Skip to main content

Digital Image Processing for Optical Metrology

  • Reference work entry
Springer Handbook of Experimental Solid Mechanics

Part of the book series: Springer Handbooks ((SHB))

Abstract

The basic principle of modern optical methods in experimental solid mechanics such as holographic interferometry, speckle metrology, fringe projection, and moiré techniques consists either of a specific structuring of the illumination of the object by incoherent projection of fringe patterns onto the surface under test or by coherent superposition (interference) of light fields representing different states of the object. A common property of the applied methods is that they produce fringe patterns as output. In these intensity fluctuations the quantities of interest such as coordinates, displacements, refractive index, and others are coded in the scale of the fringe period. Consequently one main task to be solved in processing can be defined as the conversion of the fringe pattern into a continuous phase map taking into account the quasisinusoidal character of the intensity distribution. The chapter starts with a discussion of some image processing basics. After that the main techniques for the quantitative evaluation of optical metrology data are presented. Here we start with the physical modeling of the image content and complete the chapter with a short introduction to the basics of digital holography, which is becoming increasingly important for optical imaging and metrology. Section 19.2 deals with the postprocessing of fringe patterns and phase distributions. Here the unwrapping and absolute phase problems as well as the transformation of phase data into displacement values are addressed. Because image processing plays an important role in optical nondestructive testing, finally in Sect. 19.3 some modern approaches for automatic fault detection are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAE:

computer-aided engineering

CCD:

charge-coupled device

CMOS:

complementary metal–oxide-semiconductor

CW:

continuous wave

DC:

direct current

DSPI:

digital speckle-pattern interferometry

ESPI:

electronic speckle pattern interferometry

FE:

finite element

FEM:

finite element modeling

FFT:

fast Fourier transform

FTE:

Fourier-transform method

GUM:

Guide for the Expression of Uncertainty in Measurement

HNDE:

holographic nondestructive evaluation

ONDT:

optical nondestructive testing

PMI:

phase-measurement interferometry

RPT:

regularized phase tracking

SAR:

synthetic-aperture radar

SNR:

signal-to-noise ratio

SPB:

space–bandwidth product

WFT:

windowed Fourier transform

References

  1. Steinbichler Optotechnik GmbH, FRAMESplus – FRinge Analysis and MEasuring System. (Steinbichler Optotechnik GmbH, Neubeuern 2007) www.steinbichler.de

    Google Scholar 

  2. Phase Vision Limited, Phase Unwrapping MATLAB® Toolbox. (Phase Vision Ltd., Loughborough 2007) www.phasevision.com

    Google Scholar 

  3. W. Osten, F. Elandaloussi, U. Mieth: Software brings automation to fringe-pattern processing. EuroPhotonics, February/March 1998, pp 34-35, BIAS GmbH, FRINGE PROCESSOR – Computer aided fringe analysis under MS Windows. BIAS GmbH, Bremen 2007, www.fringeprocessor.com

    Google Scholar 

  4. J. A. Quiroga. D. Crespo, J. A. Gomez-Pedrero: Fringe Extreme. XtremeFringe®: state-of-the-art software for automatic processing of fringe patterns, Proc. SPIE 6616 66163-1–66163-10 (2007) www.iot.es/XtremeFringe

    Google Scholar 

  5. W. Osten: Digital Processing and Evaluation of Interference Images (Akademie Verlag, Berlin 1991)

    Google Scholar 

  6. D.W. Robinson, G.T. Reid (Eds.): Interferogram Analysis (IOP, Bristol 1993)

    Google Scholar 

  7. G.H. Kaufmann: Automatic fringe analysis procedures in speckle metrology. In: Speckle Metrology, ed. by R.J. Sirohi (Marcel Dekker, New York 1993) pp. 427–472

    Google Scholar 

  8. T. Kreis: Computer-aided evaluation of holographic interferograms. In: Holographic Interferometry, ed. by P.K. Rastogi (Springer, Berlin, Heidelberg 1994)

    Google Scholar 

  9. W. Osten, W. Jüptner: Digital processing of fringe patterns. In: Optical Measurement Techniques and Applications, ed. by P.K. Rastogi (Artech House, Boston 1997) pp. 51–85

    Google Scholar 

  10. D. Malacara, M. Servin, Z. Malacara: Interferogram Analysis for Optical Testing (Marcel Dekker, New York 1998)

    Google Scholar 

  11. P.K. Rastogi (Ed.): Digital Speckle Pattern Interferometry and Related Techniques (Wiley, Chichester 2001)

    Google Scholar 

  12. W. Osten: Digital processing and evaluation of fringe patterns in optical metrology and non-destructive testing. In: Optical Methods in Experimental Solid Mechanics, ed. by K.-H. Laermann (Springer, Wien 2000) pp. 289–422

    Google Scholar 

  13. W. Osten, M. Kujawinska: Active phase measuring metrology. In: Trends in Optical Nondestructive Testing and Inspection, ed. by P.K. Rastogi, D. Inaudi (Elsevier, Amsterdam 2000) pp. 45–69

    Google Scholar 

  14. W. Osten, W. Jüptner (Eds.): Fringe 2001. Proc. 4th International Workshop on Automatic Processing of Fringe Patterns (Elsevier, Paris 2001)

    Google Scholar 

  15. W. Osten (Ed.): Fringe 2005. Proc. 5th International Workshop on Automatic Processing of Fringe Patterns (Springer, Heidelberg 2005)

    Google Scholar 

  16. J. Schwider: Advanced evaluation techniques in interferometry. In: Progress in Optics, Vol. XXVIII, ed. by E. Wolf (Elsevier, Amsterdam 1990)

    Google Scholar 

  17. H. Glünder, R. Lenz: Fault detection in nondestructive testing by an opto-electronic hybrid processor, Proc. SPIE 370, 157–162 (1982)

