Skip to main content

Redox Dysregulation in Schizophrenia: Genetic Susceptibility and Pathophysiological Mechanisms

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Schizophrenia is a severe, frequent, chronic and complex disease implying an interplay of genetic, environmental and developmental vulnerability factors. Its physiopathology involves an impairment of neural connectivity both at the functional and structural levels, and various transmitter systems. Increasing evidence points to the involvement in the disease of oxidative stress and redox imbalance, although their origin is still elusive. Glutathione plays a major role as a redox regulator and is required as antioxidant for cellular protection against oxidative damage. It is synthesized by the rate-limiting enzyme glutamate-cysteine ligase (GCL).

The evidence for its involvement in schizophrenia is summarized below.

  • Glutathione synthesis is impaired in patients at the level of the GCL enzyme, as measured in fibroblasts. In addition, genetic analysis showed an association between schizophrenia and the two GCL subunits. These findings are consistent with low brain and cerebrospinal fluid (CSF) glutathione levels.

  • It is proposed that a brain glutathione deficit leads to the depression of N-methyl-D-aspartate (NMDA) responses and affect synaptic contacts in catecholamine innervated regions.

  • Experimental pharmacological in vitro models in which glutathione is decreased reveal a hypofunction of NMDA receptors. In vivo developmental models show a reduction of dendritic spine density and of γ-aminobutyric acid (GABA)-parvalbumin immunoreactive interneurones in prefrontal cortex, as well as memory and sensory integration impairments. These anomalies are similar to that observed in schizophrenia.

  • In a clinical trial, oral administration of N-acetyl-cysteine, a glutathione precursor, improves clinical symptoms and mismatch negativity.

  • The data are compatible with the dopamine, glutamate and neurodevelopmental hypotheses as well as with schizophrenia comorbidities, including cardiovascular diseases, diabetes, viral infections, neonatal complications and hyperhomocysteinemia.

A redox/antioxidant dysregulation due to an impairment of glutathione synthesis of genetic origin is a vulnerability factor for schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BSO:

Buthionine Sulfoximine

CAT:

Catalase

CSF:

Cerebrospinal Fluid

DA:

Dopamine

GAD-67:

Glutamate Decarboxylase 67

GCL:

Glutamate-Cysteine Ligase

GCLC:

Glutamate-Cysteine Ligase Catalytic Subunit

GCLM:

Glutamate-Cysteine Ligase Modifier Subunit

GGT:

γ-Glutamyl Transpeptidase

GPX:

Glutathione Peroxidase

GSH:

Glutathione

GSS:

Glutathione Synthetase

GSSG:

Oxidized Form of Glutathione

GSTM:

Glutamyl-S-Transferase

LPS:

Lipopolysaccharide

MMN:

Mismatch Negativity

NAC:

N-Acetyl Cysteine

NEG:

Negative

ODS:

“Osteogenic Disorder Shionogi”

Oligo:

Oligodendrocytes

PFC:

Prefrontal Cortex

POS:

Positive

PV:

Parvalbumin

RNS:

Reactive Nitrogen Species

ROS:

Reactive Oxygen Species

SOD:

Superoxide Dismutase

t-BHQ:

tert-Buthylhydroquinone

TNR:

Trinucleotide Repeat

References

  • Abdolmaleky HM, et al. 2005. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: A preliminary report. Am J Med Genet B Neuropsychiatr Genet 134: 60–66.

    Google Scholar 

  • Abdolmaleky HM, Smith CL, Faraone SV, Shafa R, Stone W, et al. 2004. Methylomics in psychiatry: Modulation of gene-environment interactions may be through DNA methylation. Am j Med Genet 127B: 51–59.

    PubMed  Google Scholar 

  • Albert KA, Hemmings HC Jr., Adamo, AI, Potkin SG, Akbarian S, et al. 2002. Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia. Arch Gen Psychiatry 59: 705–712.

    PubMed  CAS  Google Scholar 

  • Almaguer-Melian W, Cruz-Aguado R, Bergado JA. 2000. Synaptic plasticity is impaired in rats with a low glutathione content. Synapse 38: 369–374.

    PubMed  CAS  Google Scholar 

  • Altar CA, et al. 2005. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 58: 85–96.

    PubMed  CAS  Google Scholar 

  • Amato A, Connolly CN, Moss SJ, Smart TG. 1999. Modulation of neuronal and recombinant GABAA receptors by redox reagents. J Physiol 517(Pt 1): 35–50.

    PubMed  CAS  Google Scholar 

  • Andersen JK. 2004. Oxidative stress in neurodegeneration: Cause or consequence? Nat Med 10(Suppl.): S18–S25.

    PubMed  Google Scholar 

  • Andreasen NC. 2000. Schizophrenia: The fundamental questions. Brain Res Brain Res Rev 31: 106–112.

    PubMed  CAS  Google Scholar 

  • Arinami T, et al. 2005. Genomewide high-density SNP linkage analysis of 236 Japanese families supports the existence of schizophrenia susceptibility loci on chromosomes 1p, 14q, and 20p. Am J Hum Genet 77: 937–944.

    PubMed  CAS  Google Scholar 

  • Aydin S, Ozaras R, Uzun H, Belce A, Uslu E, et al. 2002. N-acetylcysteine reduced the effect of ethanol on antioxidant system in rat plasma and brain tissue. Tohoku J Exp Med 198: 71–77.

    PubMed  CAS  Google Scholar 

  • Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ. 1998. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18: 6241–6253.

    PubMed  CAS  Google Scholar 

  • Barr CL, et al. 1994. Progress in a genome scan for linkage in schizophrenia in a large Swedish kindred. Am J Med Genet 54: 51–58.

    PubMed  CAS  Google Scholar 

  • Barrot M, Abrous DN, Marinelli M, Rouge-Pont F, Le MM, et al. 2001. Influence of glucocorticoids on dopaminergic transmission in the rat dorsolateral striatum. Eur J Neurosci 13: 812–818.

    PubMed  CAS  Google Scholar 

  • Bartos M, Vida I, Jonas P. 2007. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8: 45–56.

    PubMed  CAS  Google Scholar 

  • Beasley CL, Cotter DR, Everall IP. 2002a. Density and distribution of white matter neurons in schizophrenia, bipolar disorder and major depressive disorder: No evidence for abnormalities of neuronal migration. Mol Psychiatry 7: 564–570.

