Skip to main content

A Brief Introduction to MEMS and NEMS

  • Reference work entry
Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The expanding and developing fields of micro-electromechanical systems (MEMS) and nano-electromechanical (NEMS) are highly interdisciplinary and rely heavily on experimental mechanics for materials selection, process validation, design development, and device characterization. These devices range from mechanical sensors and actuators, to microanalysis and chemical sensors, to micro-optical systems and bioMEMS for microscopic surgery. Their applications span the automotive industry, communications, defense systems, national security, health care, information technology, avionics, and environmental monitoring. This chapter gives a general introduction to the fabrication processes and materials commonly used in MEMS/NEMS, as well as a discussion of the application of experimental mechanics techniques to these devices. Mechanics issues that arise in selected example devices are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

ASTM:

American Society for Testing and Materials

CNT:

carbon nanotube

CVD:

chemical vapor deposition

DIC:

digital image correlation

DMD:

digital micromirror device

DPN:

dip-pen nanolithography

DRIE:

deep reactive-ion etching

EDM:

electric-discharge machining

EDP:

ethylenediamine pyrochatechol

FIB:

focused ion beam

GMR:

giant magnetoresistance

HEMA:

2-hydroxyethyl methacrylate

LIGA:

lithography galvanoforming molding

LPCVD:

low-pressure CVD

MEMS:

micro-electromechanical system

NEMS:

nanoelectromechanical system

PDMS:

polydimethylsiloxane

PIV:

particle image velocimetry

PMMA:

polymethyl methacrylate

PVD:

physical vapor deposition

PVDF:

polyvinylidene fluoride

SAM:

scanning acoustic microscopy

SAM:

self-assembled monolayer

SEM:

Society for Experimental Mechanics

SEM:

scanning electron microscopy

SMA:

shape-memory alloy

SOI:

silicon on insulator

SPM:

scanning probe microscope

STM:

scanning tunneling microscope

TMAH:

tetramethylammonium hydroxide

References

  1. N. Maluf: An Introduction to Microelectromechanical Systems Engineering (Artech House, Boston 2000)

    Google Scholar 

  2. B. Bhushan (Ed.): Springer Handbook of Nanotechnology (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  3. Small Tech Business Directory™ Guide, Small Times Media, http://www.smalltechdirectory.com/directory/directory.asp. Accessed July 20, 2007.

    Google Scholar 

  4. J.C. Eloy: The MEMS industry: Current and future trends, OnBoard Technol., 22–24 (2006), http://www.onboard-technology.com/pdf_settembre2006/090604.pdf (Accessed July 20, 2007)

    Google Scholar 

  5. NewswireToday: Nanorobotics and NEMS to Reach $830.4 million by 2011, 05/31/2007, http://www.newswiretoday.com/news/18867/ (Accessed July 20, 2007)

    Google Scholar 

  6. B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel: Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery, Adv. Drug Deliv. Rev. 56, 145–172 (2004)

    Google Scholar 

  7. S. Beeby, G. Ensell, M. Kraft, N. White: MEMS Mechanical Sensors (Artech House, Boston 2004)

    Google Scholar 

  8. H.G. Craighead: Nanoelectromechanical systems, Science 290, 1532–1536 (2000)

    Google Scholar 

  9. M. Koch, A.G.R. Evans, A. Brunnschweiler: Microfluidic Technology and Applications (Research Studies, Baldock 2000)

    Google Scholar 

  10. G.T.A. Kovacs: Micromachined Transducers – Sourcebook (McGraw-Hill, New York 1998)

    Google Scholar 

  11. K.L. Ekinci: Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS), Small 1(8-9), 786–797 (2005)

    Google Scholar 

  12. K.L. Ekinci, M.L. Roukes: Nanoelectromechanical systems, Rev. Sci. Instrum. 76(061101), 1–12 (2005)

    Google Scholar 

  13. P. Gammel, G. Fischer, J. Bouchaud: RF MEMS and NEMS technology, devices, and applications, Bell Labs Tech. J. 10(3), 29–59 (2005)

    Google Scholar 

  14. W.A. Goddard III, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (Eds.): Handbook of Nanoscience, Engineering and Technology (CRC, Boca Raton 2002)

    Google Scholar 

  15. S.E. Lyshevski: Nano- and Microelectromechanical Systems: Fundamentals of Nano- and Microengineering (CRC, Boca Raton 2000)

