Skip to main content

4.5 Coupling of Brain Function to Metabolism: Evaluation of Energy Requirements

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

There is no rigid association in vivo between changes of oxygen consumption, glucose combustion, and blood flow in the human brain. The claim that cerebral blood flow rises to satisfy the demands for oxygen and glucose during neuronal excitation therefore is simplistic.  Energy budget estimates indicate that most of the cerebral energy demand reflects the steady-state level of graded post-synaptic membrane depolarization, followed by action potential generation and propagation. Increased energy supply is required to maintain the depolarization of neuronal membranes when sodium and potassium conductances are increased. Glucose, pyruvate and lactate occupy single tissue compartments, but transient shifts of the relative activity of neurons and astrocytes disrupt the steady-state, and the properties of lactate dehydrogenase mayy vary temporally, as dictated by transient shifts of cytosolic redox potentials and pH values. Pyruvate and lactate generation invariably occurs when astrocytes are activated by glutamate release. In these cases, the increased demand for glutamate imposes a metabolic rate on astroglial cells that exceeds their modest oxidative capacity. Although the resulting pyruvate and lactate accumulation is influenced by lactate export or import across the blood-brain barrier, pyruvate and lactate accumulate in a joint pool, to which astrocytes produce more pyruvate than neurons. The blood flow increase appears to be coupled to the rate of glycolysis. There is increasing evidence that the putative mechanism underlying the flow-glycolysis couple resides in astrocytes. The evidence suggests that the increase of oxidative metabolism in neurons is coupled to a rise of pyruvate, as dictated by the degree of mitochondrial activation. Under some circumstances, regional ‘peaks’ of increased blood flow and increased oxygen consumption could be dissociated by the differential activation of primary and secondary neuronal networks. The activations accompanying the most complex processing of information could be those with the tightest coupling between oxygen consumption and blood flow and hence with the least generation of lactate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

arachidonic acid

ADP:

adenosine diphosphate

AMP:

adenosine monophosphate

A/N:

astrocyte-to-neuron activation ratio, relative to baseline

ATP:

adenosine triphosphate

avd:

arteriovenous deficit

CBF:

cerebral blood flow

CK:

creatine kinase

CMRglc :

cerebral metabolic rate of glucose

CMRO2 :

cerebral metabolic rate of oxygen

CO2 art :

arterial oxygen concentration

COX:

cyclooxygenase

CYP4A:

cytochrome P450 4A, enzymes

EAAT:

excitatory amino acid transporter

EET:

epoxyeicosatrienoate

E O2 :

oxygen extraction fraction

FADH2 :

flavin adenine dinucleotide

f glc :

fraction of ATP, generated non-oxidatively

f O2 :

fraction of ATP, generated oxidatively

GLAST:

glutamate astrocyte-specific transporter

glc:

glucose

GLT:

glutamate transporter

GLUT:

glucose transporter

GTP:

guanosine triphosphate

20-HETE:

20-hydroxyeicosatetraenoate

hg:

hectogram

H4 LDH:

heart type

HK:

hexokinase

J glc :

glucose metabolic rate

J max :

maximum metabolite flux

J O2 :

oxygen metabolic rate

K M :

K m Michaelis half-saturation constant

L :

oxygen conductivity of tissue

lact:

lactate

LD:

lactate dehydrogenase subtype

LDH:

lactate dehydrogenase

LGI:

lactate-glucose index

M4:

LDH, muscle type

MAI:

metabolite accumulation index

MCT:

monocarboxylic acid transporter

MGI:

metabolites-glucose index

mGluR:

metabotropic glutamate receptor

Mi-CK:

mitochondrial creatine kinase

mMCT:

mitochondrial monocarboxylic acid transporter

mmHg:

millimeter Mercury

mRNA:

messenger RNA, (ribonucleic acid)

MUR:

metabolite uptake ratio

NAD+ :

nicotinamide adenine dinucleotide (oxidized form)

NADH:

nicotinamide adenine dinucleotide (reduced form)

NSI:

non-steady-state index

NO:

nitric oxide

NOS:

nitric oxide synthase

OGI:

oxygen-glucose index

P 50 :

half-saturation oxygen tension

P 50 cytox :

half-saturation oxygen tension of cytochrome oxidase

PCr:

phosphocreatine

PDH:

pyruvate dehydrogenase

PFK:

phosphofructokinase

PGE2:

prostaglandin E2

Pi :

inorganic phosphate

P O2 :

oxygen partial pressure (tension)

p R :

reaction potential

pyr:

pyruvate

S :

saturation

TCA:

tricarboxylic acid

T max :

maximum transporter-mediated flux

V max :

maximum enzyme reaction velocity

References

  • Alkire MT, Haier RJ, Barker SJ, Shah NK, Wu JC, et al. 1995. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82: 393–403.

    Article  PubMed  CAS  Google Scholar 

  • Alkire MT, Haier RJ, Shah NK, Anderson CT 1997. Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 86: 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Alkire MT, Pomfrett CJ, Haier RJ, Gianzero MV, Chan CM, et al. 1999. Functional brain imaging during anesthesia in humans: Effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology 90: 701–709.

    Article  PubMed  CAS  Google Scholar 

  • Alves PM, McKenna MC, Sonnewald U. 1995. Lactate metabolism in mouse brain astrocytes studied by [13C]NMR spectroscopy. Neuroreport 6: 2201–2204.

    Article  PubMed  CAS  Google Scholar 

  • Anderson CM, Swanson RA. 2000. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia 32: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Andriezen WL. 1893.The neuroglia elements in the human brain. Brit Med J ii: 227–230.

    Article  Google Scholar 

  • Aoki C, Milner TA, Berger SB, Sheu KF, Blass JP, et al. 1987. Glial glutamate dehydrogenase: Ultrastructural localization and regional distribution in relation to the mitochondrial enzyme, cytochrome oxidase. J Neurosci Res 18(2): 305–318.

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Gibb A. 2005. Neuroenergetics and the kinetic design of excitatory synapses. Nat Rev Neurosci 6: 841–849.

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Iadecola C. 2002. The neural basis of functional brain imaging signals. Trends Neurosci 25: 621–625.