    PubMed  CAS  Google Scholar 

  • Beasley CL, Zhang ZJ, Patten I, Reynolds GP. 2002b. Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry 52: 708–715.

    PubMed  CAS  Google Scholar 

  • Behl C, Manthey D. 2000. Neuroprotective activities of estrogen: An update. J Neurocytol 29: 351–358.

    PubMed  CAS  Google Scholar 

  • Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, et al. 2007. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318: 1645–1647.

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D. 2002. Mitochondrial dysfunction in schizophrenia: A possible linkage to dopamine. J Neurochem 83: 1241–1251.

    PubMed  CAS  Google Scholar 

  • Benes FM, Berretta S. 2001. GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25: 1–27.

    PubMed  CAS  Google Scholar 

  • Benson MA, Sillitoe RV, Blake DJ. 2004. Schizophrenia genetics: Dysbindin under the microscope. Trends Neurosci 27: 516–519.

    PubMed  CAS  Google Scholar 

  • Berk M, et al. 2008. N-acetyl cysteine as a glutathione precursor for schizophrenia: A double-blind randomised placebo controlled trial, submitted. Biol Psychiatry 64: 361–368.

    PubMed  CAS  Google Scholar 

  • Bertolino A, Breier A, Callicott JH, Adler C, Mattay VS, et al. 2000. The relationship between dorsolateral prefrontal neuronal N- acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 22: 125–132.

    PubMed  CAS  Google Scholar 

  • Blouin JL, et al. 1998. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 20: 70–73.

    PubMed  CAS  Google Scholar 

  • Borgstrom L, Kagedal B. 1990. Dose dependent pharmacokinetics of N-acetylcysteine after oral dosing to man. Biopharm Drug Dispos 11: 131–136.

    PubMed  CAS  Google Scholar 

  • Borgstrom L, Kagedal B, Paulsen O. 1986. Pharmacokinetics of N-acetylcysteine in man. Eur J Clin Pharmacol 31: 217–222.

    PubMed  CAS  Google Scholar 

  • Breier A, et al. 1997. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: Evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94: 2569–2574.

    PubMed  CAS  Google Scholar 

  • Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS. 2000. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 288: 678–682.

    PubMed  CAS  Google Scholar 

  • Brzustowicz LM, Honer WG, Chow EW, Little D, Hogan J, et al. 1999. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet 65: 1096–1103.

    PubMed  CAS  Google Scholar 

  • Buhl R, Jaffe HA, Holroyd KJ, Wells FB, Mastrangeli A, et al. 1989. Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet 2: 1294–1298.

    PubMed  CAS  Google Scholar 

  • Bull R, Marengo JJ, Finkelstein JP, Behrens MI, Alvarez O. 2003. SH oxidation coordinates subunits of rat brain ryanodine receptor channels activated by calcium and ATP. Am J Physiol Cell Physiol 285: C119–C128.

    PubMed  CAS  Google Scholar 

  • Burns J, Job D, Bastin ME, Whalley H, Macgillivray T, et al. 2003. Structural disconnectivity in schizophrenia: A diffusion tensor magnetic resonance imaging study. Br. J. Psychiatry 182: 439–443.

    PubMed  CAS  Google Scholar 

  • Cabungcal JH, Hornung JP, Cuenod M, Do KQ, Schenk F. 2004a. Impaired place discrimination in adult rats with low cerebral glutathione during brain development: An animal behaviour model with relevance to schizophrenia. Society for Neuroscience Abstract Viewer and Itinerary Planner: 797.13.

    Google Scholar 

  • Cabungcal JH, Singer D, Hornung JP, Cuenod M, Do KQ, et al. 2004b. Spatial bias deficit in rats with low glutathione during development: A behaviour model with relevance to schizophrenia. Schizophr Res 67: 124.

    Google Scholar 

  • Cabungcal JH, Nicolas D, Kraftsik R, Cuénod M, Do KQ, et al. 2006. Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: Relevance to schizophrenia. Neurobiol Dis 22: 624–637.

    PubMed  CAS  Google Scholar 

  • Cabungcal JH, Preissman D, Delseth C, Cuénod M, Do KQ, et al. 2007. Transitory glutathione deficit during brain development induces cognitive impairment in juvenile and adult rats: Relevance to schizophrenia. Neurobiol Dis 26: 634–645.

    PubMed  CAS  Google Scholar 

  • Campbell DL, Stamler JS, Strauss HC. 1996. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108: 277–293.

    PubMed  CAS  Google Scholar 

  • Cannon TD, Rosso IM, Hollister JM, Bearden CE, Sanchez LE, et al. 2000. A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia. Schizophr Bull 26: 351–366.

    PubMed  CAS  Google Scholar 

  • Carlson CS, Eberle MA, Kruglyak L, Nickerson DA. 2004. Mapping complex disease loci in whole-genome association studies. Nature 429: 446–452.

    PubMed  CAS  Google Scholar 

  • Carlsson A. 1988. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1: 179–186.

    PubMed  CAS  Google Scholar 

  • Carlsson A. 2006. The neurochemical circuitry of schizophrenia. Pharmacopsychiatry 39 (Suppl.) 1: S10–S14.

    Google Scholar 

  • Carney MW. 1967. Serum folate values in 423 psychiatric patients. Br Med J 4: 512–516.

    PubMed  CAS  Google Scholar 

  • Caspi A, et al. 2005. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: Longitudinal evidence of a gene X environment interaction. Biol Psychiatry 57: 1117–1127.

    PubMed  CAS  Google Scholar 

  • Castagne V, Cuenod M, Do KQ. 2004a. An animal model with relevance to schizophrenia: Sex-dependent cognitive deficits in osteogenic disorder-Shionogi rats induced by glutathione synthesis and dopamine uptake inhibition during development. Neuroscience 123: 821–834.

    PubMed  CAS  Google Scholar 

  • Castagne V, Rougemont M, Cuenod M, Do KQ. 2004b. Low brain glutathione and ascorbic acid associated with dopamine uptake inhibition during rat’s development induce long-term cognitive deficit: Relevance to schizophrenia. Neurobiol Dis 15: 93–105.

    PubMed  CAS  Google Scholar 

  • Catts SV, Shelley AM, Ward PB, Liebert B, McConaghy N, et al. 1995. Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatry 152: 213–219.