    Google Scholar 

  16. T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70(20), 2687–2689 (1997)

    Google Scholar 

  17. R.G. Knobel, A.N. Cleland: Nanometre-scale displacement sensing using a single electron transistor, Nature 424(6946), 291–293 (2003)

    Google Scholar 

  18. S.D. Senturia: Microsystem Design (Kluwer Academic, Boston 2001)

    Google Scholar 

  19. SEM: Society for Experimental Mechanics, Bethel, 2007 SEM Annual Conference Proceedings, Springfield (2007).

    Google Scholar 

  20. MEMS and Nanotechnology Clearinghouse: Material Index, http://www.memsnet.org/material/ (Accessed July 20, 2007)

    Google Scholar 

  21. P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J.R. Morante, F. Ericson, J.A. Schweitz: Thisck polycrystalline silicon for surface micro-mechanical applications: deposition, structuring and mechanical characterization, 8th International conference on solid-state sensors and actuators (Transducers ʼ95), Stockholm (1995) pp. 202–205

    Google Scholar 

  22. M. Madou: Fundamentals of Microfabrication (CRC, Boca Raton 1997)

    Google Scholar 

  23. B. Diem, M.T. Delaye, F. Michel, S. Renard, G. Delapierre: SOI(SIMOX) as a substrate for surface micromachining of single crystalline silicon sensors and actuators, 7th International Conference on Solid-State Sensors and Actuators (Transducers ʼ93), Yokohama (1993) pp. 233–236

    Google Scholar 

  24. J.M. Noworolski, E. Klaassen, J. Logan, K. Petersen, N. Maluf: Fabricationof SOI wafers with buried cavities using silicon fusion bonding ans electrochemical etchback, 8-th International conference on solid-state sensors and actuators (Transducers ʼ95), Stockholm (1995) pp. 71–74

    Google Scholar 

  25. T. Ikeda: Fundamentals of Piezoelectricity (Oxford Univ., New York 1990)

    Google Scholar 

  26. P. Gluche, A. Floter, S. Ertl, H.J. Fecht: Commercial applications of diamond-based nano- and microtechnolgy. In: The Nano-Micro Interface, ed. by H.-J. Fecht, M. Werner (Wiley-VCH, Weinheim 2004) pp. 247–262

    Google Scholar 

  27. S. Cho, I. Chasiotis, T.A. Friedmann, J.P. Sullivan: Youngʼs modulus, Poissonʼs ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices, J. Micromech. Microeng. 15, 728–735 (2005)

    Google Scholar 

  28. A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond Relat. Mater. 10(11), 1952–1961 (2001)

    Google Scholar 

  29. D. Gruen: Nanocrystalline diamond films, Annu. Rev. Mater. Sci. 29, 211–259 (1999)

    Google Scholar 

  30. D.M. Gruen, S. Liu, A.R. Krauss, J. Luo, X. Pan: Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions, Appl. Phys. Lett. 64, 1502–1504 (1994)

    Google Scholar 

  31. D.M. Gruen, S. Liu, A.R. Krauss, X. Pan: Buckyball microwave plasmas – fragmentation and diamond-film growth, J. Appl. Phys. 75, 1758–1763 (1994)

    Google Scholar 

  32. S.J. Clarson, J.A. Semlyen (Eds.): Siloxane Polymers (Prentice Hall, Englewood Cliffs 1993)

    Google Scholar 

  33. C. Liu: Foundations of MEMS (Pearson Education, Upper Saddle River 2006)

    Google Scholar 

  34. K. Otsuka, C.M. Wayman (Eds.): Shape Memory Materials (Cambridge Univ. Press, Cambridge 1998)

    Google Scholar 

  35. H.-J. Fecht, M. Werner: The Nano-Micro Interface (Wiley-VCH, Weinheim 2004)

    Google Scholar 

  36. M.J. Yacamaìn, T. Tsakalakos, B.H. Kear (Eds.): Proceedings of the First International Conference on Nanostructured Materials, Cancun, Nanostruct. Mater. 3(1/6), 22–26 (1993)

    Google Scholar 

  37. V.E. Borisenko, S. Ossicini: What is What in the Nanoworld (Wiley-VCH, Weinheim 2004)

    Google Scholar 

  38. B.D. Busbee, S.O. Obare, C.J. Murphy: An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15(5), 414–416 (2003)

    Google Scholar 

  39. F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner: Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science 293(5538), 2227–2231 (2001)

    Google Scholar 

  40. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Webber, R. Russo, P.D. Yang: Room-temperature ultraviolet nanowire nanolasers, Science 292(5523), 1897–1899 (2001)