    Google Scholar 

  18. V. Sainov, N. Metchkarov, V. Kostov, W. Osten: Optical processing of interference papperns, Proc. SPIE 4101, 249–253 (2000)

    Google Scholar 

  19. R.C. Gonzales, R.E. Woods: Digital Image Processing (Reading, Prentice Hall 2002)

    Google Scholar 

  20. M. Sonka, V. Hlavac, R. Boyle: Image Processing, Analysis and Machine Vision (Chapman Hall, London 1995)

    Google Scholar 

  21. B. Jähne: Digital Image Processing (Springer Berlin, Heidelberg, New York 2005)

    Google Scholar 

  22. A. Hornberg (Ed.): Handbook of Machine Vision (Wiley-VCH, Weinheim 2006)

    Google Scholar 

  23. M. Hüttel: Image processing and computer vision for MEMS testing. In: Optical Inspection of Microsystems, ed. by W. Osten (Taylor and Francis, Boca Raton 2006) pp. 1–54

    Google Scholar 

  24. E. Abbe: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat. 9, 413–468 (1873)

    Google Scholar 

  25. J.W. Goodman: Introduction to Fourier Optics (McGraw-Hill, New York 1996)

    Google Scholar 

  26. A.W. Lohmann, R.G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira: Space–bandwidth product of optical signals and systems, J. Opt. Soc. Am. A 13(3), 470–473 (1996)

    Google Scholar 

  27. M.A. Neifeld: Information, resolution, and space–bandwidth product, Opt. Lett. 23(18), 1477–1479 (1998)

    Google Scholar 

  28. A.K. Jain: Fundamentals of Digital Image Processing (Prentice Hall, Englewood Cliffs 1989)

    MATH  Google Scholar 

  29. C.R. Giardina, E.R. Dougherty: Morphological Methods in Image and Signal Processing (Prentice-Hall, Englewood Cliffs 1988)

    Google Scholar 

  30. I. T. Young, J. J. Gerbrands, L. J. van Vliet: Image processing fundamentals. http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip.html

    Google Scholar 

  31. R. Klette, P. Zamperoni: Handbook of Image Processing Operators (Wiley, Chichester, New York 1996)

    Google Scholar 

  32. K.-A. Stetson: A rigorous theory of the fringes of hologram interferometry, Optik 29, 386–400 (1969)

    Google Scholar 

  33. S. Lowenthal, H. Arsenault: Image formation for coherent diffuse objects: statistical properties, J. Opt. Soc. Am. 60(11), 1478–1483 (1979)

    Google Scholar 

  34. J.W. Goodman: Statistical properties of laser speckle patterns. In: Laser Speckle And Related Phenomena, ed. by J.C. Dainty (Springer, Berlin 1983) pp. 9–75

    Google Scholar 

  35. R. Dändliker: Heterodyne holographic interferometry. In: Progress in Optics, Vol. XVII, ed. by E. Wolf (Elsevier Science, Amsterdam 1980)

    Google Scholar 

  36. M. Tur, C. Chin, J.W. Goodman: When is speckle noise multiplicative?, Appl. Opt. 21, 1157–1159 (1982)

    Google Scholar 

  37. T.E. Jenkins: Optical Sensing Techniques and Signal Processing (Prentice Hall, Englewood Cliffs 1987)

    Google Scholar 

  38. K. Creath: Phase measurement interferometry: Beware these errors, Proc. SPIE 1553, 213–220 (1991)

    Google Scholar 

  39. J.E. Sollid: Holographic interferometry applied to measurements of small static displacements of diffusely reflecting surfaces, Appl. Opt. 8, 1587–1595 (1969)

    Google Scholar 

  40. R. Höfling, W. Osten: Displacement measurement by image-processed speckle patterns, J. Mod. Opt. 34(5), 607–617 (1987)

    Google Scholar 

  41. E. Kolenovic, W. Osten, W. Jüptner: Non-linear speckle phase changes in the image plane caused by out-of plane displacement, Opt. Commun. 171(4–6), 333–344 (1999)

    Google Scholar 

  42. R.W. Gerchberg, W.O. Saxton: A practical algorithm for the determination of phase from image and diffraction plane pictures, Optik 35, 237–246 (1972)

    Google Scholar 

  43. S. Nakadate, N. Magome, T. Honda, J. Tsujiuchi: Hybrid holographic interferometer for measuring three-dimensional deformations, Opt. Eng. 20(2), 246–252 (1981)

    Google Scholar 

  44. T. Kreis: Digital holographic interference-phase measurement using the Fourier-transform method, J. Opt. Soc. Am. 3(6), 847–855 (1986)

    Google Scholar 

  45. M. Takeda, H. Ina, S. Kobayaschi: Fourier-transform method of fringe pattern analysis for computer based topography and interferometry, J. Opt. Soc. Am. 72(1), 156–160 (1982)

    Google Scholar 

  46. J.H. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, D.J. Brangaccio: Digital wavefront measuring interferometer for testing optical surfaces and lenses, Appl. Opt. 13(11), 2693–2703 (1974)

    Google Scholar 

  47. M. Born, E. Wolf: Principles of Optics, 7th edn. (Cambridge Univ. Press, Cambridge 2005)

    Google Scholar 

  48. K. Creath: Temporal phase measurement methods,. In: Digital Speckle Pattern Interferometry and Related Techniques, ed. by P.K. Rastogi (Wiley, Chichester 2001) pp. 94–140

    Google Scholar 

  49. M. Kujawinska: Spatial phase measurement methods,. In: Digital Speckle Pattern Interferometry and Related Techniques, ed. by P.K. Rastogi (Wiley, Chichester 2001) pp. 141–193