    PubMed  CAS  Google Scholar 

  • Chakraborti A, Gulati K, Banerjee BD, Ray A. 2007. Possible involvement of free radicals in the differential neurobehavioral responses to stress in male and female rats. Behav. Brain Res 179: 321–325.

    PubMed  CAS  Google Scholar 

  • Chen G, Wilson R, Cumming G, Walker JJ, Smith WE, et al. 1994. Intracellular and extracellular antioxidant buffering levels in erythrocytes from pregnancy-induced hypertension. J Hum Hypertens 8: 37–42.

    PubMed  CAS  Google Scholar 

  • Chen Y, Shertzer HG, Schneider SN, Nebert DW, Dalton TP. 2005. Glutamate cysteine ligase catalysis: Dependence on ATP and modifier subunit for regulation of tissue glutathione levels. J Biol Chem 280: 33766–33774.

    PubMed  CAS  Google Scholar 

  • Choi J, Liu RM, Kundu RK, Sangiorgi F, Wu W, et al. 2000. Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J Biol Chem 275: 3693–3698.

    PubMed  CAS  Google Scholar 

  • Chumakov I, et al. 2002. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99: 13675–13680.

    PubMed  CAS  Google Scholar 

  • Coleman E, Goetz RR, Leitman D, Yale S, Stanford A, et al. 2002. Odor identification impairments in schizophrenia: Relationship with demographic measures, clinical variables, and diagnostic subtypes. CNS Spectr 7: 43–48.

    PubMed  Google Scholar 

  • Constantinidis C, Williams GV,Goldman-Rakic PS. 2002. A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5: 175–180.

    PubMed  CAS  Google Scholar 

  • Coon H, et al. 1994. Genomic scan for genes predisposing to schizophrenia. Am J Med Genet 54: 59–71.

    PubMed  CAS  Google Scholar 

  • Corcoran C, Whitaker A, Coleman E, Fried J, Feldman J, et al. 2005. Olfactory deficits, cognition and negative symptoms in early onset psychosis. Schizophr Res 80: 283–293.

    PubMed  Google Scholar 

  • Cotgreave IA. 1997. N-acetylcysteine: Pharmalogical considerations and experimental and clinical applications. Adv Pharmacol 38: 205–227.

    PubMed  CAS  Google Scholar 

  • Coyle JT. 2006. Glutamate and schizophrenia: Beyond the dopamine hypothesis. Cell Mol Neurobiol 26: 365–384.

    PubMed  CAS  Google Scholar 

  • Coyle JT, Tsai G, Goff D. 2003. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann NY Acad Sci 1003: 318–327.

    PubMed  CAS  Google Scholar 

  • Dalton TP, Chen T, Schneider SN, Nebert DW, Shertzer HG. 2004. Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radical Biol Med 37: 1511–1526.

    CAS  Google Scholar 

  • Dalton TP, Dieter MZ, Yang Y, Shertzer HG, Nebert DW. 2000. Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: Embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res Commun 279: 324–329.

    PubMed  CAS  Google Scholar 

  • Dalton TP, Shertzer HG, Puga A. 1999. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39: 67–101.

    PubMed  CAS  Google Scholar 

  • Davis KL, Haroutunian V. 2003. Global expression-profiling studies and oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362: 758.

    PubMed  Google Scholar 

  • Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, et al. 2003. White matter changes in schizophrenia: Evidence for myelin-related dysfunction. Arch Gen Psychiatry 60: 443–456.

    PubMed  Google Scholar 

  • De MG, Bravi MC, Laurenti O, Cassone-Faldetta M, Armiento A, et al. 1998. Influence of reduced glutathione infusion on glucose metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism 47: 993–997.

    Google Scholar 

  • Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M. 2007. How environmental and genetic factors combine to cause autism: A redox/methylation hypothesis. Neurotoxicology 29: 190–201.

    PubMed  Google Scholar 

  • DiChiara TJ, Reinhart PH. 1997. Redox modulation of hslo Ca2+-activated K+ channels. J Neurosci 17: 4942–4955.

    PubMed  CAS  Google Scholar 

  • Do KQ, et al. 2004. Glutathione deficit in schizophrenia: A new vulnerability factor for misconnectivity? Schizophr Res 67: 118–118.

    Google Scholar 

  • Do KQ, Lauer CJ, Schreiber W, Zollinger M, Gutteck Amsler U, et al. 1995. gamma-Glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem 65: 2652–2662.

    PubMed  CAS  Google Scholar 

  • Do KQ, Trabesinger AH, Kirsten-Kruger M, Lauer CJ, Dydak U, et al. 2000. Schizophrenia: Glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12: 3721–3728.

    PubMed  CAS  Google Scholar 

  • Dringen R. 2000. Metabolism and functions of glutathione in brain. Prog Neurobiol 62: 649–671.

    PubMed  CAS  Google Scholar 

  • Dringen R, Gutterer JM, Gros C, Hirrlinger J. 2001. Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res 66: 1003–1008.

    PubMed  CAS  Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J. 2000. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267: 4912–4916.

    PubMed  CAS  Google Scholar 

  • Dringen R, Hirrlinger J. 2003. Glutathione pathways in the brain. Biol Chem 384: 505–516.

    PubMed  CAS  Google Scholar 

  • Eastwood SL, Burnet PW, Harrison PJ. 1995. Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 66: 309–319.

    PubMed  CAS  Google Scholar 

  • Eck HP, Gmunder H, Hartmann M, Petzoldt D, Daniel V, et al. 1989. Low concentrations of acid-soluble thiol (cysteine) in the blood plasma of HIV-1-infected patients. Biol Chem Hoppe Seyler 370: 101–108.

    PubMed  CAS  Google Scholar 

  • Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, et al. 2001. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98: 6917–6922.

    PubMed  CAS  Google Scholar 

  • Engel AK, Konig P, Kreiter AK, Singer W. 1991. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252: 1177–1179.

    Google Scholar 

  • Enger C, Weatherby L, Reynolds RF, Glasser DB, Walker AM. 2004. Serious cardiovascular events and mortality among patients with schizophrenia. J Nerv Ment Dis 192: 19–27.

    PubMed  Google Scholar 

  • Ennaceur A, Delacour J. 1988. A new one-trial test for neurobiological studies of memory in rats 1: Behav data. Behav Brain Res 31: 47–59.

