Skip to main content

Earthquake Occurrence and Mechanisms, Stochastic Models for

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Stochastic models for earthquake mechanism and occurrence combine a model for the physical processes generating the observable data (catalogdata) with a model for the errors, or uncertainties, in our ability to predict those observables. Such models are essential to properly quantify theuncertainties in the model, and to develop probability forecasts. They also help to isolate those features of earthquake mechanism and occurrence whichcan be attributed to mass action effects of a statistical mechanical character. We do not consider in this paper applications of the models toearthquake engineering and insurance.

Introduction

The complexity of earthquake phenomena, the difficulty of understanding and monitoring the processes involved in their occurrence, and theconsequent difficulty of accurately predicting them, are now widely accepted points of view. What are stochastic models, and what role do they play inaiding our understanding of such phenomena?

The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Stochastic:

occurring by chance;

Stochastic process:

physical or other process evolving in time governed in part by chance.

Earthquake mechanism:

physical processes causing the occurrence of an earthquake.

Independent events:

events not affecting each other's probability of occurrence.

Branching process:

process of ancestors and offspring, as in the model of nuclear fission.

Point process:

stochastic process of point‐events in time or space.

Probability forecast:

prediction of the probability distribution of the time and other features of some future event, as distinct from a forecast for the time (etc.) of the event itself.

Model test:

a statistical test for the extent to which a stochastic model is supported by the relevant data.

Precursory signal:

observed quantity which affects the occurrence probability of a future event (earthquake).

Bibliography

  1. Ambraseys NN, Melville CP (1982) A History of PersianEarthquakes. Cambridge University Press, Cambridge

    Google Scholar 

  2. Andersen PK, Borgan Ø, Gill RD, Keiding N (1993) Statistical Models Based onCounting Processes. Springer, New York

    Google Scholar 

  3. Bak P, Tang C (1989) Earthquakes as a self‐organized criticalphenomenon. J Geophys Res 94:15635–15637

    ADS  Google Scholar 

  4. Bebbington M, Harte DS (2003) The linked stress release model forspatio‐temporal seismicity: formulations, procedures and applications. Geophys J Int 154:925–946

    ADS  Google Scholar 

  5. Bebbington M, Vere-Jones D, Zheng X (1990) Percolation theory: a model forearthquake faulting? Geophys J Int 100:215–220

    ADS  Google Scholar 

  6. Ben-Zion Y (1996) Stress,Slip and earthquakes in models of complex single‐fault systems incorporating brittle and creep deformations. J Geophys Res101:5677–5706

    ADS  Google Scholar 

  7. Ben-Zion Y, Dahmen K, Lyakhowsky V, Ertas D, Agnon A (1999) Self‐drivenmode‐switching of earthquake activity on a fault system. Earth Planet. Sci Lett 172:11–21

    Google Scholar 

  8. Ben-Zion Y, Eneva M, Liu Y (2003) Large earthquake cycles and intermittentcriticality on heterogeneous faults due to evolving stress and seismicity. J Geophys Res 108:2307V. doi:10.1029/2002JB002121

  9. Ben-Zion Y, Lyakhovsky V (2002) Accelerated seismic release and related aspectsof seismicity patterns on earthquake faults. Pure Appl Geophys 159:2385–2412

    ADS  Google Scholar 

  10. Ben-Zion Y, Rice J (1995) Slip patterns and earthquake populations alongdifferent classes of faults on elastic solids. J Geophys Res 100:12959–12983

    ADS  Google Scholar 

  11. Borovkov K, Vere-Jones D (2000) Explicit formulae for stationary distributionsof stress release processes. J Appl Prob 37:315–321

    MathSciNet  MATH  Google Scholar 

  12. Brémaud P, Massoulié L (2001) Hawkes branching processes withoutancestors. J App Prob 38:122–135

    Google Scholar 

  13. Brillinger DR (1981) Time Series: Data Analysis and Theory, 2nd edn. HoldenDay, San Francisco

    MATH  Google Scholar 

  14. Burridge R, Knopoff L (1967) Model and theoretical seismicity. Bull SeismolSoc Am 57:341–371

    Google Scholar 

  15. Chelidze TL, Kolesnikov YM (1983) Modelling and forecasting the failureprocess in the framework of percolation theory. Izvestiya Earth Phys 19:347–354