    Article  PubMed  CAS  Google Scholar 

  • Attwell D, Laughlin SB. 2001. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21: 1133–1145.

    Article  PubMed  CAS  Google Scholar 

  • Ayata C, Ma J, Meng W, Huang P, Moskowitz MA. 1996. L-NA-sensitive rCBF augmentation during vibrissal stimulation in type III nitric oxide synthase mutant mice. J Cereb Blood Flow Metab 16: 539–541.

    Article  PubMed  CAS  Google Scholar 

  • Bachelard HS, Brooks KJ, Garofalo O. 1991. Studies on the compartmentation of DOG metabolism in the brain. Neurochem Res 16: 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  • Baker PF, Connelly CM. 1966. Some properties of the external activation site of the sodium pump in crab nerve. J Physiol (Lond) 185: 270–297.

    CAS  Google Scholar 

  • Balaban RS, Kantor HL, Katz LA, Briggs RW. 1986. Relation between work and phosphate metabolites in the in vivo paced mammalian heart. Science 232: 1121–1123.

    Article  PubMed  CAS  Google Scholar 

  • Bergersen LH, Magistretti PJ, Pellerin L. 2005. Selective postsynaptic colocalization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 15: 361–370.

    Article  PubMed  Google Scholar 

  • Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. 1996. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab 16: 1079–1089.

    Article  PubMed  CAS  Google Scholar 

  • Borowsky IW, Collins RC. 1989. Metabolic anatomy of brain: A comparison of regional capillary density, glucose metabolism, and enzyme activities. J Comp Neurol 288: 401–413.

    Article  PubMed  CAS  Google Scholar 

  • Bowers C, Zigmond R. 1979. Localization of neurons in the rat superior cervical ganglion that project into different postganglionic trunks. J Comp Neurol 185: 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Brandt RB, Laux JE, Spainhour SE, Kline ES. 1987. Lactate dehydrogenase in rat mitochondria. Arch Biochem Biophys 259: 412–422.

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW, Reese TS. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677.

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Jørgensen EO. 1974. Cerebral blood flow and oxygen uptake, and cerebrospinal fluid biochemistry in severe coma. J Neurol Neurosurg Psychiatry 37: 384–391.

    Article  PubMed  CAS  Google Scholar 

  • Broer S, Rahman B, Pellegri G, Pellerin L, Martin JL, et al. 1997. Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272: 30096–30102.

    Article  PubMed  CAS  Google Scholar 

  • Brooks GA, Brown MA, Butz CE, Sicurello JP, Dubouchaud H. 1999a. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. Appl Physiol 87: 1713–1718.

    CAS  Google Scholar 

  • Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE. 1999b. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci USA 96: 1129–1134.

    Article  CAS  Google Scholar 

  • Brown GC. 2001. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochem Biophys Acta Mar 1; 1504(1): 46–57. Review.

    Article  CAS  Google Scholar 

  • Buxton R, Frank R. 1997. A model for the coupling between cerebral blood flow and oxygen consumption during neuronal stimulation. J Cereb Blood Flow Metab 17: 64–72.

    Article  PubMed  CAS  Google Scholar 

  • Caesar K, Akgoren N, Mathiesen C, Lauritzen M. 1999. Modification of activity-dependent increases in cerebellar blood flow by extracellular potassium in anaesthetized rats. J Physiol (Lond) 520: 281–292.

    Article  CAS  Google Scholar 

  • Chesler M, Kraig RP. 1987. Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am J Physiol 253: R666–R670.

    PubMed  CAS  Google Scholar 

  • Chesler M, Kraig RP. 1989. Intracellular pH transients of mammalian astrocytes. J Neurosci 9: 2011–2019.

    PubMed  CAS  Google Scholar 

  • Choi IY, Lei H, Gruetter R. 2002. Effect of deep pentobarbital anesthesia on neurotransmitter metabolism in vivo: On the correlation of total glucose consumption with glutamatergic action. J Cereb Blood Flow Metab 22: 1343–1351.

    Article  PubMed  CAS  Google Scholar 

  • Cholet N, Seylaz J, Lacombe P, Bonvento G. 1997. Local uncoupling of the cerebrovascular and metabolic responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. J Cereb Blood Flow Metab 17: 1191–1201.

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE. 1995. Calcium signalling. Cell 80: 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Connett RJ. 1987. Glycolytic regulation during aerobic rest-to-work transition in dog gracilis muscle. J Appl Physiol 63: 2366–2374.

    PubMed  CAS  Google Scholar 

  • Connett RJ, Gayeski TE, Honig CR. 1983. Lactate production in a pure red muscle in absence of anoxia: Mechanisms and significance. Adv Exp Med Biol 159: 327–335.

    PubMed  CAS  Google Scholar 

  • Connett RJ, Gayeski TE, Honig CR. 1984. Lactate accumulation in fully aerobic, working dog gracilis muscle. Am J Physiol 246: H120–H128.

    PubMed  CAS  Google Scholar 

  • Connett RJ, Gayeski TE, Honig CR. 1985. Energy sources in fully aerobic rest-work transitions: A new role for glycolysis. Am J Physiol 248: H922–H929.

    PubMed  CAS  Google Scholar 

  • Cremer JE. 1976. The influence of liver bypass on transport and compartmentation in vivo. Adv Exp Med Biol 69: 95–102.

    PubMed  CAS  Google Scholar 

  • Cremer JE, Cunningham VJ, Pardridge WM, Braun LD, Oldendorf WH. 1979. Kinetics of blood–brain barrier transport of pyruvate, lactate, and glucose in suckling, weanling, and adult rats. J Neurochem 33: 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard MK, Volianitis S, Yoshiga CC, Dawson EA, Secher NH. 2004. Cerebral metabolism during upper and lower body exercise. J Appl Physiol Nov; 97(5): 1733–9.

    Article  Google Scholar 

  • de Graaf RA, Mason GF, Patel AB, Rothman DL, Behar KL. 2004. Regional glucose metabolism and glutamatergic neurotransmission in rat brain in vivo. Proc Natl Acad Sci USA 101: 12700–12705.

    Article  PubMed  CAS  Google Scholar 

  • Denton RM, McCormack JG. 1985. Ca transport by mammalian mitochondria and its role in hormone action. Am J Physiol 249: E543–E554.

