Skip to main content

Dynamics of Parametric Excitation

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

Parametric excitation of a system differs from direct forcing in that fluctuations appear as temporal modulation of a parameter ratherthan as a direct additive term. A common paradigm is that of a pendulum hanging under gravity whose support is subjected to a verticalsinusoidal displacement. In the absence of any dissipative effects, instabilities occur to the trivial equilibrium whenever the natural frequency isa multiple of half the excitation frequency. At amplitude levels beyond the instability, further bifurcations (dynamical transitions) can lead to more complex quasi‐periodic or chaotic dynamics. In multibody mechanicalsystems, one mode of vibration can effectively act as the parametric excitation of another mode through the presence of multiplicative nonlinearity. Thusautoparametricresonance occurs when one mode's frequency is a multiple of half of the other. Other effectsinclude combination resonance, where the excitation is at a sum or difference...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Parametric excitation :

Explicit time‐dependent variation of a parameter of a dynamical system.

Parametric resonance :

An instability that is caused by a rational relationship between the frequency of parametric excitation and the natural frequency of free oscillation in the absence of the excitation. If ω is the excitation frequency, and ω0 the natural frequency, then parametric resonance occurs when \( { \omega= ({n} / {2}) \omega_0 } \) for any positive integer n. The case \( { n=1 } \) is usually the most prominent form of parametric resonance, and is sometimes called the principle subharmonic resonance.

Autoparametric resonance :

A virtual parametric resonance that occurs due to the coupling between two independent degrees of freedom within a system. The output of one degree of freedom acts like the parametric excitation of the other.

Ince–Strutt diagram :

A two‐parameter bifurcation diagram indicating stable and unstable regions, specifically plotting the instability boundaries as the required amplitude of parametric excitation against the square of the ratio of natural to excitation frequency.

Floquet theory :

The determination of the eigenvalue spectrum that governs the stability of periodic solutions to systems of ordinary differential equations.

Bifurcation :

A qualitative change in a system's dynamics as a parameter is varied. One‐parameter bifurcation diagrams often depict invariant sets of the dynamics against a single parameter, indicating stability and any bifurcation points. Two‐parameter bifurcation diagrams depict curves in a parameter plane on which one‐parameter bifurcations occur.

Modal analysis :

The study of continuum models by decomposing their spatial parts into eigenmodes of the dynamic operator. The projection of the full system onto each mode gives an infinite system of differential equations in time, one for each mode.

Monodromy matrix :

The matrix used in Floquet theory, whose eigenvalues (also known as Floquet multipliers) determine stability of a periodic solution.

Bibliography

  1. Acheson D (1993) A pendulum theorem. Proc Roy Soc LondA 443:239–245

    MATH  ADS  Google Scholar 

  2. Acheson D (1995) Multiple‐nodding oscillations of a driven invertedpendulum. Proc Roy Soc Lond A 448:89–95

    MATH  ADS  Google Scholar 

  3. Acheson D, Mullin T (1993) Upside‐down pendulums. Nature366:215–216

    ADS  Google Scholar 

  4. Acheson D, Mullin T (1998) Ropy magic. New Scientist February157:32–33

    Google Scholar 

  5. Benjamin T (1961) Dynamics of a system of articulated pipes conveyingfluid. 1. Theory. Proc Roy Soc Lond A 261:457–486

    MathSciNet  MATH  ADS  Google Scholar 

  6. Benjamin T, Ursell F (1954) The stability of a plane free surface ofa liquid in vertical periodic motion. Proc Roy Soc Lond A 255:505–515

    MathSciNet  ADS  Google Scholar 

  7. Broer H, Levi M (1995) Geometrical aspects of stability theory for Hillsequations. Arch Ration Mech Anal 131:225–240

    MathSciNet  MATH  Google Scholar 

  8. Broer H, Vegter G (1992) Bifurcation aspects of parametric resonance. DynamicsReported (new series) 1:1–53

    MathSciNet  Google Scholar 

  9. Broer H, Hoveijn I, van Noort M (1998) A reversible bifurcation analysis ofthe inverted pendulum. Physica D 112:50–63

    MathSciNet  MATH  ADS  Google Scholar 

  10. Case W (1996) The pumping of a swing from the standing position. Am J Phys64:215–220

    ADS  Google Scholar 

  11. Case W, Swanson M (1990) The pumping of a swing from the seatedposition. Am J Phys 58:463–467

    ADS  Google Scholar 

  12. Champneys A (1991) Homoclinic orbits in the dynamics of articulated pipesconveying fluid. Nonlinearity 4:747–774

    MathSciNet  MATH  ADS  Google Scholar 

  13. Champneys A (1993) Homoclinic tangencies in the dynamics of articulatedpipes conveying fluid. Physica D 62:347–359

    MathSciNet  MATH  ADS  Google Scholar 

  14. Champneys A, Fraser W (2000) The ‘Indian rope trick’ fora continuously flexible rod; linearized analysis. Proc Roy Soc Lond A 456:553–570