    Google Scholar 

  16. Chong FS (1983) Time-space‐magnitude interdependence of upper crustalearthquakes in the main seismic region of New Zealand. J Geol Geophys 26:7–24, New Zealand

    Google Scholar 

  17. Console R, Lombardi AM, Murru M, Rhoades DA (2003) Båth's Law and theself‐similarity of earthquakes. J Geophys Res 108(B2):2128V. doi:10.1029/2001JB001651

  18. Cox DR (1972) Regression models and life tables (with discussion). Roy J StatSoc Ser B 34:187–220

    MATH  Google Scholar 

  19. Dahmen K, Ertas D, Ben-Zion Y (1998) Gutenberg‐Richter andcharacteristic earthquake behavior in simple mean-field models of heterogeneous faults. Phys Rev E 58:1494–1501

    ADS  Google Scholar 

  20. Daley DJ, Vere-Jones D (2003) An Introduction to the Theory of PointProcesses, 2nd edn, vol I. Springer, New York

    Google Scholar 

  21. Davison C (1938) Studies on the Periodicity of Earthquakes. Murthy,London

    Google Scholar 

  22. Diggle PJ (2003) Statistical Analysis of Spatial Point Patterns. 2ndedn. University Press, Oxford

    MATH  Google Scholar 

  23. Ebel JB, Chambers DW, Kafka AL, Baglivo JA (2007) Non‐Poissonianearthquake clustering and the hidden Markov model as bases for earthquake forecasting in California. Seismol Res Lett78:57–65

    Google Scholar 

  24. Evison F, Rhoades D (2001) Model of long-term seismogenesis. Annali Geofisica44:81–93

    Google Scholar 

  25. Felzer KR, Abercrombie RE, Ekström G (2004) A common origin foraftershocks, foreshocks and multiplets. Bull Amer Seismol Soc 94:88–98

    Google Scholar 

  26. Fisher RL, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Statistics of earthquakesin simple models of heterogeneous faults. Phys Rev Lett 97:4885–4888

    ADS  Google Scholar 

  27. Griffiths AA (1924) Theory of rupture. In: Proceedings 1st Int Congress inApplied Mech, Delft, pp 55–63

    Google Scholar 

  28. Gutenberg B, Richter C (1949) Seismicity of the Earth and AssociatedPhenomena, 2nd edn. University Press, Princeton

    Google Scholar 

  29. Habermann RE (1987) Man-made changes of seismicity rates. Bull Seismol Soc Am77(1):141–159

    Google Scholar 

  30. Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data throughstatistical earthquake modelling. J Geophys Res 110. doi:10.1029/2004JB003247

  31. Harte D (2001) Multifractals: Theory and Applications. Chapman and Hall/CRC,Boca Raton

    Google Scholar 

  32. Harte D, Li DF, Vreede M, Vere-Jones D (2003) Quantifying the M8 predictionalgorithm: reduction to a single critical variable and stability results. NZ J Geol Geophys 46:141–152

    Google Scholar 

  33. Harte D, Li D-F, Vere-Jones D, Vreede M, Wang Q (2007) Quantifying the M8prediction algorithm II: model, forecast and evaluation. NZ J Geol Geophys 50:117–130

    Google Scholar 

  34. Harte D, Vere-Jones D (2005) Theentropy score and its uses in earthquakeforecasting. Pure Appl Geophys 162:1229–1253

    ADS  Google Scholar 

  35. Hawkes AG (1971) Spectra of some self‐exciting and mutually excitingpoint processes. Biometrika 58:83–90

    MathSciNet  MATH  Google Scholar 

  36. Hawkes AG, Oakes D (1974) A cluster representation ofa self‐exciting process. J Appl Prob 11:493–503

    MathSciNet  MATH  Google Scholar 

  37. Helmstetter A, Sornette D (2002) Subcritical and supercritical regimes inepidemic models of earthquake aftershocks. J Geophys Res 107:2237. doi:10.1029/2001JB001580