    Google Scholar 

  50. T.R. Crimmins: Geometric filter for speckle reduction, Appl. Opt. 24(10), 1434–1443 (1985)

    Google Scholar 

  51. A. Davila, D. Kerr, G.H. Kaufmann: Digital processing of electronic speckle pattern interferometry addition fringes, Appl. Opt. 33(25), 5964–5968 (1994)

    Google Scholar 

  52. E. Kolenovic, W. Osten: Estimation of the phase error in interferometric measurements by evaluation of the speckle field intensity, Appl. Opt. 46(24), 6096–6104 (2007)

    Google Scholar 

  53. F.T.S. Yu, E.Y. Wang: Speckle reduction in holography by means of random spatial sampling, Appl. Opt. 12, 1656–1659 (1973)

    Google Scholar 

  54. F.A. Sadjadi: Perspective on techniques for enhancing speckled imagery, Opt. Eng. 29(1), 25–30 (1990)

    Google Scholar 

  55. A.K. Jain, C.R. Christensen: Digital processing of images in speckle noise. In: Applications of speckle phenomena, Proc. SPIE, Vol. 243, ed. by W.H. Carter (SPIE, Bellingham 1980) pp. 46–50

    Google Scholar 

  56. N. Eichhorn, W. Osten: An algorithm for the fast derivation of line structures from interferograms, J. Mod. Opt. 35(10), 1717–1725 (1988)

    Google Scholar 

  57. D.B. Guenther, C.R. Christensen, A. Jain: Digital processing of speckle images, Proc. IEEE Conf. on Pattern Recognition and Image Processing (1978) pp. 85–90

    Google Scholar 

  58. R.M. Hodgson, D.G. Bailey, M.J. Nailor, A.L. Ng, S.J. McNeil: Properties, implementation and application of rank filters, Image Vis. Comput. 3(1), 3–14 (1985)

    Google Scholar 

  59. U.E. Ruttimann, R.L. Webber: Fast computing median filters on general purpose image processing systems, Opt. Eng. 25(9), 1064–1067 (1986)

    Google Scholar 

  60. G. Stanke, W. Osten: Application of different types of local filters for the shading correction of interferograms, Fringeʼ89, Proc. 1st Intern. Workshop on Automatic Processing of Fringe Patterns, ed. by W. Osten, R.J. Pryputniewicz, G.T. Reid, H. Rottenkolber (Akademie Verlag, Berlin 1989) pp. 140–144

    Google Scholar 

  61. E. Bieber, W. Osten: Improvement of speckled fringe patterns by Wiener filtering, Proc. SPIE 1121, 393–399 (1989)

    Google Scholar 

  62. J.S. Lim, H. Nawab: Techniques for speckle noise removal, Opt. Eng. 20, 472–480 (1981)

    Google Scholar 

  63. J.S. Ostrem: Homomorphic filtering of specular scenes, IEEE Trans. SMC-11(5), 385–386 (1981)

    Google Scholar 

  64. H. Winter, S. Unger, W. Osten: The application of adaptive and anisotropic filtering for the extraction of fringe patterns skeletons, Proc. Fringe ʼ89 (Akademie Verlag, Berlin 1989) pp. 158–166

    Google Scholar 

  65. Q. Yu, K. Andresen: New spin filters for interferometric fringe patterns and grating patterns, Appl. Opt. 33(15), 3705–3711 (1994)

    Google Scholar 

  66. T.R. Crimmins: Geometric filter for reducing speckles, Opt. Eng. 25(5), 651–654 (1986)

    Google Scholar 

  67. K. Qian: Windowed Fourier transform for fringe pattern analysis, Appl. Opt 43, 2695–2702 (2004)

    Google Scholar 

  68. K. Qian, H. S. Seah: Two-dimensinal windowed Fourier frames for noise reduction in fringe pattern analysis, Opt. Eng. 44(7), 075601-1-9 (2005)

    Google Scholar 

  69. A. Federico, G. Kaufmann: Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes, Opt. Eng. 40, 2598–2604 (2001)

    Google Scholar 

  70. A. Federico, G. Kaufmann: Phase retrieval in digital speckle pattern interferometry using a chirped Gaussian wavelet transform and a smoothed time-frequency distribution, Proc. SPIE 4933, 200–205 (2003)

    Google Scholar 

  71. J. Kauffmann, M. Gahr, H. Tiziani: Noise reduction in speckle pattern interferometry, Proc. SPIE 4933, 9–14 (2003)

    Google Scholar 

  72. Q. Yu, K. Andresen, W. Osten, W. Jüptner: Analysis and removing of the systematic phase error in interferograms, Opt. Eng. 33(5), 1630–1637 (1994)

    Google Scholar 

  73. L. Dorst, F. Groen: A system for quantitative analysis of interferograms, Proc. SPIE 599, 155–159 (1985)

    Google Scholar 

  74. H.A. Vrooman, A.A.M. Maas: Interferograms analysis using image processing techniques, Proc. SPIE 1121, 655–659 (1990)

    Google Scholar 

  75. Q. Yu, K. Andresen, W. Osten, W. Jüptner: Noise free normalized fringe patterns and local pixel transforms for strain extraction, Appl. Opt. 35(20), 3783–3790 (1996)

    Google Scholar 

  76. J.W. Goodmann, R.W. Lawrence: Digital image formation from electronically detected holograms, Appl. Phys. Lett. 11, 77–79 (1967)

    Google Scholar 

  77. T.H. Demetrakopoulos, R. Mitra: Digital and optical reconstruction of images from suboptical patterns, Appl. Opt. 13(3), 665–670 (1974)

    Google Scholar 

  78. L.P. Yaroslavsky, N.S. Merzlyakov: Methods of Digital Holography (Consultants Bureau, New York 1980)

    Google Scholar 

  79. U. Schnars: Direct phase determination in hologram interferometry using digitally recorded holograms, J. Opt. Soc. Am. A 11, 2011–2015 (1994)