    MathSciNet  MATH  ADS  Google Scholar 

  15. Champneys A, Fraser W (2004) Resonance tongue interaction in the parametricallyexcited column. SIAM J Appl Math 65:267–298

    MathSciNet  MATH  Google Scholar 

  16. Cortez R, Peskin C, Stockie J, Varela D (2004) Parametric resonance in immersedelastic boundaries. SIAM J Appl Math 65:494–520

    MathSciNet  MATH  Google Scholar 

  17. Curry S (1976) How children swing. Am J Phys44:924–926

    ADS  Google Scholar 

  18. Cvitanovic P (1984) Universality in Chaos. Adam Hilger,Bristol

    MATH  Google Scholar 

  19. Faraday M (1831) On the forms of states of fluids on vibrating elasticsurfaces. Phil Trans Roy Soc Lond 52:319–340

    Google Scholar 

  20. Fraser W, Champneys A (2002) The ‘Indian rope trick’ fora parametrically excited flexible rod: nonlinear and subharmonic analysis. Proc Roy Soc Lond A 458:1353–1373

    MathSciNet  MATH  ADS  Google Scholar 

  21. Galan J (2002) Personal communication

    Google Scholar 

  22. Galán J, Fraser W, Acheson D, Champneys A (2005) The parametricallyexcited upside‐down rod: an elastic jointed pendulum model. J Sound Vibration 280:359–377

    Google Scholar 

  23. Gattulli V, Lepidi M (2003) Nonlinear interactions in the planar dynamics ofcable‐stayed beam. Int J Solids Struct 40:4729–4748

    Google Scholar 

  24. Gattulli V, Lepidi M, Macdonald J, Taylor C (2005) One-to-twoglobal‐local interaction in a cable‐stayed beam observed through analytical, finite element and experimental models. Int J Nonlin Mech40:571–588

    MATH  Google Scholar 

  25. Gordon J, Haus H (1986) Random walk of coherently amplified solitons in opticalfiber transmission. Opt Lett 11:665–666

    ADS  Google Scholar 

  26. Greenhill A (1881) Determination of the greatest height consistent withstability that a pole or mast can be made. Proceedings of the Cambridge Philosophical Society IV, Oct 1880 – May 1883,pp 65–73

    Google Scholar 

  27. Guckenheimer J, Holmes P (1983) Nonlinear Oscillations, Dynamical Systems, andBifurcations of Vector Fields. Springer, New York

    MATH  Google Scholar 

  28. Hasegawa A, Tappert F (1991) Transmission of stationary nonlinear opticalpulses in dispersive dielectric fibres. i. anomolous dispersion. Appl Phys Lett 23:142–144

    ADS  Google Scholar 

  29. Hill G (1886) On the part of the motion of lunar perigee which isa function of the mean motions of the sun and moon. Acta Math 8:1–36

    MathSciNet  MATH  Google Scholar 

  30. Hoyle R (2005) Pattern Formation; An Introduction to Methods. CUP,Cambridge

    Google Scholar 

  31. Ince E (1956) Ordinary Differential Equations. Dover, NewYork

    Google Scholar 

  32. Jones C (2003) Creating stability from instability. In: Nonlinear dynamics andchaos; where do we go from here? IOP Publishing, Bristol, chap 4, pp 73–90

    Google Scholar 

  33. Jordan DW, Smith P (1998) Nonlinear Ordinary Differential Equations, 3rdedn. Oxford University Press, Oxford

    Google Scholar 

  34. Kapitza P (1951) Dinamicheskaya ustoichivost mayatnika pri koleblyushcheisyatochke podvesa. Z Eksperimentalnoi I Teoreticheskoi Fiziki 21:588–597, in Russian

    Google Scholar 

  35. Knoz F, Forysiak W, Doran N (1995) 10 gbit\( { /s } \) soliton communication systems over standard fiberat 1.55\( { \mu m } \) and the use of dispersioncompensation. IEEE J Lightwave Technol 13:1960–1995

    Google Scholar 

  36. Kumar K, Tuckerman L (1994) Parametric instability of the interface between twofluids. J Fluid Mech 279:49–68

    MathSciNet  MATH  ADS  Google Scholar 

  37. Kuznetsov YA (2004) Elements of Applied Bifurcation Theory, 3rd edn. Springer,New York

    MATH  Google Scholar 

  38. Lin C, Kogelnik H, Cohen L (1980) Optical‐pulse equilization oflow‐dispersion transmission in single fibers in the 1.3–1.7\( { \mu m } \) spectral region. Opt Lett 5:476–480

    ADS  Google Scholar 

  39. Lloyd D, Sandstede B, Avitabilie D, Champneys A (2008) Localized hexagonpatterns in the planar swift‐hohenberg equation. To appear in SIAM Appl Dyn Sys

    Google Scholar 

  40. Magnus W, Winkler S (1979) Hill's Equation. Dover, NewYork

    Google Scholar 

  41. Mailybayev A, Seyranian AP (2001) Parametric resonance in systems with smalldissipation. PMM J App Math Mech 65:755–767