    PubMed  CAS  Google Scholar 

  • Desagher S, Glowinski J, Premont JJ. 1997. Pyruvate protects neurons against hydrogen peroxide-induced toxicity. Neuroscience 17: 9060–9067.

    PubMed  CAS  Google Scholar 

  • Detre JA, Koretsky AP, Williams DS, Ho C. 1990a. Absence of pH changes during altered work in the in vivo sheep heart: A 31P-NMR investigation. J Mol Cell Cardiol. 22: 543–53

    Article  CAS  Google Scholar 

  • Detre JA, Williams DS, Koretsky AP. 1990b. Nuclear magnetic resonance determination of flow, lactate, and phosphate metabolites during amphetamine stimulation of the rat brain. NMR Biomed 3: 272–278.

    Article  CAS  Google Scholar 

  • Diemer NH, Benveniste H, Gjedde A. 1985. In vivo cell membrane permeability to deoxyglucose in rat brain. Acta Neurol Scand 72: 87.

    Google Scholar 

  • Dienel GA, Cruz NF. 2003. Neighborly interactions of metabolically activated astrocytes in vivo. Neurochem Int 43: 339–354.

    Article  PubMed  CAS  Google Scholar 

  • Dienel GA, Cruz NF. 2004. Nutrition during brain activation: Does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 45: 321–351.

    Article  PubMed  CAS  Google Scholar 

  • Dienel GA, Cruz NF. 2006. Astrocyte activation in working brain: Energy supplied by minor substrates. Neurochem Int 48: 586–595.

    PubMed  CAS  Google Scholar 

  • Drewes L. 1999. Transport of brain fuels, glucose, and lactate. In: Paulson OB, Knudsen GM, Moos T, editors. (eds) Brain Barrier Systems, Alfred Benzon Symposium 45, Munksgaard, Copenhagen; pp. 285–295.

    Google Scholar 

  • Drewes LR. 2002. Molecular architecture of the brain microvasculature: Perspective on blood–brain transport. J Mol Neurosci 16: 93–98.

    Article  Google Scholar 

  • Duling BR, Berne RM. 1970. Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res 27(5): 669–678.

    CAS  Google Scholar 

  • Elhusseiny A, Cohen Z, Olivier A, Stanimirovic DB, Hamel E. 1999. Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: Identification and cellular localization. J Cereb Blood Flow Metab 19: 794–802.

    Article  PubMed  CAS  Google Scholar 

  • Elhusseiny A, Hamel E. 2000. Muscarinic–but not nicotinic–acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: A possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20: 298–305.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg HM, Kadekaro M, Freeman S, Terrell ML. 1993. Metabolism in the globus pallidus after fetal implants in rats with nigral lesions. J Neurosurg 78: 83–89.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M, Veech RL, Wilson DF. 1974. Thermodynamic relationships between the oxidation–reduction reactions and the ATP synthesis in suspensions of isolated pigeon heart mitochondria. Arch Biochem Biophys 160: 412–421.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M, Wilson DF. 1982. Regulation of cellular energy metabolism. J Membr Biol 70: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska M, Silver I. 1989. ATP and brain function. J Cereb Blood Flow Metab 9: 2–19.

    PubMed  CAS  Google Scholar 

  • Erecinska M, Nelson D, Chance B. 1991. Depolarization-induced changes in cellular energy production. Proc Natl Acad Sci USA 88: 7600–7604.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson G, Peterson A, Iverfeldt K, Walum E. 1995. Sodium-dependent glutamate uptake as an activator of oxidative metabolism in primary astrocyte cultures from newborn rat. Glia 15: 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Fabricius M, Lauritzen M. 1994. Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats. Am J Physiol 266: H1457–1464.

    PubMed  CAS  Google Scholar 

  • Fedosov SN. 1994. Creatine–creatine phosphate shuttle modeled as two-compartment system at different levels of creatine kinase activity. Biochim Biophys Acta 1208: 238–246.

    Article  PubMed  Google Scholar 

  • Fodor JA. 1983. The modularity of mind. Cambridge: The MIT Press.

    Google Scholar 

  • Fodor JA. 2000. The mind doesn't work that way. Cambridge: The MIT Press.

    Google Scholar 

  • Fox PT, Raichle ME. 1986. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83: 1140–1144.

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence CE. 1988. Nonoxidative glucose consumption during focal physiological activity. Science 241: 462–464.

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Kuwabara H, Reutens DC, Gjedde A. 1999. Oxygen consumption of cerebral cortex fails to increase during continued vibrotactile stimulation. J Cereb Blood Flow Metab 19: 266–271.

    Article  PubMed  CAS  Google Scholar 

  • Gebremedhin D, Yamaura K, Zhang C, Bylund J, Koehler RC, et al. 2003. Metabotropic glutamate receptor activation enhances the activities of two types of Ca2+-activated K+ channels in rat hippocampal astrocytes. J Neurosci 23: 1678–1687.

    PubMed  CAS  Google Scholar 

  • Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR. 1997. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol 273: E207–E213.

    PubMed  CAS  Google Scholar 

  • Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR. 1998. Expression of the monocarboxylate transporter MCT2 by rat brain glia. Glia 22: 272–281.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs EL, Lennox WG, Nims LF, Gibbs FA. 1942. Arterial and cerebral venous blood: Arterial–venous differences in man. J Biol Chem 144: 325–332.

    CAS  Google Scholar 

  • Ginsberg MD, Chang JY, Kelley RE, Yoshii F, Barker WW, et al. 1988. Increases in both cerebral glucose utilization and blood flow during execution of a somatosensory task. Ann Neurol 23: 152–160.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A. 1983. Modulation of substrate transport to the brain. Acta Neurol Scand 67: 3–25.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A. 1984. On the measurement of glucose in brain. Neurochem Res 9: 1667–1671.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A, Kuwabara H, Hakim AM. 1990. Reduction of functional capillary density in human brain after stroke. J Cereb Blood Flow Metab May; 10(3): 317–26.

    CAS  Google Scholar 

  • Gjedde A 1992. Blood–brain glucose transfer. Physiology and Pharmacology of the Blood–Brain Barrier, Chapter 6a: Handbook of Experimental Pharmacology. Bradbury, editor. MWB Springer-Verlag, Berlin Heidelberg 1992; pp. 65–115.