    Google Scholar 

  41. R.M. Penner, C.R. Martin: Preparation and electrochemical characterization of ultramicroelectrode ensembles, Anal. Chem. 59(21), 2625–2630 (1987)

    Google Scholar 

  42. J.C. Hulteen, C.R. Martin: A general template-based method for the preparation of nanomaterials, J. Mater. Chem. 7(7), 1075–1087 (1997)

    Google Scholar 

  43. S. K. Chakarvarti: Science and art of synthesis and crafting of nano/microstructures and devices using ion-crafted templates: A review, Proc. SPIE 61702(61720G), 1–9 (2006)

    Google Scholar 

  44. M.S. Dresselhaus, Y.-M. Lin, O. Rabin, M.R. Black, G. Dresselhaus: Nanowires. In: Springer Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin, Heidelberg 2007)

    Google Scholar 

  45. W.R. DeVries: Analysis of Material Removal Processes (Springer, New York 1992)

    Google Scholar 

  46. S. Kalpajian: Manufacturing Processes for Engineering Materials (Addison-Wesley, Reading 1984)

    Google Scholar 

  47. N. Taniguchi: Current status in, and future trends of, ultraprecision machining and ultrafine materials processing, Ann. CIRP 32, S573–S582 (1983)

    Google Scholar 

  48. C. Evans: Precision Engineering (Cranfield, Cranfield 1989)

    Google Scholar 

  49. J.M. Bustillo, R.T. Howe, R.S. Muller: Surface micromachining for microelectromechanical systems, Proc. IEEE 86(8), 1559–1561 (1998)

    Google Scholar 

  50. M. Gentili, C. Giovannella, S. Selci (Eds.): Nanolithography (Kluwer Academic, Boston 1994)

    Google Scholar 

  51. K.R. Williams, R.S. Muller: Etch rates for micromachining processing, J. Microelectromech. Syst. 5(4), 256–269 (1996)

    Google Scholar 

  52. B. Li, X. Tang, H. Xie, X. Zhang: Strain analysis in MEMS/NEMS structures and devices by using focused ion beam system, Sens. Actuator A 111(1), 57–62 (2004)

    Google Scholar 

  53. H. Xie, Z. Liu, H. Shang, Q. Xue, J. Jia, D. Fang: Micro/nano grating and its application to moire measurement, Proc. SPIE 5852, 740–744 (2005)

    Google Scholar 

  54. Sandia National Laboratories, Micromachines: SAMPLES™ Program, http://mems.sandia.gov/samples/index.html (Accessed July 20, 2007)

    Google Scholar 

  55. H. Guckel: High-aspect ratio micromachining via deep x-ray lithography, Proc. IEEE 86(8), 1586–1593 (1998)

    Google Scholar 

  56. E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4(1), 35–56 (1986)

    Google Scholar 

  57. P. Bley, W. Menz, W. Bacher, K. Feit, M. Harmening, H. Hein, J. Mohr, W.K. Schomburg, W. Stark: Application of the LIGA process in fabrication of three-dimensional mechanical microstructures, 4th International Symposium on MicroProcess Conference Kanazawa (1991) pp. 384–389

    Google Scholar 

  58. J.L. Wilbur, G.M. Whitesides: Self-assembly and self-assembled monolayers in micro- and nanofabrication. In: Nanotechnology, ed. by G. Timp (Springer, New York 1999) pp. 331–369

    Google Scholar 

  59. G.M. Whitesides, J.P. Mathias, C.T. Seto: Molecular self-assembly and nanochemistry: a chemical strategy for synthesis of nanostructures, Science 254, 1312–1318 (1991)

    Google Scholar 

  60. G.M. Whitesides: Self-assembling materials, Sci. Am. 273, 146–149 (1995)

    Google Scholar 

  61. H. Ringsdorf, B. Schlarb, J. Venzmer: Molecular architecture and function of polymeric oriented systems: Models for the study of organization, surface recognition, and dynamics, Angew. Chem. Int. Ed. Engl. 27, 113–158 (1988)

    Google Scholar 

  62. G.M. Whitesides, P.E. Laibinis: Wet chemical approaches to the characterization of organic surfaces. Self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface, Langmuir 6(1), 87–96 (1990)

    Google Scholar 

  63. L.H. Dubois, R.G. Nuzzo: Synthesis, structure, and properties of model organic-surfaces, Annu. Rev. Phys. Chem. 43, 437–463 (1992)