    Google Scholar 

  80. G. Pedrini, W. Osten, Y. Zhang: Wave-front reconstruction from a sequence of interferograms recorded at different planes, Opt. Lett. 30, 833–835 (2005)

    Google Scholar 

  81. F. Zhang, G. Pedrini, W. Osten: Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation, Phys. Rev. A 75, 043805 (2007)

    Google Scholar 

  82. D.W. Robinson: Automatic fringe analysis with a computer image processing system, Appl. Opt. 22(14), 2169–2176 (1983)

    Google Scholar 

  83. J.B. Schemm, C.M. Vest: Fringe pattern recognition and interpolation using nonlinear regression analysis, Appl. Opt. 22(18), 2850–2853 (1983)

    Google Scholar 

  84. F. Becker, H. Yung: Digital fringe reduction technique applied to the measurement of three-dimensional transonic flow fields, Opt. Eng. 24(3), 429–434 (1985)

    Google Scholar 

  85. W. Joo, S.S. Cha: Automated interferogram analysis based on an integrated expert system, Appl. Opt. 34(32), 7486–7496 (1995)

    Google Scholar 

  86. U. Mieth, W. Osten: Three methods for the interpolation of phase values between fringe pattern skeleton. In: Interferometryʼ89, Proc. SPIE, Vol. 1121, ed. by Z. Jaroszewicz, M. Plata (SPIE, Bellingham 1989) pp. 151–154

    Google Scholar 

  87. J.L. Marroquin, M. Rivera, S. Botello, R. Rodriguez-Vera, M. Servin: Regularization methods for processing fringe pattern images, Appl. Opt. 38, 788–794 (1999)

    Google Scholar 

  88. M. Servin, J.L. Marroquin, F.J. Cuevas: Fringe-follower regularized phase tracker for demodulation of closaed-fringe interferograms, J. Opt. Soc. Am. A 18, 689–695 (2001)

    Google Scholar 

  89. R. Legarda Saenz, W. Osten, W. Jüptner: Improvement of the regularized phase tracking technique for the processing of non-normalized fringe patterns, Appl. Opt. 41(26), 5519–5526 (2002)

    Google Scholar 

  90. D.R. Burton, M.J. Lalor: Managing some problems of Fourier fringe analysis, Proc. SPIE 1163, 149–160 (1989)

    Google Scholar 

  91. N. Abramson: The Making and Evaluation of Holograms (Academic, London 1981)

    Google Scholar 

  92. T. Kreis: Fourier-transform evaluation of holographic interference patterns, Proc. SPIE 814, 365–371 (1987)

    Google Scholar 

  93. M. Takeda: Spatial-carrier fringe pattern analysis and its applications to precision interferometry and profilometry: An overview, Ind. Metrol. 1, 79–99 (1990)

    MathSciNet  Google Scholar 

  94. K.H. Womack: Interferometric phase measurement using synchronous detection, Opt. Eng. 23(4), 391–395 (1984)

    MathSciNet  Google Scholar 

  95. L. Mertz: Real-time fringe pattern analysis, Appl. Opt. 22, 1535–1539 (1983)

    Google Scholar 

  96. W.W. Macy: Two-dimensional fringe-pattern analysis, Appl. Opt. 22, 3898–3901 (1983)

    Google Scholar 

  97. P.L. Ransom, J.V. Kokal: Interferogram analysis by modified sinusoid fitting technique, Appl. Opt. 25, 4199–4204 (1986)

    Google Scholar 

  98. C.J. Morgan: Least-squares estimation in phase-measurement interferometry, Opt. Lett. 7(8), 368–370 (1982)

    Google Scholar 

  99. J.E. Greifenkamp: A generalized data reduction for heterodyne interferometry, Opt. Eng. 23(4), 350–352 (1984)

    Google Scholar 

  100. T. Kreis: Handbook of Holographic Interferometry – Optical and Digital Methods (Wiley, Weinheim 2005)

    Google Scholar 

  101. J.C. Wyant, K. Creath: Recent advances in interferometric optical testing, Laser Focus/Electro. Opt. 21(11), 118–132 (1985)

    Google Scholar 

  102. P. Carré: Installation et utilisation du comparateur photoelectrique et interferentiel du bureau international des poids et measures, Metrologia 2(1), 13–23 (1966)

    MathSciNet  Google Scholar 

  103. W. Jüptner, T. Kreis, H. Kreitlow: Automatic evaluation of holographic interferograms by reference beam phase shifting, Proc. SPIE 398, 22–29 (1983)

    Google Scholar 

  104. J. Schwider, R. Burow, K.-E. Elßner, J. Grzanna, R. Spolaczyk, K. Merkel: Digital wavefront measuring interferometry: Some systematic error sources, Appl. Opt. 22(21), 3421–3432 (1983)

    Google Scholar 

  105. P. Hariharan, B.F. Oreb, T. Eiju: Digital phase shifting interferometry: a simple erro-compensating phase calculation algorithm, Appl. Opt. 26, 2504–2505 (1987)

    Google Scholar 

  106. C. Koliopoulos: Interferometric optical phase measurement techniques. Ph.D. Thesis (Optical Science Center Tucson Univ. Arizona, Tuscon 1981)

    Google Scholar 

  107. K. Creath: Comparison of phase-measurement algorithms, Proc. SPIE 680, 19–28 (1986)

    Google Scholar 

  108. K. Creath: Phase-measurement interferometry techniques. In: Progress in Optics, Vol. 26, ed. by E. Wolf (North-Holland, Amsterdam 1988) pp. 349–393

    Google Scholar 

  109. J.M. Huntley: Automated analysis of speckle interferogram. In: Holographic Interferometry, ed. by P.K. Rastogi (Springer, Berlin, Heidelberg 1988) pp. 59–139