    Google Scholar 

  38. Helmstetter A, Sornette D (2003) Båth's law derived from theGutenberg‐Richter law and from aftershock properties. Geophys Res Lett 103(20):2069. doi:10.1029/2003GL018186

    ADS  Google Scholar 

  39. Ishimoto M, Iida K (1939) Bull Earthq Res Inst Univ Tokyo17:443–478

    Google Scholar 

  40. Iwata T, Young RP (2005) Tidal stress/strain and the b‑values of acoustic emissions at the Underground Research Laboratory. Canada. Pure Appl Geophys 162:(6–7):1291–1308. doi:10.1007/s00024-005-2670-2 (P*1357)

    ADS  Google Scholar 

  41. Jackson DD, Kagan YY (1999) Testable earthquake forecasts for 1999. SeismolRes Lett 70:393–403

    Google Scholar 

  42. Jaeger JC, Cook NGW (1969) Fundamentals of Rock Mechanics. Methuen,London

    Google Scholar 

  43. Jaume SC, Bebbington MS (2004) Accelerating seismic moment release froma self‐correcting stochastic model. J Geophys Res 109:B12301. doi:10.1029/2003JB002867

    ADS  Google Scholar 

  44. Jeffreys H (1938) Aftershocks and periodicity in earthquakes. Beitr Geophys53:111–139

    Google Scholar 

  45. Jeffreys H (1939) Theory of Probability, 1st edn (1939), 3rd edn(1961). University Press, Cambridge

    Google Scholar 

  46. Jones LM, Molnar P (1979) Some characteristics of foreshocks and theirpossible relationship to earthquake prediction and premonitory slip on a fault. J Geophys Res 84:3596–3608

    ADS  Google Scholar 

  47. Kagan Y (1973) Statistical methods in the study of the seismic process. BullInt Stat Inst 45(3):437–453

    MathSciNet  Google Scholar 

  48. Kagan Y (1991) Seismic moment distribution. Geophys J Int106:121–134

    ADS  Google Scholar 

  49. Kagan Y (1991) Fractal dimension of brittle fracture. J Non‐linearSci 1:1–16

    MathSciNet  ADS  MATH  Google Scholar 

  50. Kagan Y (1994) Statistics of characteristic earthquakes. Bull Seismol Soc Am83:7–24

    Google Scholar 

  51. Kagan Y, Jackson DD (1994) Probabilistic forecasting of earthquakes. Geophys JInt 143:438–453

    ADS  Google Scholar 

  52. Kagan Y, Knopoff L (1977) Earthquake risk prediction as a stochasticprocess. Phys Earth Planet Inter 14:97–108

    ADS  Google Scholar 

  53. Kagan Y, Knopoff L (1980) Spatial distribution of earthquakes: the two-pointcorrelation function. Geophys J Roy Astronom Soc 62:303–320

    ADS  Google Scholar 

  54. Kagan Y, Knopoff L (1981) Stochastic synthesis of earthquakecatalogues. J Geophys Res 86:2853–2862

    ADS  Google Scholar 

  55. Kagan Y, Knopoff L (1987) Statistical short-term earthquake prediction. Sci236:1563–1567

    ADS  Google Scholar 

  56. Keilis-Borok VI, Kossobokov VG (1990) Premonitory activation of the earthquakeflow: algorithm M8. Phys Earth Planet Inter 61:73–83

    ADS  Google Scholar 

  57. Kiremidjian AS, Anagnos T (1984) Stochastic slip predictable models forearthquake occurrences. Bull Seismol Soc Am 74:739–755

    Google Scholar 

  58. Knopoff L (1971) A stochastic model for the occurrence of main sequenceearthquakes. Rev Geophys Space Phys 9:175–188

    ADS  Google Scholar 

  59. Kossobokov VG (1997) User manual for M8. In: Algorithms for EarthquakeStatistics and Prediction. IASPEI Softw Ser 6:167–221