    Google Scholar 

  • Gjedde A. 1993a. The energy cost of neuronal depolarization. Gulyas B, Ottoson D, Roland PE, editors. (eds) Functional Organization of the Human Visual Cortex. Pergamon Press; Oxford: pp. 291–306.

    Google Scholar 

  • Gjedde A. 1993b. Interpreting physiology maps of the living human brain. Uemura K, Lassen NA, Jones T, Kanno I, editors. (eds) Quantification of Brain Function. Tracer Kinetics and Image Analysis in Brain PET. Elsevier; Amsterdam: pp. 187–196.

    Google Scholar 

  • Gjedde A. 1996. PET criteria of cerebral tissue viability in ischemia. Acta Neurol Scand (Suppl) 166: 3–5 .

    Article  CAS  Google Scholar 

  • Gjedde A. 1997. The relation between brain function and cerebral blood flow and metabolism. Batjer HH, editor. (ed) Cerebrovascular Disease. Lippincott-Raven; New York: pp. 23–40.

    Google Scholar 

  • Gjedde A. 2001. Brain energy metabolism and the physiological basis of the hemodynamic response. In: Jezzard P, Matthews PM, Smith S, editors. (eds) Functional Magnetic Resonance Imaging: Methods for Neuroscience. Oxford University Press; Oxford: pp. 37–65.

    Google Scholar 

  • Gjedde A. 2005. Blood-brain transfer and metabolism of oxygen. Blood-Brain Barriers, Dermietzel R, Spray DC, Nedergaard M, editors. New York: Wiley-VCHO, vol. 2, chapter 22, pp. 523-549.

    Google Scholar 

  • Gjedde A, Marrett S. 2001. Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo. J Cereb Blood Flow Metab 21: 1384–1392.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A, Kuwabara H, Hakim A. 1990. Reduction of functional capillary density in human brain after stroke. J Cereb Blood Flow Metab 10: 317–316.

    PubMed  CAS  Google Scholar 

  • Gjedde A, Johannsen P, Cold GE, Ostergaard L. 2005. Cerebral metabolic response to low blood flow: Possible role of cytochrome oxidase inhibition. J Cereb Blood Flow Metab 25, 1183–1196.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A, Marrett S, Vafaee M. 2002. Oxidative and nonoxidative metabolism of excited neurons and astrocytes. J Cereb Blood Flow Metab 22:1–14. Review.

    Article  PubMed  CAS  Google Scholar 

  • Gjedde A, Ohta S, Kuwabara H, Meyer E. 1991. Is oxygen diffusion limiting for blood–brain transfer of oxygen? Brain Work and Mental Activity. Lassen NA, Ingvar DH, Raichle ME, Friberg L, editors. Alfred Benzon Symposium 31, Munksgaard, Copenhagen; pp. 177–184.

    Google Scholar 

  • Gjedde A, Poulsen PH, Østergaard L. 1999. On the oxygenation of hemoglobin in the human brain. Adv Exp Med Biol 471: 67–81.

    PubMed  CAS  Google Scholar 

  • Gnaiger E. 1993. Homeostatic and microxic regulation of respiration in transitions to anaerobic metabolism. Bicudo JEPW, editor. (ed) The Vertebrate Gas Transport Cascade: Adaptations to Environment and Mode of Life. CRC Press; Boca Raton: pp 358–370.

    Google Scholar 

  • Gnaiger E, Steinlechner-Maran R, Mendez G, Eberl T, Margreiter R. 1995. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27: 583–596

    Article  PubMed  CAS  Google Scholar 

  • Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R. 1998. Mitochondrial oxygen affinity, respiratory flux control, and excess capacity of cytochrome c oxidase. J Exp Biol. 201: 1129–39.

    PubMed  CAS  Google Scholar 

  • Goldman DE. 1943. Potential, impedance, and rectification in membranes. J Gen Physiol 27: 37–60.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Lima F, Jones D. 1994. Quantitative mapping of cytochrome oxidase activity in the central auditory system of the gerbil: A study with calibrated activity standards and metal-intensified histochemistry. Brain Res 660: 34–49.

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP. 1975. The mitochondrial pyruvate carrier. Biochem J 148: 85–96.

    PubMed  CAS  Google Scholar 

  • Halestrap AP. 1978. Stimulation of pyruvate transport in metabolizing mitochondria through changes in the transmembrane pH gradient induced by glucagon treatment of rat. Biochem J 172: 389–398.

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Armston AE. 1984. A reevaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism. Biochem J 223: 677–685.

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Price NT. 1999. The proton-linked monocarboxylate transporter (MCT) family: Structure, function, and regulation. Biochem J 343: 281–299.

    Article  PubMed  CAS  Google Scholar 

  • Hassel B, Bråthe A. 2000. Cerebral metabolism of lactate in vivo: Evidence for neuronal pyruvate carboxylation. J Cereb Blood Flow Metab 20: 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Henry PG, Lebon V, Vaufrey F, Brouillet E, Hantraye P, et al. 2002. Decreased TCA cycle rate in the rat brain after acute 3-NP treatment measured by in vivo 1H-[13C] NMR spectroscopy. J Neurochem 82: 857–866.

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Schousboe A. 1975. Ion and energy metabolism of the brain at the cellular level. Int Rev Neurobiol 18: 141–211.

    Article  PubMed  CAS  Google Scholar 

  • Hertz L, Swanson RA, Newman GC, Marrif H, Juurlink BH, et al. 1998. Can experimental conditions explain the discrepancy over glutamate stimulation of aerobic glycolysis? Dev Neurosci 20: 339–347.

    Article  PubMed  CAS  Google Scholar 

  • Hevner RF, Liu S, Wong- Riley MT. 1995. A metabolic map of cytochrome oxidase in the rat brain: Histochemical, densitometric, and biochemical studies. Neuroscience 65: 313–342.

    Article  PubMed  CAS  Google Scholar 

  • Hill AV. 1910. The possible effect of aggregation of the molecules of haemoglobin on its dissociation curve. J Physiol 40: iv–vii.