    Google Scholar 

  110. Y. Surrel: Fringe analysis. In: Photomechanics, ed. by P. Rastogi (Springer, Berlin, Heidelberg, New York 2000)

    Google Scholar 

  111. J.W. Goodman, R.W. Lawrence: Digital image formation from electronically detected holograms, Appl. Phys. Lett. 11, 77–79 (1967)

    Google Scholar 

  112. T.H. Demetrakopoulos, R. Mitra: Digital and optical reconstruction of images from suboptical patterns, Appl. Opt. 13(3), 665–670 (1974)

    Google Scholar 

  113. L.P. Yaroslavsky, N.S. Merzlyakov: Methods of Digital Holography (Consultants Bureau, New York 1980)

    Google Scholar 

  114. U. Schnars: Direct phase determination in holographic interferometry using digitally recorded holograms, J. Opt. Soc. Am. A 11, 2011–2015 (1994)

    Google Scholar 

  115. J.N. Butters, J.A. Leendertz: Holographic and video techniques applied to engineering measurement, J. Meas. Control 4, 349–354 (1971)

    Google Scholar 

  116. U. Schnars, W. Jüptner: Direct recording of holograms by a CCD target and numerical reconstruction, Appl. Opt. 33(2), 197–181 (1994)

    Google Scholar 

  117. C. Wagner, S. Seebacher, W. Osten, W. Jüptner: Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology, Appl. Opt. 38(22), 4812–4820 (1999)

    Google Scholar 

  118. U. Schnars, W. Jüptner: Digital Holography (Springer Berlin, Heidelberg, New York 2004)

    Google Scholar 

  119. W. Osten, P. Ferraro: Digital Holography and its application in MEMS and MOEMS Inspection. In: Optical Inspection of Microsystems, ed. by W. Osten (Taylor and Francis, Boca Raton 2006) pp. 351–425

    Google Scholar 

  120. J.C. Hunter, M.W. Collins: Holographic interferometry and digital fringe processing, J. Phys. D. Appl. Phys. 20, 683–691 (1987)

    Google Scholar 

  121. Q. Yu, K. Andresen: Fringe orientation maps and 2D derivative-sign binary image methods for extraction of fringe skeletons, Appl. Opt. 33(29), 6873–6878 (1994)

    Google Scholar 

  122. W. Osten, W. Nadeborn, P. Andrä: General hierarchical approach in absolute phase measurement, Proc. SPIE 2860, 2–13 (1996)

    Google Scholar 

  123. D.R. Robinson: Phase unwrapping methods,. In: Interferogram Analysis, ed. by D.W. Robinson, G.T. Reid (IOP, Bristol 1993) pp. 194–229

    Google Scholar 

  124. M. Idesawa, T. Yatagai, T. Soma: Scanning moiré method and automatic measurement of 3-D shapes, Appl. Opt. 16, 2152–2162 (1977)

    Google Scholar 

  125. P.O. Varman: Opt. Laser. Eng. 5, 41–58 (1984)

    Google Scholar 

  126. A. Colin, W. Osten: Automatic support for consistent labeling of skeletonized fringe patterns, J. Mod. Opt. 42(5), 945–954 (1995)

    Google Scholar 

  127. D.C. Ghiglia, G.A. Mastin, L.A. Romero: Cellular-automata method for phase unwrapping, J. Opt. Soc. Am. A 4, 267–280 (1987)

    Google Scholar 

  128. W. Osten, R. Höfling: The inverse modulo process in automatic fringe analysis – problems and approaches, Proc. Int. Conf. on Hologram Interferometry and Speckle Metrology (Baltimore 1990) pp. 301–309

    Google Scholar 

  129. D. Shough: Beyond fringe analysis, Proc. SPIE 2003, 208–223 (1993)

    Google Scholar 

  130. J.M. Huntley, J.R. Buckland: Characterization of sources of 2π-phase discontinuity in speckle interferograms, J. Opt. Soc. Am. A 12(9), 1990–1996 (1995)

    Google Scholar 

  131. J.M. Huntley: Noise-immune phase unwrapping algorithm, Appl. Opt. 28, 3268–3270 (1989)

    Google Scholar 

  132. J.E. Greivenkamp: Sub-Nyquist interferometry, Appl. Opt. 26, 5245–5258 (1987)

    Google Scholar 

  133. T.R. Judge, P.J. Bryanston-Cross: A review of phase unwrapping techniques in fringe analysis, Opt. Laser. Eng. 21, 199–239 (1994)

    Google Scholar 

  134. D.B. Bone: Fourier fringe analysis: the two-dimensional phase unwrapping problem, Appl. Opt. 30(25), 3627–3632 (1991)

    Google Scholar 

  135. P. Andrä, U. Mieth, W. Osten: Some strategies for unwrapping noisy interferograms in phase-sampling-interferometry, Proc. SPIE 1508, 50–60 (1991)

    Google Scholar 

  136. R.T. Judge, C. Quan, P.J. Bryanston-Cross: Holographic deformation measurements by Fourier transform technique with automatic phase unwrapping, Opt. Eng. 31(3), 533–543 (1992)

    Google Scholar 

  137. M. Takeda, K. Nagatome, Y. Watanabe: Phase unwrapping by neural network, Proc. Fringe 1993 (Akademieverlag, Berlin 1993) pp. 137–141

    Google Scholar 

  138. J.M. Huntley, R. Cusack, H. Saldner: New phase unwrapping algorithms, Proc. Fringe 1993 (Akademieverlag, Berlin 1993) pp. 148–153

    Google Scholar 

  139. J.M. Huntley, H. Saldner: Temporal phase-unwrapping algorithm for automated interferogram analysis, Appl. Opt. 32(17), 3047–3052 (1993)

