar 

  • Vazdarjanova A, Guzowski JF (2004). Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J Neurosci 24: 6489–6496.

    Article  PubMed  CAS  Google Scholar 

  • Velho TA, Pinaud R, Rodriguez PV, Mello CV (2005). Co-induction of activity-dependent genes in songbirds. Eur J Neurosci (in press).

    Google Scholar 

  • Wallace CS, Withers GS, Weiler IJ, George JM, Clayton DF, Greenough WT (1995). Correspondence between sites of NGFI-A induction and sites of morphological plasticity following exposure to environmental complexity. Brain Res Mol Brain Res 32: 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Wong WK, Ou XM, Chen K, Shih JC (2002). Activation of human monoamine oxidase B gene expression by a protein kinase C MAPK signal transduction pathway involves c-Jun and Egr-1. J Biol Chem 277: 22222–22230.

    Article  PubMed  CAS  Google Scholar 

  • Ziolkowska B, Przewlocki R (2002). Methods used in inducible transcription factor studies: focus on mRNA. In: Immediate Early Genes and Inducible Transcription Factors in Mapping of the Central Nervous System Function and Dysfunction (Kaczmarek L, Robertson HA, eds), pp. 1–38. Amsterdam: Elsevier B.V.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Terleph, T.A., Tremere, L.A. (2006). The Use of Immediate Early Genes as Mapping Tools for Neuronal Activation: Concepts and Methods. In: Pinaud, R., Tremere, L.A. (eds) Immediate Early Genes in Sensory Processing, Cognitive Performance and Neurological Disorders. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-33604-6_1

Download citation

Publish with us

Policies and ethics