    Google Scholar 

  • Hill AV. 1913. The combination of haemoglobin with oxygen and with carbon monoxide. Biochem J 7: 471–480.

    PubMed  CAS  Google Scholar 

  • Himwich HE, Fazekas JF. 1937. Effect of hypoglycemia on metabolism of brain. Endocrinology 21: 800–807.

    Article  CAS  Google Scholar 

  • Himwich WA, Himwich HE. 1946. Pyruvic acid exchange of brain. J Neurophysiol 9: 133–136.

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Katz B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol (Lond) 108: 37–77.

    CAS  Google Scholar 

  • Hodgkin AL, Huxley 1952. A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol (Lond) 117: 500–544.

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Keynes RD. 1956. Experiments on the injection of substances into squid giant axons by means of a microsyringe. J Physiol (Lond) 131: 592–616.

    CAS  Google Scholar 

  • Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. 1999. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci USA Aug 3; 96(16): 9403–8.

    Article  CAS  Google Scholar 

  • Honig CR, Connett RJ, Gayeski TE. 1992. O2 transport and its interaction with metabolism; a systems view of aerobic capacity. Med Sci Sports Exercise 24: 47–53.

    CAS  Google Scholar 

  • Hyder F, Patel AB, Gjedde A, Rothman DL, Gehar KL, et al. 2006. Neuronal-glia glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26: 865-877.

    Google Scholar 

  • Iadecola C. 1992. Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc Natl Acad Sci USA 89: 3913–3916.

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA. 1994. Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 14: 175–192.

    PubMed  CAS  Google Scholar 

  • Iadecola C. 2004. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5: 347–360.

    Article  PubMed  CAS  Google Scholar 

  • Ide K, Schmalbruch IK, Quistorff B, Horn A, Secher NH. 2000. Lactate, glucose, and O2 uptake in human brain during recovery from maximal exercise. J Physiol 522: 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Iida H, Jones T, Miura S. 1993. Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. J Nucl Med Aug; 34(8): 1333–40.

    CAS  Google Scholar 

  • Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, et al. 2003. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100: 4879–4884.

    Article  PubMed  CAS  Google Scholar 

  • Joliot M, Ribary U, Llinas R. 1995. Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 91: 11748–11751.

    Article  Google Scholar 

  • Kadekaro M, Crane AM, Sokoloff L. 1985. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA 82: 6010–6013.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan NO, Everse J. 1972. Regulatory characteristics of lactate dehydrogenases. Adv Enzyme Regul 10: 323–336.

    Article  PubMed  CAS  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. 2004 Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305: 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Kassissia IG, Goresky CA, Rose CP, Schwab AJ, Simard A, et al. 1995. Tracer oxygen distribution is barrier-limited in the cerebral microcirculation. Circ Res 77: 1201–1211.

    PubMed  CAS  Google Scholar 

  • Katayama Y, Tsubokawa T, Hirayama T, Kido G, Tsukiyama T, et al. 1986. Response of regional cerebral blood flow and oxygen metabolism to thalamic stimulation in humans as revealed by positron emission tomography. J Cereb Blood Flow Metab 6: 637–634.

    PubMed  CAS  Google Scholar 

  • Katayama Y, Fukuchi T, Mc Kee A, Terashi A. 1998. Effect of hyperglycemia on pyruvate dehydrogenase activity and energy metabolites during ischemia and reperfusion in gerbil brain. Brain Res 788: 302–304.

    Article  PubMed  CAS  Google Scholar 

  • Kety SS. 1949. The physiology of the human cerebral circulation. Anesthesiology 10: 610–614.

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Nakamura T, Nidaira T, Nakamura K, Ooashi N, et al. 1999. Optical detection of synaptically induced glutamate transport in hippocampal slices. J Neurosci 19: 2580–2588.

    PubMed  CAS  Google Scholar 

  • Kraig RP. 1990. Astrocytic acid–base homeostasis in cerebral ischemia. Cerebral Ischemia and Resuscitation. Schurr A, Rigor BM, editors. Boca Raton: CRC Press, pp. 89–99.

    Google Scholar 

  • Kuschinsky W, Paulson OB. 1992. Capillary circulation in the brain. Cerebrovas Brain Met 4: 261–286.

    CAS  Google Scholar 

  • Kuwabara H, Ohta S, Brust P, Meyer E, Gjedde A. 1992. Density of perfused capillaries in living human brain during functional activation. Prog Brain Res 91: 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, et al. 1992. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 5675–5679.

    Google Scholar 

  • La Noue KF, Schoolwerth AC. 1979. Metabolite transport in mitochondria. Ann Rev Biochem 48: 871–922.

    Article  CAS  Google Scholar 

  • La Noue KF, Jeffries FM, Radda GK. 1986. Kinetic control of mitochondrial ATP synthesis. Biochemistry 25: 7667–7675.

    Article  CAS  Google Scholar 

  • Laptook AR, Peterson J, Porter AM. 1988. Effects of lactic acid infusions and pH on cerebral blood flow and metabolism. J Cereb Blood Flow Metab 8: 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA. 1959. Cerebral blood flow and oxygen consumption in man. Physiol Rev 39: 183–238.

    PubMed  CAS  Google Scholar 

  • Laughton JD, Charnay Y, Belloir B, Pellerin L, Magistretti PJ, et al. 2000. Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain. Neuroscience 96: 619–625.

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen M. 2005. Reading vascular changes in brain imaging: Is dendritic calcium the key? Nat Rev Neurosci. 6: 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Levy DE, Sidtis JJ, Rottenberg DA, Jarden JO, Strother SC, et al. 1987. Differences in cerebral blood flow and glucose utilization in vegetative versus locked-in patients. Ann Neurol 22: 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Liao SL, Chen CJ. 2003. l-glutamate decreases glucose utilization by rat cortical astrocytes. Neurosci Lett 348: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Lindauer U, Megow D, Matsuda H, Dirnagl U. 1999. Nitric oxide: A modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. Am J Physiol 277: H799–H811.

    PubMed  CAS  Google Scholar 

  • Ma J, Ayata C, Huang PL, Fishman MC, Moskowitz MA. 1996. Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am J Physiol 270: H1085–H1090.