    Google Scholar 

  140. D.C. Ghiglia, L.A. Romero: Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods, J. Opt. Soc. Am. A 11(1), 107–117 (1994)

    Google Scholar 

  141. M. Takeda: Current trends and future directions of fringe analysis, Proc. SPIE 2544, 2–10 (1995)

    Google Scholar 

  142. M. Owner-Petersen: Phase map unwrapping: A comparison of some traditional methods and a presentation of a new approach, Proc. SPIE 1508, 73–82 (1991)

    Google Scholar 

  143. J.J. Gierloff: Phase unwrapping by regions, Proc. SPIE 818, 267–278 (1987)

    Google Scholar 

  144. A. Ettemeyer, U. Neupert, H. Rottenkolber, C. Winter: Fast and robust analysis of fringe patterns – an important step towards the automation of holographic testing procedures,. In: Interferogram Analysis, ed. by D.W. Robinson, G.T. Reid (IOP, Bristol 1993) pp. 23–31

    Google Scholar 

  145. Q. Lin, J.F. Vesecky, H.A. Zebker: Phase unwrapping through fringe-line detection in synthetic aperture radar interferometry, Appl. Opt. 33(2), 201–208 (1994)

    Google Scholar 

  146. T.M. Kreis, R. Biedermann, W. Jüptner: Evaluation of holographic interference patterns by artificial neural networks, Proc. SPIE 2544, 11–24 (1995)

    Google Scholar 

  147. J.L. Marroquin, M. Rivera: Quadratic regularization functionals for phase unwrapping, J. Opt. Soc. Am. A 12, 2393–2400 (1995)

    MathSciNet  Google Scholar 

  148. J.L. Marroquin, M. Servin, R. Rodriguez-Vera: Adaptive quadrature filters for multi-phase stepping images, Opt. Lett. 23(4), 238–240 (1998)

    Google Scholar 

  149. J.L. Marroquin, M. Rivera, S. Botello, R. Rodriguez-Vera, M. Servin: Regularization methods for processing fringe pattern images, Proc. SPIE 3478, 26–36 (1998)

    Google Scholar 

  150. J. Hadamard: Lectures on Cauchyʼs Problem in Partial Differential Equations (Yale University Press, New Haven 1923)

    MATH  Google Scholar 

  151. B. Hofmann: Ill-posedness and regularization of inverse problems – a review of mathematical methods. In: The Inverse Problem, ed. by H. Lübbig (Akademie Verlag, Berlin 1995) pp. 45–66

    Google Scholar 

  152. A.N. Tikhonov: Solution of incorrectly formulated problems and the regularization method, Sov. Math. Dokl. 4, 1035–1038 (1963)

    Google Scholar 

  153. A.N. Tikhonov, V.Y. Arsenin: Solution of Ill-Posed Problems (Winston, Washington 1977), Transl. From Russian

    Google Scholar 

  154. D.C. Ghiglia, M.D. Pritt: Two-Dimensional Phase Unwrapping (Wiley, New York 1998)

    MATH  Google Scholar 

  155. K.G. Larkin, D. Bone, M.A. Oldfield: Natural demodulation of two.dimensional fringe patterns: I. General background to the spiral phase quadrature transform, J. Opt. Soc. Am. A 18(8), 1862–1870 (2001)

    Google Scholar 

  156. K.G. Larkin: Natural demodulation of 2D Fringe patterns, Proc. Fringe 2001 (Elsevier, Paris 2001) pp. 134–141

    Google Scholar 

  157. J.A. Quiroga, M. Servin, J.L. Marroquin, J.A. Gomez-Pedrero: A isotropic n-dimensional quadrature transform and its applications in fringe pattern processing, Proc. SPIE 5144, 259–267 (2003)

    Google Scholar 

  158. J.A. Quiroga, J.A. Gomez-Pedrero, M.J. Terron-Lopez, M. Servin: Temporal demodulation of fringe patterns with sensitivity change, Opt. Commun. 253, 266–275 (2005)

    Google Scholar 

  159. M. Servin, J.L. Marroquin, J.A. Quiroga: Regularized quadrature and phase tracking from a single closed-fringe interferogram, J. Opt. Soc. Am. A 21, 411–419 (2004)

    Google Scholar 

  160. K.A. Stetson: Use of sensitivity vector variations to determine absolute displacements in double exposure hologram interferometry, Appl. Opt. 29, 502–504 (1990)

    Google Scholar 

  161. N. Abramson: The Holo-Diagram V: A device for practical interpreting of hologram interference fringes, Appl. Opt. 11, 1143–1147 (1972)

    Google Scholar 

  162. U. Skudayski, W. Jüptner: Synthetic wavelength interferometry for the extension of the dynamic range, Proc. SPIE 1508, 68–72 (1991)

    Google Scholar 

  163. K.C. Yuk, J.H. Jo, S. Chang: Determination of the absolute order of shadow moiré fringes by using two differently coloured light sources, Appl. Opt. 33(1), 130–132 (1994)

    Google Scholar 

  164. M.D. Altschuler, B.R. Altschuler, J. Taboda: Measuring surfaces space-coded by laser-projected dot matrix, Proc. SPIE 182, 163–172 (1979)

    Google Scholar 

  165. F.M. Wahl: A coded light approach for depth map acquisition. In: Mustererkennung 1986, ed. by G. Hartmann (Springer, Berlin 1986) pp. 12–17

    Google Scholar 

  166. R. Zumbrunn: Automatic fast shape determination of diffuse reflecting objects at close range by means of structured light and digital phase measurement, ISPRS (Interlaken, Switzerland 1987) pp. 363–378

    Google Scholar 

  167. H. Steinbichler: Verfahren und Vorrichtung zur Bestimmung der Absolutkoordinaten eines Objektes, German Patent DE 4134546 (1993)