    Google Scholar 

  64. A. Ulman: Surface-absorption of monolayers, Mater. Res. Soc. Bull. 20(6), 46–51 (1995)

    Google Scholar 

  65. A.R. Bishop, R.G. Nuzzo: Self-assembled monolayers: Recent developments and applications, Curr. Opin. Coll. Interface Sci. 1(1), 127–136 (1996)

    Google Scholar 

  66. Y. Xia, G.M. Whitesides: Soft lithography, Annu. Rev. Mater. Sci 28, 153–184 (1998)

    Google Scholar 

  67. E. Delamarche, H. Schmid, H.A. Biebuyck, B. Michel: Stability of molded polydimethylsiloxane microstructures, Adv. Mater. 9(9), 741–746 (1997)

    Google Scholar 

  68. J.A. Preece, J.F. Stoddart: Concept transfer from biology to materials, Nanobiology 3, 149–166 (1994)

    Google Scholar 

  69. J.A. Stroscio, D.M. Eigler: Atomic and molecular manipulation with the scanning tunneling microscope, Science 254, 1319–1326 (1991)

    Google Scholar 

  70. D. Eigler: From the bottom up: building things with atoms. In: Nanotechnology, ed. by G. Timp (Springer, New York 1999) pp. 331–369

    Google Scholar 

  71. R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin: “Dip-pen” nanolithography, Science 283, 661–663 (1999)

    Google Scholar 

  72. D. Bullen, X. Wang, J. Zou, S.-W. Chung, C.A. Mirkin, C. Liu: Design, fabrication, and characterization of thermally actuated probe arrays for Dip Pen nanolithography, J. Microelectromech. Syst. 13(4), 594–602 (2004)

    Google Scholar 

  73. Q. Tang, S.-Q. Shi, L. Zhou: Nanofabrication with atomic force microscopy source, J. Nanosci. Nanotechnol. 4(8), 948–963 (2004)

    Google Scholar 

  74. W.N. Sharpe, K.T. Turner, R.L. Edwards: Tensile testing of polysilicon, Exp. Mech. 39(3), 162–70 (1999)

    Google Scholar 

  75. S.F. Bart, T.A. Lober, R.T. Howe, M.F. Schlecht: Design considerations for micromachined electric actuators, Sens. Actuator 14, 269–292 (1988)

    Google Scholar 

  76. D.W. Carr, L. Sekaric, H.G. Craighead: Measurement of nanomechanical resonant structures in single-crystal silicon, J. Vac. Sci. Technol. B 16(6), 3821–3824 (1998)

    Google Scholar 

  77. W.S. Trimmer (Ed.): Micromechanics and MEMS (IEEE, New York 1997)

    Google Scholar 

  78. W.N. Sharpe: Mechanical properties of MEMS materials. In: MEMS handbook, ed. by M. Gad-el-Hak (CRC, Boca Raton 2002)

    Google Scholar 

  79. V.T. Srikar, S.M. Spearing: A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems, Exp. Mech. 43(3), 238–247 (2003)

    Google Scholar 

  80. M.A. Haque, M.T.A. Saif: A review of MEMS-based microscale and nanoscale tensile and bending testing, Exp. Mech. 43(3), 248–255 (2003)

    Google Scholar 

  81. T. Yi, C.J. Kim: Measurement of mechanical properties of MEMS materials, Meas. Sci. Tech. 10, 706–716 (1999)

    Google Scholar 

  82. C. Gorecki (Ed.): Microsystems Metrology and Inspection, Proc. EuroOpto Ser, Vol. 3825 (The Society of Photo-Optical Instrumentation Engineers, Washington 1999)

    Google Scholar 

  83. W.C. Young, R.G. Budynas: Roarkʼs Formulas for Stress and Strain (McGraw-Hill, New York 2002)

    Google Scholar 

  84. ASTM International: ASTM E2245-05, Standard Test Method for Residual Strain Measurements of Thin, Reflecting Films Using an Optical Interferometer (2005)

    Google Scholar 

  85. M.G. Allen, M. Mehregany, R.T. Howe, S.D. Senturia: Microfabricated structures for the in-situ measurement of residual stress, Youngʼs modulus, and ultimate strain of thin films, Appl. Phys. Lett. 51(4), 241–243 (1987)

    Google Scholar 

  86. P.M. Osterberg, S.D. Senturia: M-TESt: a test chip for MEMS material property measurements using electrostatically actuated test structures, J. Microelectromech. Syst. 6(2), 107–117 (1997)