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Cardinaux JR, Martin JL. 1998. VIP and PACAP in the CNS: Regulators of glial energy metabolism and modulators of glutamatergic signaling. Ann N Y Acad Sci Dec 11; 865:213–25. Review.

    Article  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. 1999. Energy on demand. Science 283: 496–497.

    Article  PubMed  CAS  Google Scholar 

  • Marrett S, Gjedde A. 1997. Changes of blood flow and oxygen consumption in visual cortex of living humans. Adv Exp Med Biol 413: 205–208.

    PubMed  CAS  Google Scholar 

  • Mata M, Fink DG, Gainer H, Smith CB, Davidsen L, et al. 1980. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J Neurochem 34: 213–215.

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Caesar K, Akgoren N, Lauritzen M. 1998. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol (Lond) 512: 555–566.

    Article  CAS  Google Scholar 

  • Matthews PM, Bland JL, Gadian DG, Radda GK. 1981. The steady-state rate of ATP synthesis in the perfused rat heart measured by 31P NMR saturation transfer. Biochem Biophys Res Commun 103: 1052–1059.

    Article  PubMed  CAS  Google Scholar 

  • McCormick DA. 1990. Membrane properties and neurotransmitter actions. The Synaptic Organization of the Brain, 3rd Ed. Shepherd G, editor Oxford University Press, New York, pp. 32–66.

    Google Scholar 

  • McCully KK, Kakihira H, van den Borne K, Kent-Braun J. 1991. Noninvasive measurements of activity-induced changes in muscle metabolism. J Biomech 24: (Suppl 1): 153–161.

    Article  PubMed  Google Scholar 

  • McIlwain H. 1951. Metabolic response in vitro to electrical stimulation of section. Biochem J 49: 382–393.

    PubMed  CAS  Google Scholar 

  • Michaelis L, Menten ML. 1913. Zur Kinetik der Invertinwirkung. Biochem Z 49: 333–369.

    CAS  Google Scholar 

  • Mintun MA, Vlassenko AG, Shulman GL, Snyder AZ. 2002. Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage Jun; 16(2): 531–7.

    Article  Google Scholar 

  • Mora BN, Narasimhan PT, Ross BD. 1992. 31P magnetization transfer studies in the monkey brain. Magn Reson Med 26: 100–115.

    Article  PubMed  CAS  Google Scholar 

  • Morowitz HJ. 1978. Foundations of Bioenergetics. New York:Academic Press.

    Google Scholar 

  • Muir D, Berl S, Clarke DD. 1986. Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res. 380: 336–340.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan SJ, Mac Vicar BA. 2004. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Nalecz KA, Kaminska J, Nalecz MJ, Azzi A. 1992. The activity of pyruvate carrier in a reconstituted system: Substrate specificity and inhibitor sensitivity. Arch Biochem Biophys. 297: 162–168.

    Article  PubMed  CAS  Google Scholar 

  • Nehlig A, Wittendorp-Rechenmann E, Lam CD. Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: High-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. J Cereb Blood Flow Metab 24(9):1004-1014.

    Google Scholar 

  • Newsholme EA, Crabtree B. 1979. Theoretical principles in the approaches to control of metabolic pathways and their application to glycolysis in muscle. J Mol Cell Cardiol 11: 839–856.

    Article  PubMed  CAS  Google Scholar 

  • Norenberg MD. 1994. Astrocyte responses to CNS injury. J Neuropathol Exp Neurol May; 53(3):213–20. Review.

    Article  CAS  Google Scholar 

  • Ogawa M, Magata Y, Ouchi Y, Fukuyama H, Yamauchi H, et al. 1994. Scopolamine abolishes cerebral blood flow response to somatosensory stimulation in anesthetized cats: PET study. Brain Res 650: 249–252.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Nayak AS, et al. 1990a. Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high magnetic fields. Magn Reson Med 14: 68–78.

    Article  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW. 1990b. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872.

    Article  CAS  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, et al. 1993. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys-J 64: 803–812.

    CAS  Google Scholar 

  • Ohira Y, Tabata I. 1992. Muscle metabolism during exercise: Anaerobic threshold does not exist. Ann Physiol Anthropol 11: 319–323.

    PubMed  CAS  Google Scholar 

  • Ohta S, Meyer E, Gjedde A. 1996. Cerebral [15O]water clearance in humans determined by PET. I. Theory and normal values. J Cereb Blood Flow Metab 16: 765–780.

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Reutens DC, Gjedde A. 1999. Brief vibrotactile stimulation does not increase cortical oxygen consumption when measured by single inhalation of positron emitting oxygen. J Cereb Blood Flow Metab 19: 260–265.

    Article  PubMed  CAS  Google Scholar 

  • Oldendorf WH. 1973. Carrier-mediated blood–brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol 224: 1450–1453.

    PubMed  CAS  Google Scholar 

  • Olesen J. 1970. Total CO2, lactate, and pyruvate in brain biopsies taken after freezing the tissue in situ. Acta Neurol Scand 46: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Oz G, Berkich DA, Henry PG, Xu Y, La Noue K, et al. 2004. Neuroglial metabolism in the awake rat brain: CO2 fixation increases with brain activity. J Neurosci. 24: 11273–11279.

    Article  PubMed  CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Kanamatsu T, Rothman DL, et al. 2004. Glutamatergic neurotransmission and neuronal glucose oxidation are coupled during intense neuronal activation. J Cereb Blood Flow Metab. 24: 972–985.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM. 1981. Transport of nutrients and hormones through the blood–brain barrier. Diabetologia 20: 246–254.

    Article  PubMed  CAS  Google Scholar 

  • Paulson OB, Newman EA. 1987. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237: 896–898.

    Article  PubMed  CAS  Google Scholar 

  • Pedroarena C, Llinas R. 1997. Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proc Natl Acad Sci USA 94: 724–728.

    Article  PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91: 10625–10629.

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Swanson RA, Hertz L. 2001. Effects of l-glutamate, d-aspartate, and monensin on glycolytic and oxidative glucose metabolism in mouse astrocyte cultures: Further evidence that glutamate uptake is metabolically driven by oxidative metabolism. Neurochem Int 38: 437–443.