    Google Scholar 

  168. H. Tiziani: Optische Verfahren zur Abstands- und Topografiebestimmung, Informationstechnik 1, 5–14 (1991)

    Google Scholar 

  169. T. Pfeifer, J. Thiel: Absolutinterferometrie mit durchstimmbaren Halbleiterlasern, Tech. Mess. 60(5), 185–191 (1993)

    Google Scholar 

  170. P.J. de Groot: Extending the unambiguous range of two-color interferometers, Appl. Opt. 33(25), 5948–5953 (1994)

    Google Scholar 

  171. M. Takeda, H. Yamamoto: Fourier-transform speckle profilometry: three-dimensional shape measurement of diffuse objects with large height steps and/or spatially isolated surfaces, Appl. Opt. 33, 7829–7837 (1994)

    Google Scholar 

  172. Y. Zou, G. Pedrini, H. Tiziani: Surface contouring in a video frame by changing the wavelength of a diode laser, Opt. Eng. 35(4), 1074–1079 (1996)

    Google Scholar 

  173. S. Kuwamura, I. Yamaguchi: Wavelength scanning profilometry for real-time surface shape measurement, Appl. Opt. 36(19), 4473–4482 (1997)

    Google Scholar 

  174. W. Nadeborn, P. Andrä, W. Osten: A robust procedure for absolute phase measurement, Opt. Laser. Eng. 24, 245–260 (1996)

    Google Scholar 

  175. H.O. Saldner, J.M. Huntley: Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector, Opt. Eng. 36, 610–615 (1997)

    Google Scholar 

  176. C. Wagner, W. Osten, S. Seebacher: Direct shape measurement by digital wavefront reconstruction and multi-wavelength contouring, Opt. Eng. 39(1), 79–85 (2000)

    Google Scholar 

  177. R. Cusack, H.M. Huntley, H.T. Goldrein: Improved noise-immune phase unwrapping algorithm, Appl. Opt. 35, 781–789 (1995)

    Google Scholar 

  178. G. Pedrini, I. Alexeenko, W. Osten, H.J. Tiziani: Temporal phase unwrapping of digital hologram sequences, Appl. Opt. 42, 5846–5854 (2005)

    Google Scholar 

  179. GUM: Guide for the Expression of Uncertainty in Measurement (ISO, Genf 1995)

    Google Scholar 

  180. W. Osten, W. Jüptner: Measurement of displacement vector fields of extended objects, Opt. Laser Eng. 24, 261–285 (1996)

    Google Scholar 

  181. R.J. Pryputniewicz: Experiment and FEM modeling, Fringeʼ93, Proc. of the 2nd Intern. Workshop on Automatic Processing of Fringe Patterns, ed. by W. Jüptner, W. Osten (Akademie Verlag, Bremen, Berlin 1993) pp. 257–275

    Google Scholar 

  182. N. Abramson: The holo-diagram: a practical device fo making and evaluating holograms, Appl. Opt. 8, 1235–1240 (1969)

    Google Scholar 

  183. N. Abramson: Sandwich hologram interferometry. 4. Holographic studies of two milling machines, Appl. Opt. 18, 2521 (1977)

    Google Scholar 

  184. G. Birnbaum, C.M. Vest: Holographic nondestructive evaluation: status and future, Int. Adv. Nondestruct. Test 9, 257–282 (1983)

    Google Scholar 

  185. J.E. Sollid, K.A. Stetson: Strains from holographic data, Exp. Mech. 18, 208–216 (1978)

    Google Scholar 

  186. J. Stoer: Einführung in die numerische Mathematik I (Springer Verlag, Berlin, Heidelberg, New York 1972)

    MATH  Google Scholar 

  187. W. Osten: Theory and practice in optimization of holographic interferometers, Proc. SPIE 473, 52–55 (1984)

    Google Scholar 

  188. S. Seebacher, W. Osten, W. Jüptner: 3D-Deformation analysis of microcomponents using digital holography, Proc. SPIE 3098, 382–391 (1997)

    Google Scholar 

  189. W. Osten, F. Häusler: Zur Optimierung holografischer Interferometer, Preprint P-Mech-08/81

    Google Scholar 

  190. W. Osten: The application of optical shape measurement for the nondestructive evaluation of complex objects, Opt. Eng. 39(1), 232–243 (2000)

    Google Scholar 

  191. V. Srinivasan, H.C. Liu, M. Halioua: Automated phase-measuring profilometry of 3-D diffuse objects, Appl. Opt. 23, 3105–3108 (1984)

    Google Scholar 

  192. H. Tiziani: Optical techniques for shape measurement, Fringeʼ93, Proc. of the 2nd Intern. Workshop on Automatic Processing of Fringe Patterns, ed. by W. Jüptner, W. Osten (Akademie Verlag, Berlin, Bremen 1993) pp. 165–174

    Google Scholar 

  193. D. Nobis, C.M. Vest: Statistical analysis of errors in holographic interferometry, Appl. Opt. 17, 2198–2204 (1978)

    Google Scholar 

  194. W. Osten: Some considerations on the statistical error analysis in holographic interferometry with application to an optimized interferometer, Opt. Acta 32(7), 827–838 (1985)

    Google Scholar 

  195. S.K. Dhir, J.P. Sikora: An improved method for obtaining the general displacement field from a holographic interferogram, Exp. Mech. 12, 323–327 (1972)

    Google Scholar 

  196. P. Andrä, A. Beeck, W. Jüptner, W. Nadeborn, W. Osten: Combination of optically measured coordinates and displacements for quantitative investigation of complex objects, Proc. SPIE 2782, 200–210 (1996)

    Google Scholar 

  197. W. Osten, J. Saedler, W. Wilhelmi: Fast evaluation of fringe patterns with a digital image processing system, Laser Mag. 2, 58–66 (1987), (in German)