    Google Scholar 

  60. Kossobokov VG (2005) Earthquake prediction: principles, implementation,perspectives. Part I of Computational Seismology 36,“Earthquake Prediction and Geodynamic Processes.” (In Russian)

    Google Scholar 

  61. Kossobokov VG (2006) Testing earthquake prediction methods: The West Pacificshort-term forecast of earthquakes with magnitude MwHRV ≥ 5.8. Tectonophysics 413:25–31

    ADS  Google Scholar 

  62. Libicki E, Ben-Zion Y (2005) Stochastic branching models of fault surfaces andestimated fractal dimensions. Pure Appl Geophys 162:1077–1111

    ADS  Google Scholar 

  63. Lombardi A (2002) Probabilistic interpretation of Båth's law. Ann Geophys45:455–472

    Google Scholar 

  64. Lomnitz CA (1974) Plate Tectonics and Earthquake Risk. Elsevier,Amsterdam

    Google Scholar 

  65. Lomnitz‐Adler J (1985) Asperity models and characteristic earthquakesGeophys. J Roy Astron Soc 83:435–450

    Google Scholar 

  66. Lomnitz‐Adler J (1985) Automaton models of seismic fracture: constraintsimposed by the frequency‐magnitude relation. J Geophys Res 95:491–501

    Google Scholar 

  67. Lomnitz‐Adler J (1988) The theoretical seismicity of asperity models; anapplication to the coast of Oaxaca. Geophys J 95:491–501

    Google Scholar 

  68. Liu J, Chen Y, Shi Y, Vere-Jones D (1999) Coupled stress release modelfor time dependent earthquakes. Pure Appl Geophys 155:649–667

    ADS  Google Scholar 

  69. Loève M (1977) Probability Theory I, 4th edn. Springer, NewYork

    Google Scholar 

  70. Lu C, Vere-Jones D (2001) Statistical analysis of synthetic earthquakecatalogs generated by models with various levels of fault zone disorder. J Geophys Res 106:11115–11125

    ADS  Google Scholar 

  71. Lu C, Harte D, Bebbington M (1999) A linked stress release model forJapanese historical earthquakes: coupling among major seismic regions. Earth Planet. Science 51:907–916

    Google Scholar 

  72. Macdonald II, Zucchini W (1997) Hidden Markov and Other Models forDiscrete‐Valued Time Series. Chapman and Hall, London

    MATH  Google Scholar 

  73. Main IG, Burton PW (1984) Information theory and the earthquakefrequency‐magnitude distribution. Bull Seismol Soc Am 74:1409–1426

    Google Scholar 

  74. Mandelbrot BB (1977) Fractals: Form, Chance and Dimension. Freeman, SanFrancisco

    MATH  Google Scholar 

  75. Mandelbrot BB (1989) Multifractal measures, especially forthe geophysicist. Pure Appl Geophys 131:5–42

    ADS  Google Scholar 

  76. Martínez VJ, Saar E (2002) Statistics of the Galaxy Distribution. Chapman& Hall/CRC, Boca Raton

    Google Scholar 

  77. Matsu'ura RS (1986) Precursory quiescence and recovery of aftershockactivities before some large aftershocks. Bull Earthq Res InstTokyo 61:1–65

    Google Scholar 

  78. Matsu'ura RS, Karakama I (2005) A point process analysis of theMatsushiro earthquake swarm sequence: the effect of water on earthquake occurrence. Pure Appl Geophys 162 1319–1345. doi:10.1007/s00024-005-2762-0

    ADS  Google Scholar 

  79. Matthews MV, Ellsworth WL, Reasenberg PA (2002) A Brownian model forrecurrent earthquakes. Bull Seism Soc Amer 92:2232–2250

    Google Scholar 

  80. Merrifield A, Savage MK, Vere-Jones D (2004) Geographical distributions ofprospective foreshock probabilities in New Zealand. J Geol Geophys 47:327–339, New Zealand

    Google Scholar 

  81. Michael A (1997) Test prediction methods: earthquake clustering versus thePoisson model. Geophys Res Lett 24:1891–1894