    PubMed  CAS  Google Scholar 

  • Ercal N, Treeratphan P, Hammond TC, Matthews RH, Grannemann NH, et al. 1996. In vivo indices of oxidative stress in lead-exposed C57BL/6 mice are reduced by treatment with meso-2,3-Dimercaptosuccinic Acid or N-acetylcysteine. Free Radical Biol Med 21: 157–161.

    CAS  Google Scholar 

  • Esposito F, Ammendola R, Faraonio R, Russo T, Cimino F. 2004. Redox control of signal transduction, gene expression and cellular senescence. Neurochem Res 29: 617–628.

    PubMed  CAS  Google Scholar 

  • Evans DR, Parikh VV, Khan MM, Coussons C, Buckley PF, et al. 2003. Red blood cell membrane essential fatty acid metabolism in early psychotic patients following antipsychotic drug treatment. Prostaglandins Leukot Essent Fatty Acids 69: 393–399.

    PubMed  CAS  Google Scholar 

  • Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, et al. 2005. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: A large-scale association study plus meta-analysis. Biol Psychiatry 57: 139–144.

    PubMed  CAS  Google Scholar 

  • Faraone SV, Taylor L, Tsuang MT. 2002. The molecular genetics of schizophrenia: An emerging consensus. Expert Rev Mol Med 2002: 1–13.

    Google Scholar 

  • Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, et al. 2003. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 84: 1173–1183.

    PubMed  CAS  Google Scholar 

  • Friston KJ. 1998. The disconnection hypothesis. Schizophr Res 30: 115–125.

    PubMed  CAS  Google Scholar 

  • Fu AL, Dong ZH, Sun MJ. 2006. Protective effect of N-acetyl-l-cysteine on amyloid [beta]-peptide-induced learning and memory deficits in mice. Brain Res 1109: 201–206.

    PubMed  CAS  Google Scholar 

  • Ganguli R, Singh A, Brar J, Carter C, Mintun M. 2002. Hydrocortisone induced regional cerebral activity changes in schizophrenia: A PET scan study. Schizophr Res 56: 241–247.

    PubMed  Google Scholar 

  • Garey LJ, Ong WY, Patel TS, Kanani A, Mortimer AM, et al. 1998. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65: 446–453.

    PubMed  CAS  Google Scholar 

  • Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, et al. 2003. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci USA 100: 8993–8998.

    PubMed  CAS  Google Scholar 

  • Glantz LA, Lewis DA. 2000. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57: 65–73.

    PubMed  CAS  Google Scholar 

  • Glatt SJ, Faraone SV, Tsuang MT. 2003. Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: Meta-analysis of case-control and family-based studies. Am J Psychiatry 160: 469–476.

    PubMed  Google Scholar 

  • Grima G, Benz B, Parpura V, Cuenod M, Do KQ. 2003. Dopamine-induced oxidative stress in neurons with glutathione deficit: Implication for schizophrenia. Schizophr Res 62: 213–224.

    PubMed  Google Scholar 

  • Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, et al. 2007. Impaired glutathione synthesis in schizophrenia: Convergent genetic and functional evidence, Proc Natl Acad Sci USA 104: 16621–16626.

    PubMed  CAS  Google Scholar 

  • Gysin R, Tosic M, Chappuis C, Deppen P, Ruiz V, et al. 2005. Dysregulation of glutamate cysteine ligase in schizophrenia. Society for Neuroscience Abstract Viewer and Itinerary Planner: 674.15.

    Google Scholar 

  • Haidara MA, Yassin HZ, Rateb M, Ammar H, Zorkani MA. 2006. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr Vasc Pharmacol 4: 215–227.

    PubMed  CAS  Google Scholar 

  • Hall AG. 1999. Review: The role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29: 238–245.

    PubMed  CAS  Google Scholar 

  • Hammond CL, Lee TK, Ballatori N. 2001. Novel roles for glutathione in gene expression, cell death, and membrane transport of organic solutes. J Hepatol 34: 946–954.

    PubMed  CAS  Google Scholar 

  • Harrison PJ. 1999. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122: 593–624.

    PubMed  Google Scholar 

  • Harrison PJ, Weinberger DR. 2005. Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Mol Psychiatry 10: 40–68.

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, et al. 2003. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23: 6315–6326.

    PubMed  CAS  Google Scholar 

  • Heales SJ, Davies SE, Bates TE, Clark JB. 1995. Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20: 31–38.

    PubMed  CAS  Google Scholar 

  • Hensch TK. 2005. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6: 877–888.

    PubMed  CAS  Google Scholar 

  • Heresco-Levy U, Javitt DC. 2004. Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: A retrospective analysis. Schizophr Res 66: 89–96.

    PubMed  Google Scholar 

  • Herken H, Uz E, Ozyurt H, Sogut S, Virit O, et al. 2001. Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Mol Psychiatry 6: 66–73.

    PubMed  CAS  Google Scholar 

  • Hidalgo C, Bull R, Behrens MI, Donoso P. 2004. Redox regulation of RyR-mediated Ca2+ release in muscle and neurons. Biol Res 37: 539–552.

    PubMed  Google Scholar 

  • Hirrlinger J, Schulz JB, Dringen R. 2002a. Effects of dopamine on the glutathione metabolism of cultured astroglial cells: Implications for Parkinson’s disease. J Neurochem 82: 458–467.

    PubMed  CAS  Google Scholar 

  • Hirrlinger J, Schulz JB, Dringen R. 2002b. Glutathione release from cultured brain cells: Multidrug resistance protein 1 mediates the release of GSH from rat astroglial cells. J Neurosci Res 69: 318–326.

    PubMed  CAS  Google Scholar 

  • Hoffer A, Osmond H, Smythies J. 1954. Schizophrenia; a new approach. II. Result of a year’s research. J Ment Sci 100: 29–45.

    PubMed  CAS  Google Scholar 

  • Holmes E, et al. 2006. Metabolic profiling of CSF: Evidence that early intervention may impact on disease progression and outcome in schizophrenia. PLoS Med 3(8): e327.

    PubMed  Google Scholar 

  • Horrobin DF. 1998. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res 30: 193–208.

    PubMed  CAS  Google Scholar 

  • Horrobin DF, Manku MS, Hillman H, Iain A, Glen M. 1991. Fatty acid levels in the brains of schizophrenics and normal controls. Biol Psychiatry 30: 795–805.