    Google Scholar 

  198. W. Jüptner: Nondestructive testing with interferometry, Proc. Fringeʼ93, ed. by W. Jüptner, W. Osten (Akademie Verlag, Berlin 1993) pp. 315–324

    Google Scholar 

  199. W. Osten, W. Jüptner, U. Mieth: Knowledge assisted evaluation of fringe patterns for automatic fault detection, Proc. SPIE 2004, 256–268 (1993)

    Google Scholar 

  200. W. Jüptner, T. Kreis, U. Mieth, W. Osten: Application of neural networks and knowledge based systems for automatic identification of fault indicating fringe patterns, Proc. SPIE Interferometryʼ94, Vol. 2342 (1994) pp. 16–26

    Google Scholar 

  201. T. Kreis, W. Jüptner, R. Biedermann: Neural network approach to nondestructive testing, Appl. Opt. 34(8), 1407–1415 (1995)

    Google Scholar 

  202. T. Bischof, W. Jüptner: Determination of the adhesive load by holographic interferometry using the result of FEM-calculations, Proc. SPIE 1508, 90–95 (1991)

    Google Scholar 

  203. U. Mieth, W. Osten, W. Jüptner: Numerical investigations on the appearance of material flaws in holographic interference patterns, Proc. International Symposium on Laser Application in Precision Measurement (Akademie Verlag, Berlin, Balatonfüred 1996) pp. 218–225

    Google Scholar 

  204. W. Osten, F. Elandaloussi, W. Jüptner: Recognition by synthesis – a new approach for the recognition of material faults in HNDE, Proc. SPIE 2861, 220–224 (1996)

    Google Scholar 

  205. U. Mieth, W. Osten, W. Jüptner: Investigations on the appearance of material faults in holographic interferograms, Proc. Fringe 2001 (Elsevier, 2001) pp. 163–172

    Google Scholar 

  206. W. Osten, F. Elandaloussi, U. Mieth: Trends for the solution of identifikation problems in holographic non-destructive testing (HNDT), Proc. SPIE 4900, 1187–1196 (2002)

    Google Scholar 

  207. W. Jüptner, T. Kreis: Holographic NDT and visual inspection in production line application, Proc. SPIE 604, 30–36 (1986)

    Google Scholar 

  208. Y.Y. Hung: Displacement and strain measurement. In: Speckle Metrology, ed. by R.K. Erf (Academic, New York 1987) pp. 51–71

    Google Scholar 

  209. M. Kalms, W. Osten: Mobile shearography system fort the inspection of aircraft and automotive components, Opt. Eng. 42(5), 1188–1196 (2003)

    Google Scholar 

  210. V. Tornari, A. Bonarou, P. Castellini, E. Esposito, W. Osten, M. Kalms, N. Smyrnakis, S. Stasinopulos: Laser based systems for the structural diagnostic of artworks: an application to XVII century Byzantine icons, Proc. SPIE 4402, 172–183 (2001)

    Google Scholar 

  211. M. Y. Y. Hung, Y. S. Chen, S. P. Ng, M. S. Shepard; Y. Hou, J. R. Lhota: Review and comparison of shearography and pulsed thermography for adhesive bond evaluation, Opt. Eng. 46(5), 051007-1-16 (2007)

    Google Scholar 

  212. D. Marr: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (Freeman, San Francisco 1982)

    Google Scholar 

  213. J.B. Keller: Inverse Problems, Am. Math. Mon. 83, 107–118 (1976)

    Google Scholar 

  214. M. Bertero, P. Boccacci: Introduction to Inverse Problems in Imaging (IOP, Bristol 1998)

    MATH  Google Scholar 

  215. C.E. Liedtke: Intelligent approaches in image analysis,. In: Laser Interferometry IX: Techniques and Analysis, Proc. SPIE, Vol. 3478, ed. by M. Kujawinska, G. Brown, M. Takeda (SPIE, Bellingham 1998) pp. 2–10

    Google Scholar 

  216. W. Osten: Active optical metrology – a definition by examples, Proc. SPIE 3478, 11–25 (1998)

    Google Scholar 

  217. W. Osten, W. Jüptner: New light sources and sensors for active optical 3D-inspection, Proc. SPIE 3897, 314–327 (1999)

    Google Scholar 

  218. W. Osten, F. Elandaloussi, W. Jüptner: Recognition by synthesis – a new approach for the recognition of material faults in HNDE, Proc. SPIE 2861, 220–224 (1996)

    Google Scholar 

  219. F. Elandaloussi, W. Osten, W. Jüptner: Automatic flaw detection using recognition by synthesis: Practical results, Proc. SPIE 3479, 228–234 (1998)

    Google Scholar 

  220. T. Merz, F. Elandaloussi, W. Osten, D. Paulus: Active approach for holographic nondestructive testing of satellite fuel tanks, Proc. SPIE 3824, 8–19 (1999)

    Google Scholar 

  221. F. Elandaloussi: Erkennung durch Synthese – Modellgestützte Detektion und Analyse von Materialfehlern an technischen Objekten. Ph.D. Thesis (Univ. Bremen, Bremen 2002)

    Google Scholar 

  222. F. Elandaloussi, W. Osten, W. Jüptner: Detektion und Analyse von Materialfehlern nach dem Prinzip Erkennung durch Synthese, Tech. Mess. 5, 227–235 (2002)

    Google Scholar 

  223. U. Mieth: Erscheinungsbild von Materialfehlern in holografischen Interferogrammen, Series Strahltechnik, Vol. 11 (BIAS Verlag, Bremen 1998), (On the appearance of material faults in holographic interferograms.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Osten Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Osten, W. (2008). Digital Image Processing for Optical Metrology. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_19

Download citation

Publish with us

Policies and ethics