    Google Scholar 

  87. W.D. Nix: Mechanical properties of thin films, Metall. Trans. 20A, 2217–2245 (1989)

    Google Scholar 

  88. K.E. Petersen: Dynamic micromechanics on silicon: Techniques and devices, IEEE Trans. Electron. Dev. 25, 1241–1250 (1978)

    Google Scholar 

  89. L.M. Zhang, D. Uttamchandani, B. Culshaw: Measurement of the mechanical properties of silicon resonators, Sens. Actuator A 29, 79–84 (1991)

    Google Scholar 

  90. B. Li, H. Xie, B. Xu, R. Geer, J. Castracane: Investigation of strain in microstructures by a novel moire method, J. Microelectromech. Syst. 11(6), 829–36 (2002)

    Google Scholar 

  91. D. Vogel, D. Lieske, A. Gollhardt, J. Keller, N. Sabate, J.R. Morante, B. Michel: FIB based measurements for material characterization on MEMS structures, Proc. SPIE 5766, 60–69 (2005)

    Google Scholar 

  92. A.A. Ayon, X. Zhang, K.T. Turner, D. Choi, B. Miller, S.F. Nagle, S.M. Spearing: Characterization of silicon wafer bonding for power MEMS applications, Sens. Actuator A 103, 1–8 (2003)

    Google Scholar 

  93. P.G. Charalambides, H.C. Cao, J. Lund, A.G. Evans: Developments of a test method for measuring the mixed mode fracture resistance of bimaterial interfaces, Mech. Mater. 8(4), 269–283 (1990)

    Google Scholar 

  94. K.T. Turner, M.D. Thouless, S.M. Spearing: Mechanics of wafer bonding: Effect of clamping, J. Appl. Phys. 95(1), 349–355 (2004)

    Google Scholar 

  95. D.S. Campbell: Mechanical properties of thin films. In: Handbook of Thin Film Technology, ed. by L.I. Maissel, R. Glang (McGraw-Hill, New York 1970)

    Google Scholar 

  96. C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory, J. Microelectromech. Syst. 2(1), 33–43 (1993)

    Google Scholar 

  97. M.P. de Boer, T.M. Mayer: Tribology of MEMS, MRS Bull. 26(4), 302–304 (2001)

    Google Scholar 

  98. J.R. Martin, Y. Zhao: Micromachined device packaged to reduce stiction, US Patent 5694740 (1997)

    Google Scholar 

  99. R.W. Carpick, M. Salmeron: Scratching the surface: Fundamanetal investigations of tribology with atomic force microscopy, Chem. Rev. 97, 1163–1194 (1997)

    Google Scholar 

  100. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  101. M.P. de Boer, J.A. Knapp, T.M. Mayer, T.A. Michalske: The role of interfacial properties on MEMS performance and reliability. In: Microsystems Metrology and Inspection, Proc. EuroOpto Ser., Vol. 3825, ed. by C. Gorecki (Society of Photo-Optical, Washington 1999) pp. 2–15

    Google Scholar 

  102. M.P. de Boer, N.F. Smith, N.D. Masters, M.B. Sinclair, E.J. Pryputniewicz: Integrated platform for testing MEMS mechanical properties at the wafer scale by the IMaP methodology, ASTM Spec. Tech. Pub. 1413, 85–95 (2001)

    Google Scholar 

  103. J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebe, R.J. Adrian: A particle image velocimetry system for microfluidics, Exp. Fluids 25, 316–319 (1998)

    Google Scholar 

  104. C.D. Meinhart, S.T. Wereley, J.G. Santiago: PIV measurements of a microchannel flow, Exp. Fluids 27, 414–419 (1999)

    Google Scholar 

  105. C.D. Meinhart, H. Zhang: The flow structure inside a microfabricated inkjet printer head, J. Microelectromech. Syst. 9, 67–75 (2000)

    Google Scholar 

  106. S. Wereley, C.D. Meinhart, S. Stone, V. Hohreiter, J. Chung: Experimental microfluidics toolbox for MEMS characterization, Proc. SPIE 4558, 124–132 (2001)

    Google Scholar 

  107. E.T. Enikov: Structures and materials. In: Mechatronics Handbook, ed. by R.H. Bichop (CRC, Boca Raton 2002)

    Google Scholar 

  108. S. J. Walker, D. J. Nagel: Optics and MEMS, Tech. Rep. NRL/MR/6336-99-7975 (Naval Research Lab, Washington 1999)

    Google Scholar 

  109. L.J. Hornbeck: Frame addressed spatial light modulator, US Patent 4615595 (1986)

    Google Scholar 

  110. P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86(8), 1687–1704 (1998)

    Google Scholar 

  111. L.J. Hornbeck: Digital light processing for high-brightness, high-resolution applications, Proc. SPIE 3013, 27–40 (1997)