    ADS  Google Scholar 

  82. Mogi K (1962) Study of elastic shocks caused by the fracture of heterogeneousmaterials and its relation to earthquake phenomena. Bull Earthq Res Inst Tokyo Univ 40:125–173

    Google Scholar 

  83. Mogi K (1985) Earthquake Prediction. Academic Press,Tokyo

    Google Scholar 

  84. Molchan GM (1990) Strategies in strong earthquake prediction. Phys Earth PlanInt 61:84–98

    ADS  Google Scholar 

  85. Molchan GM, Kagan YY (1992) Earthquake prediction and itsoptimization. J Geophys Res 106:4823–4838

    ADS  Google Scholar 

  86. Ogata Y (1988) Statistical models for earthquake occurrence and residualanalysis for point processes. J Amer Stat Soc 83:9–27

    Google Scholar 

  87. Ogata Y (1998) Space-time point process models for earthquakeoccurrences. Annals Inst Stat Math 50:379–402

    MATH  Google Scholar 

  88. Ogata Y (1999) Estimating the hazard of rupture using uncertain occurrencetimes of paleoearthquakes. J Geophys Res 104:17995–18014

    ADS  Google Scholar 

  89. Ogata Y (2005) Detection of anomalous seismicity as a stress changesensor. J Geophys Res 110(B5):B05S06. doi:10.1029/2004JB003245

    Google Scholar 

  90. Ogata Y, Utsu T, Katsura K (1996) Statistical discrimination of foreshocksfrom other earthquake clusters. Geophys J Int 127:17–30

    ADS  Google Scholar 

  91. Ogata Y, Jones L, Toda S (2003) When and where the aftershock activity wasdepressed: Contrasting decay patterns of the proximate large earthquakes in southern California. J Geophys Res 108(B6):2318. doi:10.1029/2002JB002009

    Google Scholar 

  92. Omori F (1894) On aftershocks of earthquakes. J Coll Sci Imp Acad Tokyo7:111–200

    Google Scholar 

  93. Otsuka M (1972) A chain reaction type source model as a tool tointerpret the magnitude‐frequency relation of earthquakes. J Phys Earth 20:35–45

    Google Scholar 

  94. Pietavolo A, Rotondi R (2000) Analyzing the interevent time distribution toidentify seismicity patterns: a Bayesian non‐parametric approach to the multiple change‐point problem. Appl Stat49:543–562

    Google Scholar 

  95. Pisarenko DV, Pisarenko VF (1995) Statistical estimation of the correlationdimension. Phys Lett A 197:31–39

    ADS  Google Scholar 

  96. Reasenberg PA (1999) Foreshock occurrence before largeearthquakes. J Geophys Res 104:4755–4768

    ADS  Google Scholar 

  97. Reasenberg PA, Jones LM (1989) Earthquake hazard after a mainshock inCalifornia. Sci 243:1173–1176

    ADS  Google Scholar 

  98. Reid HF (1911) The elastic‐rebound theory of earthquakes. Bull Dept GeolUniv Calif 6:413–444

    Google Scholar 

  99. Renyi A (1959) On the dimension and entropy of probability distributions. ActaMath 10:193–215

    MathSciNet  MATH  Google Scholar 

  100. Rhoades DA (2007) Application of the EEPAS model to forecasting earthquakesof moderate magnitude in Southern California. Seismol Res Lett78:110–115

    Google Scholar 

  101. Rhoades DA, Evison FF (2004) Long-range earthquake forecasting with everyevent a precursor according to scale. Pure Appl Geophys 161:147–171

    Google Scholar 

  102. Rhoades DA, Evison FF (2005) Test of the EEPAS forecasting model on theJapan earthquake catalogue. Pure Appl Geophys 162:1271–1290

    ADS  Google Scholar 

  103. Rhoades DA, Van Dissen RJ (2003) Estimation of the time‐varying hazardof rupture of the Alpine Fault of New Zealand, allowing for uncertainties. NZ J Geol Geophys 40:479–488