    PubMed  CAS  Google Scholar 

  • Hoyt KR, Reynolds IJ, Hastings TG. 1997. Mechanisms of dopamine-induced cell death in cultured rat forebrain neurons: Interactions with and differences from glutamate-induced cell death. Exp Neurology 143: 269–281.

    CAS  Google Scholar 

  • Huang CS, Anderson ME, Meister A. 1993a. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem 268: 20578–20583.

    PubMed  CAS  Google Scholar 

  • Huang CS, Chang LS, Anderson ME, Meister A. 1993b. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem 268: 19675–19680.

    PubMed  CAS  Google Scholar 

  • Jacobsen JPR, Rodriguiz RM, Mork A, Wetsel WC. 2005. Monoaminergic dysregulation in glutathione-deficient mice: Possible relevance to schizophrenia? Neuroscience 132: 1055–1072.

    PubMed  CAS  Google Scholar 

  • Janaky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, et al. 1999. Glutathione and signal transduction in the mammalian CNS. J Neurochem 73: 889–902.

    PubMed  CAS  Google Scholar 

  • Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughan HG Jr. 1993. Impairment of early cortical processing in schizophrenia: An event- related potential confirmation study. Biol Psychiatry 33: 513–519.

    PubMed  CAS  Google Scholar 

  • Javitt DC, Grochowski S, Shelley AM, Ritter W. 1998. Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroen Clin Neuro 108: 143–153.

    CAS  Google Scholar 

  • Javitt DC, Zukin SR. 1991. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308.

    PubMed  CAS  Google Scholar 

  • Kamboj A, Kiran R, Sandhir R. 2006. Carbofuran-induced neurochemical and neurobehavioral alterations in rats: Attenuation by N-acetylcysteine. Exp Brain Research 170: 567–575.

    CAS  Google Scholar 

  • Kanaan RA, Kim JS, Kaufmann WE, Pearlson GD, Barker GJ, et al. 2005. Diffusion tensor imaging in schizophrenia. Biol Psychiatry 58: 921–929.

    PubMed  Google Scholar 

  • Keshavan MS, Mallinger AG, Pettegrew JW, Dippold C. 1993. Erythrocyte membrane phospholipids in psychotic patients. Psychiatry Res 49: 89–95.

    PubMed  CAS  Google Scholar 

  • Keshavan MS, Stanley JA, Montrose DM, Minshew NJ, Pettegrew JW. 2003. Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder: An in vivo (31)P MRS study. Mol Psychiatry 8: 316–323.

    PubMed  CAS  Google Scholar 

  • Kharb S. 2000. Low whole blood glutathione levels in pregnancies complicated by preeclampsia and diabetes. Clin Chim Acta 294: 179–183.

    PubMed  CAS  Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B. 1980. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis of schizophrenia. Neurosci Lett 20: 379–382.

    PubMed  CAS  Google Scholar 

  • Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, et al. 2003. Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci USA 100: 313–317.

    PubMed  CAS  Google Scholar 

  • Kohr G, Eckardt S, Luddens H, Monyer H, Seeburg PH. 1994. NMDA receptor channels: Subunit-specific potentiation by reducing agents. Neuron 12: 1031–1040.

    PubMed  CAS  Google Scholar 

  • Koide S, Kugiyama K, Sugiyama S, Nakamura S, Fukushima H, et al. 2003. Association of polymorphism in glutamate-cysteine ligase catalytic subunit gene with coronary vasomotor dysfunction and myocardial infarction. J Am Coll Cardiol 41: 539–545.

    PubMed  CAS  Google Scholar 

  • Kolluri N, Sun Z, Sampson AR, Lewis DA. 2005. Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 162: 1200–1202.

    PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, et al. 1994. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51: 199–214.

    PubMed  CAS  Google Scholar 

  • Kubicki M, et al. 2005. DTI and MTR abnormalities in schizophrenia: Analysis of white matter integrity. Neuroimage 26: 1109–1118.

    PubMed  CAS  Google Scholar 

  • Kume-Kick J, Ferris DC, Russo-Menna I, Rice ME. 1996. Enhanced oxidative stress in female rat brain after gonadectomy. Brain Res 738: 8–14.

    PubMed  CAS  Google Scholar 

  • Kume-Kick J, Rice ME. 1998. Estrogen-dependent modulation of rat brain ascorbate levels and ischemia-induced ascorbate loss. Brain Res 803: 105–113.

    PubMed  CAS  Google Scholar 

  • Kwon JS, et al. 1999. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 56: 1001–1005.

    PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA. 2001. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25: 455–467.

    PubMed  CAS  Google Scholar 

  • Lante F, et al. 2007. Neurodevelopmental damage after prenatal infection: Role of oxidative stress in the fetal brain. Free Radic Biol Med 42: 1231–1245.

    PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R. 1999. Increased dopamine transmission in schizophrenia: Relationship to illness phases. Biol Psychiatry 46: 56–72.

    PubMed  CAS  Google Scholar 

  • Lavenex P, Schenk F. 1996. Integration of olfactory information in a spatial representation enabling accurate arm choice in the radial arm maze. Learn Mem 2: 299–319.

    PubMed  CAS  Google Scholar 

  • Lavoie S, et al. 2007. Glutathione Precursor, N-Acetyl-Cysteine, Improves Mismatch Negativity in Schizophrenia Patients. Neuropsychopharmacology 33: 2187–2199.

    PubMed  Google Scholar 

  • Levine J, Stahl Z, Sela BA, Gavendo S, Ruderman V, et al. 2002. Elevated homocysteine levels in young male patients with schizophrenia. Am J Psychiatry 159: 1790–1792.

    PubMed  Google Scholar 

  • Leweke FM, Gerth CW, Koethe D, Klosterkotter J, Ruslanova I, et al. 2004. Antibodies to infectious agents in individuals with recent onset schizophrenia. Eur Arch Psychiatry Clin Neurosci 254: 4–8.

    PubMed  Google Scholar 

  • Lewis CM, et al. 2003. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 73: 34–48.

    PubMed  CAS  Google Scholar 

  • Lewis DA, Gonzalez-Burgos G. 2006. Pathophysiologically based treatment interventions in schizophrenia. Nat Med 12: 1016–1022.

    PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW. 2005. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6: 312–324.