    Article  PubMed  CAS  Google Scholar 

  • Pette D. 1985. Metabolic heterogeneity of muscle fibres. J Exp Biol 115: 179–189.

    PubMed  CAS  Google Scholar 

  • Pierre K, Pellerin L. 2005. Monocarboxylate transporters in the central nervous system: Distribution, regulation, and function. J Neurochem. 94: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Poitry-Yamate CL, Tsacopoulos M. 1992. Glucose metabolism in freshly isolated Muller glial cells from a mammalian retina. J Comp Neurol 320: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Poitry-Yamate CL, Poitry S, Tsacopoulos M. 1995. Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina. J Neurosci. 15: 5179–5191.

    PubMed  CAS  Google Scholar 

  • Poole RC, Halestrap AP. 1993. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264: C761–C782.

    PubMed  CAS  Google Scholar 

  • Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, et al. 1991. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88: 5829–5831.

    Article  PubMed  CAS  Google Scholar 

  • ME; Pullman HS; Penefsky Datta A; Racker E. 1960. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem 235: 3322–3329.

    PubMed  CAS  Google Scholar 

  • Pysh JJ, Khan T. 1972. Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: An electron microscopic study. Brain Res 14: 1–18.

    Article  Google Scholar 

  • Raichle ME, Grubb RL Jr, Gado MH, Eichling JO, Ter-Pogossian MM. 1976. Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch Neurol. 33: 523–526.

    CAS  Google Scholar 

  • Rasmussen M, Poulsen PH, Treiber A, Delahaye S, Tankisi A, et al. 2003. No influence of the endothelin receptor antagonist bosentan on basal and indomethacin-induced reduction of cerebral blood flow in pigs. Acta Anaesthesiol Scand 47: 200–207.

    Article  PubMed  CAS  Google Scholar 

  • Reese TS, Feder N, Brightman MW. 1971. Electron microscopic study of the blood–brain and blood–cerebrospinal fluid barriers with microperoxidase. J Neuropathol Exp Neurol. 30: 137–138.

    PubMed  CAS  Google Scholar 

  • Reeves JT, Wolfel EE, Green HJ, Mazzeo RS, Young AJ, et al. 1992. Oxygen transport during exercise at altitude and the lactate paradox: Lessons from Operation Everest II and Pike's Peak. Exerc Sport Sci Rev 20: 275–296.

    Article  PubMed  CAS  Google Scholar 

  • Reutens DC, McHugh MD, Toussaint PJ, Evans AC, Gjedde A, et al. 1997. l-arginine infusion increases basal but not activated cerebral blood flow in humans. J Cereb Blood Flow Metab 17: 309–315.

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE. 1981. The histochemical localization of cytochrome oxidase in the dentate gyrus of the rat hippocampal. Brain Res 212: 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro L, Kuwabara H, Meyer E, Fujita H, Marrett S, et al. 1993. Cerebral blood flow and metabolism during nonspecific bilateral visual stimulation in normal subjets. Quantification of Brain Function. Tracer Kinetics and Image Analysis in Brain PET. Uemura K, Lassen NA, Jones T, Kanno I, editors. Amsterdam: Elsevier; pp. 217–224.

    Google Scholar 

  • Ritchie JM. 1967. The oxygen consumption of mammalian nonmyelinated fibres at rest and during activity. J Physiol (Lond) 188: 309–329.

    CAS  Google Scholar 

  • Robin ED, Murphy BJ, Theodore J. 1984. Coordinate regulation of glycolysis by hypoxia in mammalian cells. J Cell Physiol 118: 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Roland PE, Eriksson L, Stone-Elander S, Widen L. 1987. Does mental activity change the oxidative metabolism of the brain? J Neurosci 8: 2373–2389.

    Google Scholar 

  • Roland PE, Eriksson L, Widen L, Stone-Elander S. 1989. Changes in regional cerebral oxidative metabolism induced by tactile learning and recognition in man. Eur J Neurosci 7: 2373–2389.

    Google Scholar 

  • Rolfe DF, Brown GC. 1997 Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77: 731–758.

    PubMed  CAS  Google Scholar 

  • Rose SP. 1975. Cellular compartmentation of brain metabolism and its functional significance. J Neurosci Res. 1: 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Roth K, Weiner MW. 1991. Determination of cytosolic ADP and AMP concentrations and the free energy of ATP hydrolysis in human muscle and brain tissues with 31P NMR spectroscopy. Magn Reson Med 22: 505–511.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein JD, Dykes HM, Pardo CA, Bristol LA, Jin L, et al. 1996. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16: 675–686

    Article  PubMed  CAS  Google Scholar 

  • Salceda R, Vilchis C, Coffe V, Hernandez-Munoz R. 1998. Changes in the redox state in the retina and brain during the onset of diabetes in rats. Neurochem Res. 23: 893–897.

    Article  PubMed  CAS  Google Scholar 

  • Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, et al. 1992. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 12: 584–592

    PubMed  CAS  Google Scholar 

  • Schurr A. 2006. Lactate: The ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab 26: 142–152.

    Article  PubMed  CAS  Google Scholar 

  • Seitz RJ, Roland PE. 1992. Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: A positron emission tomography (PET) study. Acta Neurol Scand 86: 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Shalit MN, Beller AJ, Feinsod M, Drapkin AJ, Cotev S. 1970. The blood flow and oxygen consumption of the dying brain. Neurology 20: 740–748.

    PubMed  CAS  Google Scholar 

  • Shalit MN, Beller AJ, Feinsod M. 1972. Clinical equivalents of cerebral oxygen consumption in coma. Neurology 22: 155–160.

    PubMed  CAS  Google Scholar 

  • Shearman MS, Halestrap AP. 1984. The concentration of the mitochondrial pyruvate carrier in rat liver and heart mitochondria determined with α-cyano-β-(1-phenylindol-3-yl)acrylate. Biochem J 223: 673–676.

    PubMed  CAS  Google Scholar 

  • Shulman RG, Rothman DL. 1998. Interpreting functional imaging studies in terms of neurotransmitter cycling. Proc Natl Acad Sci USA 95: 11993–11998.

    Article  PubMed  CAS  Google Scholar 

  • Shulman RG, Rothman DL, Behar KL, Hyder F. 2005. Energetic basis of brain activity: Implications for neuroimaging. Trends Neurosci. 27: 489–95.