    Google Scholar 

  42. Mathieu E (1868) Mémoire sur le mouvement vibratoire d'une membrane de formeelliptique. J Math Pure Appl 13:137–203

    Google Scholar 

  43. Mollenauer L, Stolen R, Gordon J (1980) Experimental observation of picosecondpulse narrowing and solitons in optical fibers. Phys Rev Lett 45:1095–1097

    ADS  Google Scholar 

  44. Mullin A, Champneys T, Fraser W, Galan J, Acheson D (2003) The ‘Indianwire trick’ via parametric excitation: a comparison between theory and experiment. Proc Roy Soc LondA 459:539–546

    MathSciNet  MATH  ADS  Google Scholar 

  45. Nayfeh A (2000) Nonlinear Interactions: Analytical, Computational andExperimental Methods. Wiley Interscience, New York

    MATH  Google Scholar 

  46. Otterbein S (1982) Stabilization of the N‑pendulum and the Indian link trick. Arch Rat Mech Anal 78:381–393

    MathSciNet  MATH  Google Scholar 

  47. Païdoussis MP, Li G (1993) Pipes conveying fluid: a model dynamicalproblem. J Fluids Structures 7:137–204

    Google Scholar 

  48. Piccoli B, Kulkarni J (2005) Pumping a swing by standing and squatting: Dochildren pump time optimally? IEEE Control Systems Magazine 25:48–56

    Google Scholar 

  49. Post A, de Groot G, Daffertshofer A, Beek P (2007) Pumping a playgroundswing. Motor Control 11:136–150

    Google Scholar 

  50. Rayliegh L (1883) On the crispations of fluid resting upon a vibratingsupport. Phil Mag 16:50

    Google Scholar 

  51. Romeiras F, Romeiras F, Bondeson A, Ott E, Antonsen TM, Grebogi C (1989)Quasiperiodic forcing and the observability of strange nonchaotic attractors. Phys Scr 40:442–444

    MathSciNet  MATH  ADS  Google Scholar 

  52. Semler C, Païdoussis M (1996) Nonlinear analysis of the parametric resonancesof a planar fluid‐conveying cantilevered pipe. J Fluids Structures 10:787–825

    Google Scholar 

  53. Stephenson A (1908) On a new type of dynamical stability. Mem ProcManch Lit Phil Soc 52:1–10

    Google Scholar 

  54. Suzuki M, Morita N, Edagawa I, Yamamoto S, Taga H, Akiba S (1995) Reduction ofgordon‐haas timing jitter by periodic dispersion compensation in soliton transmission. Electron Lett 31:2027–2035

    Google Scholar 

  55. Tabor M (1989) Chaos and Integrability in Nonlinear Dynamics: An Introduction.Wiley, New York

    MATH  Google Scholar 

  56. Thomsen J (1995) Chaotic dynamics of the partially follower‐loadedelastic double pendulum. J Sound Vibr 188:385–405

    MathSciNet  ADS  Google Scholar 

  57. Thomsen J (2003) Vibrations and stability: advanced theory, analysis, andtools, 2nd edn. Springer, New York

    Google Scholar 

  58. Tondl A, Ruijgrok T, Verhulst F, Nabergoj R (2000) Autoparametric Resonance inMechanical Systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  59. Truman M, Galán J, Champneys A (2008) An example of difference combinationresonance. In preparation

    Google Scholar 

  60. Turytsyn S, Shapiro E, Medvedev S, Fedoruk M, Mezentsev V (2003) Physics andmathematics of dispersion‐managed optical solitons. CR Physique 4:145–161

    ADS  Google Scholar 

  61. Umbanhowar PB, Melo F, Swinney HL (1996) Localized excitations ina vertically vibrated granular layer. Nature 382:793–796

    Google Scholar 

  62. Vanderbauwhede A (1990) Subharmonic branching inreversible‐systems. SIAM J Math Anal 21:954–979

    MathSciNet  MATH  Google Scholar 

  63. van der Pol B, Strutt M (1928) On the stability of the solutions ofmathieu's equation. Phil Mag 5:18–38, sp. Iss. 7th Series

    MATH  Google Scholar 

  64. van Noort M (2001) The parametrically forced pendulum. a case study in 1\( { {1} / {2} } \) degree of freedom. Ph Dthesis, RU Groningen

    Google Scholar 

  65. Verhulst F (2000) Nonlinear Differential Equations and Dynamical Systems.Springer, New York

    Google Scholar 

  66. Wiesenfeld K, Moss F (1995) Stochasticresonance and the benefits of noise: from ice ages to crayfish and squids. Naturepp 33–36

    Google Scholar 

  67. Wiggins S (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos,2nd edn. Springer, New York

    MATH  Google Scholar 

  68. Yakubovich VA, Starzhinskii VM (1987) Pammetric Resonance in Linear Systems.Nauka, Moscow, in Russian

    Google Scholar 

  69. Zakharov V, Shabat A (1971) Exact theory of two‐dimensional selffocussing and one‐dimensional modulation of waves in nonlinear media. Sov Phys JETP 33:77–83

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Champneys, A. (2009). Dynamics of Parametric Excitation. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_144

Download citation

Publish with us

Policies and ethics