    Google Scholar 

  104. Ripley BD (1988) Statistical Inference for Spatial Processes. UniversityPress, Cambridge

    Google Scholar 

  105. Robinson R (2000) A test of the precursory accelerating moment releasemodel on some recent New Zealand earthquakes. Geophys J Int 140:568–576. doi:10.1046/j.1365-246X2000.00054.x

    ADS  Google Scholar 

  106. Robinson R, Benites R (1995) Synthetic seismicity models for the Wellingtonregion of New Zealand: implications for the temporal distribution of large events. J Geophys Res 100:18229–18238. doi:10.1029/95JB01569

    ADS  Google Scholar 

  107. Rundle JB, Klein W, Tiampo K, Gross S (2000) Dynamics of seismicity patternsin systems of earthquake faults. In: Geocomplexity and the Physics of Earthquakes. Geophysical Monograph 120, American Geophysical Union

    Google Scholar 

  108. Saito M, Kikuchi M, Kudo M (1973) An analytical solution of: Go-game modelof earthquakes. Zishin 26:19–25

    Google Scholar 

  109. Scholz CH (1968) The frequency‐magnitude relation of microfaulting inrock and its relation to earthquakes. Bull Seism Soc Am 58:399–415

    Google Scholar 

  110. Scholz CH (1990) The Mechanics of Earthquakes and Faulting. CambridgeUniversity Press, New York

    Google Scholar 

  111. Schorlemmer D, Gerstenberger MC, Wiemer S, Jackson DD, Rhoades DA (2007)Earthquake likelihood model testing. Seismol Res Lett 78:17–29

    Google Scholar 

  112. Schuster A (1897) On lunar and solar periodicities of earthquakes. Proc RoySoc London 61:455–465

    MATH  Google Scholar 

  113. Schwartz DP, Coppersmith K (1984) Fault behavior and characteristicearthquakes: examples from the Wasatch and San Andreas Faults. J Geophys Res 89:5681–5698

    ADS  Google Scholar 

  114. Shi YL, Liu J, Chen Y, Vere-Jones D (1999) Coupled stress releasemodels for time‐dependent seismicity. J Pure Appl Geophys 155:649–667

    ADS  Google Scholar 

  115. Shi Y, Liu J, Zhang G (2001) An evaluation of Chinese annual earthquakepredictions, 1990–1998. J Appl Prob 38A:222–231

    MathSciNet  MATH  Google Scholar 

  116. Shimazaki K, Nakata T (1980) Time‐predictable recurrence model forlarge earthquakes. Geophys Res Lett 7:179–282

    Google Scholar 

  117. Smith WD (1986) Evidence for precursory changes in thefrequency‐magnitude b‑value. Geophys J Roy Astron Soc 86:815–838

    Google Scholar 

  118. Smith WD (1998) Resolution and significance assessment of precursory changesin mean earthquake magnitude. Geophys J Int 135:515–522

    ADS  Google Scholar 

  119. Stoyan D, Stoyan H (1994) Fractals, Random Shapes and Point Fields. Wiley,Chichester

    MATH  Google Scholar 

  120. Tiampo KF, Rundle JB, Klein W, Ben-Zion Y, McGinnis SA (2004) Usingeigenpattern analysis to constrain seasonal signals in Southern California. Pure Appl Geophys 16:19–10, 1991 V2003. doi:10.1007/s00024-004-2545-y

    Google Scholar 

  121. Turcotte DL (1992) Fractals and Chaos in Geology and Geophysics. CambridgeUniversity Press, Cambridge

    Google Scholar 

  122. Utsu T (1961) A statistical study on the properties ofaftershocks. Geophys Mag 30:521–605

    Google Scholar 

  123. Utsu T, Ogata Y (1997) IASPEI Softw Libr6:13–94

    Google Scholar 

  124. Utsu T, Ogata Y, Matu'ura RS (1995) The centenary of the Omori formula fora decay law of aftershock activity. J Phys Earth 43:1–33