    PubMed  CAS  Google Scholar 

  • Lewis DA, Levitt P. 2002. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25: 409–432.

    PubMed  CAS  Google Scholar 

  • Lewis DA, Lieberman JA. 2000. Catching up on schizophrenia: Natural history and neurobiology. Neuron 28: 325–334.

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, et al. 1998. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry 44: 1099–1117.

    PubMed  CAS  Google Scholar 

  • Lim KO, Helpern JA. 2002. Neuropsychiatric applications of DTI-a review. NMR Biomed 15: 587–593.

    PubMed  CAS  Google Scholar 

  • Liu H, et al. 2002. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 99: 3717–3722.

    PubMed  CAS  Google Scholar 

  • Liu J, Wang X, Shigenaga MK, Yeo HC, Mori A, et al. 1996. Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 10: 1532–1538.

    PubMed  CAS  Google Scholar 

  • Lorico A, Rappa G, Finch RA, Yang D, Flavell RA, et al. 1997. Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res 57: 5238–5242.

    PubMed  CAS  Google Scholar 

  • Loven DP, James JF, Biggs L, Little KY. 1996. Increased manganese-superoxide dismutase activity in postmortem brain from neuroleptic-treated psychotic patients. Biol Psychiatry 40: 230–232.

    PubMed  CAS  Google Scholar 

  • Mahadik SP, Mukherjee S. 1996. Free radical pathology and antioxidant defense in schizophrenia: A review. Schizophr Res 19: 1–17.

    PubMed  CAS  Google Scholar 

  • Mahadik SP, Mukherjee S, Correnti EE, Kelkar HS, Wakade CG, et al. 1994. Plasma membrane phospholipid and cholesterol distribution of skin fibroblasts from drug-naive patients at the onset of psychosis. Schizophr Res 13: 239–247.

    PubMed  CAS  Google Scholar 

  • Mahadik SP, Mukherjee S, Scheffer R, Correnti EE, Mahadik JS. 1998. Elevated plasma lipid peroxides at the onset of nonaffective psychosis. Biol Psychiatry 43: 674–679.

    PubMed  CAS  Google Scholar 

  • Malaspina D, Coleman E, Goetz RR, Harkavy-Friedman J, Corcoran C, et al. 2002. Odor identification, eye tracking and deficit syndrome schizophrenia. Biol Psychiatry 51: 809–815.

    PubMed  Google Scholar 

  • Marcelis M, Van Os J, Sham P, Jones P, Gilvarry C, et al. 1998. Obstetric complications and familial morbid risk of psychiatric disorders. Am J Med Genet 81: 29–36.

    PubMed  CAS  Google Scholar 

  • Marchbanks RM, Ryan M, Day IN, Owen M, Mcguffin P, et al. 2003. A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress. Schizophr Res 65: 33–38.

    PubMed  CAS  Google Scholar 

  • Matthysse S. 1973. Antipsychotic drug actions: A clue to the neuropathology of schizophrenia? Fed Proc 32: 200–205.

    CAS  Google Scholar 

  • Mcguffin P, Tandon K, Corsico A. 2003. Linkage and association studies of schizophrenia. Curr Psychiatry Rep 5: 121–127.

    PubMed  Google Scholar 

  • Meister A. 1981. On the cycles of glutathione metabolism and transport. Curr Top Cell Regul 18: 21–57.

    PubMed  CAS  Google Scholar 

  • Meister A, Anderson ME. 1983. Glutathione. Annu Rev Biochem 52: 711–760.

    PubMed  CAS  Google Scholar 

  • Michel TM, Thome J, Martin D, Nara K, Zwerina S, et al. 2004. Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J Neural Transm 111: 1191–1201.

    PubMed  CAS  Google Scholar 

  • Millar JK, et al. 2000. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9: 1415–1423.

    PubMed  CAS  Google Scholar 

  • Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, et al. 2006. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 97: 373–384.

    PubMed  CAS  Google Scholar 

  • Mirnics K, Levitt P, Lewis DA. 2006. Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 60: 163–176.

    PubMed  CAS  Google Scholar 

  • Misra I, Griffith OW. 1998. Expression and purification of human gamma-glutamylcysteine synthetase. Protein Expr Purif 13: 268–276.

    PubMed  CAS  Google Scholar 

  • Moberg PJ, Agrin R, Gur RE, Gur RC, Turetsky BI, et al. 1999. Olfactory dysfunction in schizophrenia: A qualitative and quantitative review. Neuropsychopharmacology 21: 325–340.

    PubMed  CAS  Google Scholar 

  • Moghaddam B. 2003. Bringing order to the glutamate chaos in schizophrenia. Neuron 40: 881–884.

    PubMed  CAS  Google Scholar 

  • Morris RG. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11: 46–60.

    Google Scholar 

  • Mukherjee SP, Lynn WS. 1979. Role of cellular redox state and glutathione in adenylate cyclase activity in rat adipocytes. Biochim Biophys Acta 568: 224–233.

    PubMed  CAS  Google Scholar 

  • Munafo MR, Bowes L, Clark TG, Flint J. 2005. Lack of association of the COMT (Val158/108 Met) gene and schizophrenia: A meta-analysis of case-control studies. Mol Psychiatry 10: 765–770.

    PubMed  CAS  Google Scholar 

  • Muntjewerff JW, Kahn RS, Blom HJ, den HM. 2006. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: A meta-analysis. Mol Psychiatry 11: 143–149.

    PubMed  CAS  Google Scholar 

  • Muratore C, Power-charnitsky V, Deth RC. 2006. Cell-specific differences in methionine synthase at the mRNA level: A role for methionine synthase as a sensor of oxidative stress. Society for Neuroscience Abstract Viewer and Itinerary Planner: 81.9.

    Google Scholar 

  • Murray RM, Lewis SW. 1987. Is schizophrenia a neurodevelopmental disorder? [editorial]. Bri Med J Clin Res Ed 295: 681–682.

    CAS  Google Scholar 

  • Nakamura S, Kugiyama K, Sugiyama S, Miyamoto S, Koide S, et al. 2002. Polymorphism in the 5′-flanking region of human glutamate-cysteine ligase modifier subunit gene is associated with myocardial infarction. Circulation 105: 2968–2973.