    Google Scholar 

  112. S.A. Henck: Lubrication of Digital Micromirror Devices™, Tribol. Lett. 3(3), 239–247 (1997)

    Google Scholar 

  113. K. Hehr, S. Kurth, J. Mehner, W. Dotzel, T. Gessner: Investigation of heat transfer in micromirrors. In: Microsystems Metrology and Inspection, Proc. EuroOpto Ser., Vol. 3825, ed. by C. Gorecki (The Society of Photo-Optical Instrumentation Engineers, Washington 1999) pp. 24–33

    Google Scholar 

  114. R. E. Meier: DMD™ pixel mechanics simulation, TI Tech. J., 64–74 (1998) Special issue on DLP—DMD Manufacturing and Design Challenges

    Google Scholar 

  115. J. Fritz, M.K. Baller, H.P. Lang, H.P. Rothuizen, P. Vettiger, E. Meyer, H.-J. Guntherodt, C. Gerber, J.K. Gimzewski: Translating biomolecular recognition into nanomechanics, Science 288(5464), 316–318 (2000)

    Google Scholar 

  116. S.C. Kuo, M.P. Sheetz: Force of single kinesin molecules measured with optical tweezers, Science 260(5105), 232–234 (1993)

    Google Scholar 

  117. E.L. Florin, V.T. Moy, H.E. Gaub: Adhesion forces between individual ligand-receptor pairs, Science 264(5157), 415–417 (1994)

    Google Scholar 

  118. G.U. Lee, L.A. Chrisey, R.J. Colton: Direct measurement of the forces between complementary strands of DNA, Science 266(5186), 771–773 (1994)

    Google Scholar 

  119. S.B. Smith, L. Finzi, C. Bustamante: Force of single kinesin molecules measured with optical tweezers, Science 258(5085), 1122–1126 (1992)

    Google Scholar 

  120. T. Thundat, G. Wu, M. Mao, A. Majumdar: Biochemo-opto-mechanical (BioCOM) chip for chemical and biomolecular detection, 1st NASA and NCI Workshop on Sensors for Bio-Molecular Signatures (1999)

    Google Scholar 

  121. M. Sepaniak, P. Datskos, N. Lavrik, C. Tipple: Microcantilever transducers: a new approach in sensor technology, Anal. Chem. 74(21), 568A–575A (2002)

    Google Scholar 

  122. M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M.I. Lutwyche, H.E. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig, H. Rohrer, P. Vettiger: VLSI-NEMS chip for AFM data storage, Technical Digest, 12th IEEE International Micro Electro Mechanical Systems Conference (MEMS ʼ99), Orlando (1999) pp. 564–569

    Google Scholar 

  123. P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M.I. Lutwyche, H.E. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig: The “Millipede” – more than one thousand tips for future AFM data storage, IBM J. Res. Dev. 44(3), 323–340 (2000)

    Google Scholar 

  124. P. Vettiger, B. Cross, M. Despone, U. Drechsler, U. Durig, B. Botsmann, W. Haberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig: The “millipede” – nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1(1), 39–55 (2002)

    Google Scholar 

  125. M. Despont, U. Drechsler, R. Yu, H.B. Pogge, P. Vettiger: Wafer-scale microdevice transfer/interconnect: its application in an AFM-based data-storage system, J. Microelectromech. Syst. 13(6), 895–901 (2004)

    Google Scholar 

  126. G.K. Binnig, J. Brugger, W. Häberle, P. Vettiger: Investigation and/or manipulation device, US Patent 6249747 (2001)

    Google Scholar 

  127. P. Vettiger, G. Binnig: The nanodrive project, Sci. Am. 288(1), 47–53 (2003)

    Google Scholar 

  128. B.J. Holland, J.N. Hay: The thermal degradation of poly(vinyl alcohol), Polymer 42(16), 6775–6783 (2001)

    Google Scholar 

  129. G.A. Shaw, J.S. Trethewey, A.D. Johnson, W.J. Drugan, W.C. Crone: Thermomechanical high-density data storage in a metallic material via the shape-memory effect, Adv. Mater. 17, 1123–1127 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy C. Crone Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Crone, W.C. (2008). A Brief Introduction to MEMS and NEMS. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_9

Download citation

Publish with us

Policies and ethics