    Google Scholar 

  125. Vere-Jones D (1969) A note on the statistical interpretation ofBåth's law. Bull Seismol Soc Amer 59:1535–1541

    Google Scholar 

  126. Vere-Jones D (1970) Stochastic models for earthquake occurrence. J RoyStat Soc B 32:1–62

    MathSciNet  MATH  Google Scholar 

  127. Vere-Jones D (1977) Statistical theories for crack propagation. Pure ApplGeophys 114:711–726

    ADS  Google Scholar 

  128. Vere-Jones D (1978) Space‐time correlations of microearthquakes – a pilot study. Adv App Prob 10:73–87, supplement

    MATH  Google Scholar 

  129. Vere-Jones D (1978) Earthquake prediction: a statistician'sview. J Phys Earth 26:129–146

    Google Scholar 

  130. Vere-Jones D (1995) Forecasting earthquakes and earthquake risk. Int JForecast 11:503–538

    Google Scholar 

  131. Vere-Jones D (1999) On the fractal dimension of point patterns. Adv ApplProb 31:643–663

    MathSciNet  MATH  Google Scholar 

  132. Vere-Jones D (2003) A class of self‐similar random measures. AdvAppl Prob 37:908–914

    MathSciNet  Google Scholar 

  133. Vere-Jones D, Davies RB (1966) A statistical analysis of earthquakes inthe main seismic region of New Zealand. J Geol Geophys 9:251–284

    Google Scholar 

  134. Vere-Jones D, Ozaki T (1982) Some examples of statistical inference appliedto earthquake data. Ann Inst Stat Math 34:189–207

    Google Scholar 

  135. Vere-Jones D, Robinson R, Yang W (2001) Remarks on the accelerated momentrelease model for earthquake forecasting: problems of simulation and estimation. Geophys J Int 144:515–531

    ADS  Google Scholar 

  136. von Bortkiewicz L (1898) Das Gesetz der kleinen Zahlen. Teubner, Leipzig

    Google Scholar 

  137. Weibull W (1939) A statistical theory of the strength ofmaterials. Ingvetensk Akad Handl no 151

    Google Scholar 

  138. Working Group on Californian Earthquake Probabilities (1990) Probabilitiesof earthquakes in the San Francisco Bay region of California. US Geological Survey Circular 153

    Google Scholar 

  139. Yin X, Yin C (1994) The precursor of instability for non‐linearsystems and its application to the case of earthquake prediction – the load‐unload response ratio theory. In: Newman WI, Gabrielov AM (eds)Nonlinear dynamics and Predictability of Natural Phenomena. AGU Geophysical Monograph 85:55–66

    Google Scholar 

  140. Zheng X, Vere-Jones D (1994) Further applications of the stress releasemodel to historical earthquake data. Tectonophysics 229:101–121

    Google Scholar 

  141. Zhuang J (2000) Statistical modelling of seismicity patterns before andafter the 1990 Oct 5 Cape Palliser earthquake, New Zealand. NZ J Geol Geophys 43:447–460

    Google Scholar 

  142. Zhuang J, Yin X (2000) The random distribution of the loading and unloadingresponse ratio under the assumptions of the Poisson model. Earthq Res China 14:38–48

    Google Scholar 

  143. Zhuang J, Ogata Y, Vere-Jones D (2004) Analyzing earthquake clusteringfeatures by using stochastic reconstruction. J Geophys Res 109(B5):B05301. doi:10.1029/2003JB002879

    ADS  Google Scholar 

  144. Zhuang J, Vere-Jones D, Guan H, Ogata Y, Ma L (2005) Preliminary analysis ofprecursory information in the observations on the ultra lowfrequency electric field in the Beijing region. Pure Appl Geophys162:1367–1396.doi:10.10007/s00024-004-2674-3

    ADS  Google Scholar 

Download references

Acknowledgments

I am very grateful to friends and colleagues, especially David Harte, Mark Bebbington, David Rhoades and Yehuda Ben-Zion, for helpfuldiscussions, correcting errors and plugging gaps.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Vere-Jones, D. (2009). Earthquake Occurrence and Mechanisms, Stochastic Models for. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_155

Download citation

Publish with us

Policies and ethics