    PubMed  CAS  Google Scholar 

  • Nicodemus KK, Straub RE, Egan MF, Weinberger DR. 2005. Evidence for statistical epistasis between (COMT) Val158Met polymorphism and multiple putative schizophreia susceptibility genes. Am J Med Genet B Neuropsychiatr Genet 138B: 130–131.

    Google Scholar 

  • Nucci C, Palamara AT, Ciriolo MR, Nencioni L, Savini P, et al. 2000. Imbalance in corneal redox state during herpes simplex virus 1-induced keratitis in rabbits. Effectiveness of exogenous glutathione supply Exp Eye Res 70: 215–220.

    CAS  Google Scholar 

  • O’Loghlen A, Perez-Morgado MI, Salinas M, Martin ME. 2003. Reversible inhibition of the protein phosphatase 1 by hydrogen peroxide. Potential regulation of eIF2 alpha phosphorylation in differentiated PC12 cells. Arch Biochem Biophys 417: 194–202.

    PubMed  Google Scholar 

  • Ogita K, Enomoto R, Nakahara F, Ishitsubo N, Yoneda Y. 1995. A possible role of glutathione as an endogenous agonist at the N- methyl-D-aspartate recognition domain in rat brain. J Neurochem 64: 1088–1096.

    PubMed  CAS  Google Scholar 

  • Okubo Y, et al. 1997. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385: 634–636.

    PubMed  CAS  Google Scholar 

  • Olney JW, Newcomer JW, Farber NB. 1999. NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33: 523–533.

    PubMed  CAS  Google Scholar 

  • Olsson B, Johansson M, Gabrielsson J, Bolme P. 1988. Pharmacokinetics and bioavailability of reduced and oxidized N-acetylcysteine. Eur J Clin Pharmacol 34: 77–82.

    PubMed  CAS  Google Scholar 

  • Orlowski M, Karkowsky A. 1976. Glutathione metabolism and some possible functions of glutathione in the nervous system. Int Rev Neurobiol 19: 75–121.

    PubMed  CAS  Google Scholar 

  • Owen MJ, Williams NM, O’Donovan MC. 2004. The molecular genetics of schizophrenia: New findings promise new insights. Mol Psychiatry 9: 14–27.

    PubMed  CAS  Google Scholar 

  • Pakkenberg B. 1990. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47: 1023–1028.

    PubMed  CAS  Google Scholar 

  • Paolisso G, Di MG, Pizza G, D’Amore A, Sgambato S, et al. 1992. Plasma GSH/GSSG affects glucose homeostasis in healthy subjects and non-insulin-dependent diabetics. Am J Physiol 263: E435–E440.

    PubMed  CAS  Google Scholar 

  • Park LC, Baldessarini RJ, Kety SS. 1965. Methionine Effects on Chronic Schizophrenics: Patients Treated with Monoamine Oxidase Inhibitors. Arch Gen Psychiatry 12: 346–351.

    PubMed  CAS  Google Scholar 

  • Parnas J, Bovet P, Innocenti GM. 1996. Schizophrenic trait features, binding, and cortico-cortical connectivity: A neurodevelopmental pathogenetic hypothesis. Neurol Psychiatry Brain Res 4: 185–196.

    Google Scholar 

  • Petronis A. 2004. The origin of schizophrenia: Genetic thesis, epigenetic antithesis, and resolving synthesis. Biol Psychiatry 55: 965–970.

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, et al. 1991. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 48: 563–568.

    PubMed  CAS  Google Scholar 

  • Pias EK, Aw TY. 2002. Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production. FASEB J 16: 781–790.

    PubMed  CAS  Google Scholar 

  • Piazza PV, Le Moal ML. 1996. Pathophysiological basis of vulnerability to drug abuse: Role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annu Rev Pharmacol Toxicol 36: 359–378.

    PubMed  CAS  Google Scholar 

  • Popken GJ, Bunney WE, Jr., Potkin SG, Jones EG. 2000. Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 97: 9276–9280.

    PubMed  CAS  Google Scholar 

  • Power-charnitsky V, Waly J, Bojkovic C, Muratore C, Deth RC. 2006. Glutathione availability determines methionine synthase activity in sh-sy5y neuronal cells. Society for Neuroscience Abstract Viewer and Itinerary Planner: 729.11.

    Google Scholar 

  • Prabakaran S, et al. 2004. Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9: 684–697.

    PubMed  CAS  Google Scholar 

  • Prestera T, Holtzclaw WD, Zhang Y, Talalay P. 1993. Chemical and Molecular Regulation of Enzymes that Detoxify Carcinogens. Proc Natl Acad Sci USA 90: 2965–2969.

    PubMed  CAS  Google Scholar 

  • Pulver AE. 2000. Search for schizophrenia susceptibility genes. Biol Psychiatry 47: 221–230.

    PubMed  CAS  Google Scholar 

  • Rabinovic AD, Lewis DA, Hastings TG. 2000. Role of oxidative changes in the degeneration of dopamine terminals after injection of neurotoxic levels of dopamine. Neuroscience 101: 67–76.

    PubMed  CAS  Google Scholar 

  • Raedler TJ, Knable MB, Weinberger DR. 2000. Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 8: 157–161.

    Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS. 2000. Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20: 485–494.

    PubMed  CAS  Google Scholar 

  • Reddy R, Keshavan M, Yao JK. 2003. Reduced plasma antioxidants in first-episode patients with schizophrenia. Schizophr Res 62: 205–212.

    PubMed  Google Scholar 

  • Reddy R, Sahebarao MP, Mukherjee S, Murthy JN. 1991. Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry 30: 409–412.

    PubMed  CAS  Google Scholar 

  • Reddy RD, Keshavan MS, Yao JK. 2004. Reduced red blood cell membrane essential polyunsaturated fatty acids in first episode schizophrenia at neuroleptic-naive baseline. Schizophr Bull 30: 901–911.

    PubMed  Google Scholar 

  • Regland B, Johansson BV, Grenfeldt B, Hjelmgren LT, Medhus M. 1995. Homocysteinemia is a common feature of schizophrenia. J Neural Transm Gen Sect 100: 165–169.

    PubMed  CAS  Google Scholar 

  • Riley B, Kendler KS. 2006. Molecular genetic studies of schizophrenia. Eur J Hum Genet 14: 669–680.

    PubMed  CAS  Google Scholar 

  • Rose SE, et al. 2006. Evidence of altered prefrontal-thalamic circuitry in schizophrenia: An optimized diffusion MRI study. Neuroimage 32: 16–22.