    Article  CAS  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, et al. 1998. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95: 316–321.

    Article  PubMed  CAS  Google Scholar 

  • Silver IA, Erecinska M. 1994. Extracellular glucose concentration in mammalian brain: Continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14: 5068–5076.

    PubMed  CAS  Google Scholar 

  • Silver IA, Erecinska M. 1997. Energetic demands of the Na+/K+-ATPase in mammalian astrocytes. Glia 21: 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Skou JC. 1960. Further investigations on a Mg2+/Na+-activated adenosine triphosphatase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochim Biophys Acta 42: 6–23.

    Article  CAS  Google Scholar 

  • Snyder CD, Wilson JE. 1983. Relative levels of hexokinase in isolated neuronal, astrocytic, and oligodendroglial fractions from rat brain. J Neurochem 40: 1178–1181.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, et al. 1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albine rat. J Neurochem 28: 897–916.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Takahashi S, Gotoh J, Driscoll BF, Law MJ. 1996. Contribution of astroglia to functionally activated energy metabolism. Dev Neurosci 18: 344–352

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L. 1999. Energetics of functional activation in neural tissues. Neurochem Res 24: 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Springett R, Wylezinska M, Cady EB, Cope M, Delpy DT. 2000. Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets. J Cereb Blood Flow Metab. 20: 280–289.

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Libionka W, et al. 2006. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9: 260–267.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, et al. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276: 1699–1702.

    Article  PubMed  CAS  Google Scholar 

  • Tholey G, Roth-Schechter BF, Mandel P. 1981. Activity and isoenzyme pattern of lactate dehydrogenase in neurons and astroblasts cultured from brains of chick embryos. J Neurochem 36: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Thompson JK, Peterson MR, Freeman RD. 2003. Single-neuron activity and tissue oxygenation in the cerebral cortex. Science. 299: 1070–1072.

    Article  PubMed  CAS  Google Scholar 

  • Vafaee MS, Meyer E, Marrett S, Evans AC, Gjedde A. 1998. Increased oxygen consumption in human visual cortex: Respond to visual stimulation. Acta Neurol Scand 98: 85–89.

    Article  PubMed  CAS  Google Scholar 

  • Vafaee MS, Meyer E, Marrett S, Paus T, Evans AC, et al. 1999. Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J Cereb Blood Flow Metab 19: 272–277.

    Article  PubMed  CAS  Google Scholar 

  • Vafaee MS, Gjedde A. 2000. Model of blood–brain transfer of oxygen explains nonlinear flow–metabolism coupling during stimulation of visual cortex. J Cereb Blood Flow Metab 20: 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Vafaee MS, Gjedde A. 2004. Spatially dissociated flow-metabolism coupling in brain activation. Neuroimage Feb; 21(2):507–15.

    Article  Google Scholar 

  • Vafaee MS, Meyer E, Gjedde A. 2000. Impaired activation of oxygen consumption and blood flow in visual cortex of patients with mitochondrial encephalomyopathy. Ann Neurol 48: 676–679.

    Article  PubMed  CAS  Google Scholar 

  • Vandenberg RJ. 1998. Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Clin Exp Pharmacol Physiol 25: 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Van Hall G. 2000. Lactate as a fuel for mitochondrial respiration. Acta Physiol Scand. 168: 643–656.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg CJ, Bruntink R. 1983. Glucose oxidation in the brain during seizures: Experiments with labeled glucose and deoxyglucose. Glutamine, Glutamate, and GABA in the Central Nervous System. Hertz L, Kvamme E, McGeer EG, Schousboe A, editors. New York: Alan R Liss; pp. 619–624.

    Google Scholar 

  • Vega C, Martiel JL, Drouhault D, Burckhart MF, Coles JA. 2003. Uptake of locally applied deoxyglucose, glucose, and lactate by axons and Schwann cells of rat vagus nerve. J Physiol. 546: 551–564.

    Article  PubMed  CAS  Google Scholar 

  • Villringer A, Dirnagl U. 1995. Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging. Cerebrovas Brain Met 7: 240–276.

    CAS  Google Scholar 

  • Wang H, Oster G. 1998. Energy transduction in the F1 motor of ATP synthase. Nature 396: 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Wang SZ, Zhu SZ, el-Fakahany EE. 1994. Efficient coupling of M5 muscarinic acetylcholine receptors to activation of nitric oxide synthase. J Pharmacol Exp Ther 268: 552–557.

    PubMed  CAS  Google Scholar 

  • Whittam R. 1962. The dependence of the respiration of brain cortex on active cation transport. Biochem J 82: 205–212.

    PubMed  CAS  Google Scholar 

  • Winkler BS, Sauer MW, Starnes CA. 2004. Effects of l-glutamate/d-aspartate and monensin on lactic acid production in retina and cultured retinal Muller cells. J Neurochem 89: 514–525.

    Article  PubMed  CAS  Google Scholar 

  • Wong- Riley MT. 1989. Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends Neurosci 12: 94–101.

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Smeitink J, Wevers RA, Wallimann T. 1992. Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102: 119–166.

    Article  PubMed  CAS  Google Scholar 

  • Yarowsky PJ, Ingvar DH. 1981. Neuronal activity and energy metabolism. Fed Proc 40: 2353–2362.

    PubMed  CAS  Google Scholar 

  • Ye JM, Colquhoun EQ, Hettiarachchi M, Clark MG. 1990. Flow-induced oxygen uptake by the perfused rat hindlimb is inhibited by vasodilators and augmented by norepinephrine: A possible role for the microvasculature in hindlimb thermogenesis. Can J Physiol Pharmacol 68: 119–125.

    PubMed  CAS  Google Scholar 

  • Zonta M, Angulo MC, Gobbo1 S, Rosengarten B, Hossmann KA, et al. 2003. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci 6: 43–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the Medical Research Councils of Canada and Denmark and the National Science Foundation of Denmark for support.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Gjedde, A. (2007). 4.5 Coupling of Brain Function to Metabolism: Evaluation of Energy Requirements. In: Lajtha, A., Gibson, G.E., Dienel, G.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30411-3_14

Download citation

Publish with us

Policies and ethics