    PubMed  Google Scholar 

  • Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, et al. 2000. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: Preliminary findings. Arch Gen Psychiatry 57: 349–356.

    PubMed  CAS  Google Scholar 

  • Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT. 2006. Neurobiology of schizophrenia. Neuron 52: 139–153.

    PubMed  CAS  Google Scholar 

  • Rossier J, Schenk F. 2003. Olfactory and/or visual cues for spatial navigation through ontogeny: Olfactory cues enable the use of visual cues. Behav Neurosci 117: 412–425.

    PubMed  Google Scholar 

  • Rosso IM, Cannon TD, Huttunen T, Huttunen MO, Lonnqvist J, et al. 2000. Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort. Am J Psychiatry 157: 801–807.

    PubMed  CAS  Google Scholar 

  • Rougemont M, Do KQ, Castagne V. 2003. A new model of glutathione deficit during development: Effect of glutathione deficit on lipid peroxidation in the rat brain. J Neurosci Res 70: 774–783.

    Google Scholar 

  • Ryan MC, Collins P, Thakore JH. 2003. Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry 160: 284–289.

    PubMed  Google Scholar 

  • Sagara J, Makino N, Bannai S. 1996. Glutathione efflux from cultured astrocytes. J Neurochem 66: 1876–1881.

    PubMed  CAS  Google Scholar 

  • Schenk F. 1989. A homing procedure for studying spatial memory in immature and adult rodents. J Neurosci Methods 26: 249–258.

    PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS. 1999. The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biol Psychiatry 45: 17–25.

    PubMed  CAS  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS. 1995. Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52: 805–818.

    PubMed  CAS  Google Scholar 

  • Selemon LD, Rajkowska G, Goldman-Rakic PS. 1998. Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: Application of a three-dimensional, stereologic counting method. J Comp Neurol 392: 402–412.

    PubMed  CAS  Google Scholar 

  • Shelley AM, Ward PB, Catts SV, Michie PT, Andrews S, et al. 1991. Mismatch negativity: An index of a preattentive processing deficit in schizophrenia. Biol Psychiatry 30: 1059–1062.

    PubMed  CAS  Google Scholar 

  • Shi ZZ, et al. 2000. Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci USA 97: 5101–5106.

    PubMed  CAS  Google Scholar 

  • Shifman S, et al. 2002. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 71: 1296–1302.

    PubMed  CAS  Google Scholar 

  • Shutara Y, Koga Y, Fujita K, Takeuchi H, Mochida M, et al. 1996. An event-related potential study on the impairment of automatic processing of auditory input in schizophrenia. Brain Topogr 8: 285–289.

    PubMed  CAS  Google Scholar 

  • Sies H. 1999. Glutathione and its role in cellular functions. Free Radic Biol Med 27: 916–921.

    PubMed  CAS  Google Scholar 

  • Singer W, Gray CM. 1995. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18: 555–586.

    PubMed  CAS  Google Scholar 

  • Smith J, Ladi E, Mayer-Proschel M, Noble M. 2000. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci USA 97: 10032–10037.

    PubMed  CAS  Google Scholar 

  • Smythies JR, Gottfries CG, Regland B. 1997. Disturbances of one-carbon metabolism in neuropsychiatric disorders: A review. Biol Psychiatry 41: 230–233.

    PubMed  CAS  Google Scholar 

  • Sokoloff L. 1999. Energetics of functional activation in neural tissues. Neurochem Res 24: 321–329.

    PubMed  CAS  Google Scholar 

  • Soltaninassab SR, Sekhar KR, Meredith MJ, Freeman ML. 2000. Multi-faceted regulation of gamma-glutamylcysteine synthetase. J Cell Physiol 182: 163–170.

    PubMed  CAS  Google Scholar 

  • Sommer D, Coleman S, Swanson SA, Stemmer PM. 2002. Differential susceptibilities of serine/threonine phosphatases to oxidative and nitrosative stress. Arch Biochem Biophys 404: 271–278.

    PubMed  CAS  Google Scholar 

  • Sommer D, Fakata KL, Swanson SA, Stemmer PM. 2000. Modulation of the phosphatase activity of calcineurin by oxidants and antioxidants in vitro. Eur J Biochem 267: 2312–2322.

    PubMed  CAS  Google Scholar 

  • Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, et al. 2003. Abnormal neural synchrony in schizophrenia. J Neurosci 23: 7407–7411.

    PubMed  CAS  Google Scholar 

  • Stefansson H, Steinthorsdottir V, Thorgeirsson TE, Gulcher JR, Stefansson K. 2004. Neuregulin 1 and schizophrenia. Ann Med 36: 62–71.

    PubMed  CAS  Google Scholar 

  • Steullet P, Lavoie S, Kraftsik R, Guidi R, Gysin R, et al. 2008. A glutathione deficit alters dopamine modulation of L-type calcium channels via D2 and ryanodine receptors in neurons. Free Radical Biol Med 44: 1042-1054.

    Google Scholar 

  • Steullet P, Neijt HC, Cuenod M, Do KQ. 2006. Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: Relevance to schizophrenia. Neuroscience 137: 807–819.

    PubMed  CAS  Google Scholar 

  • Suhara T, et al. 2002. Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59: 25–30.

    PubMed  CAS  Google Scholar 

  • Sullivan JM, Traynelis SF, Chen HS, Escobar W, Heinemann SF, et al. 1994. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13: 929–936.

    PubMed  CAS  Google Scholar 

  • Sun WM, Huang ZZ, Lu SC. 1996. Regulation of gamma-glutamylcysteine synthetase by protein phosphorylation. Biochem J 320(Pt 1): 321–328.

    PubMed  CAS  Google Scholar 

  • Tallon-Baudry C, Bertrand O. 1999. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3: 151–162.

    PubMed  Google Scholar 

  • Tamminga CA, Lahti AC, Medoff DR, Gao XM, Holcomb HH. 2003. Evaluating glutamatergic transmission in schizophrenia. Ann NY Acad Sci 1003: 113–118.

    PubMed  CAS  Google Scholar 

  • Thakore JH. 2005. Metabolic syndrome and schizophrenia. Br J Psychiatry 186: 455–456.

    PubMed  Google Scholar 

  • Tkachev D, et al. 2003. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362: 798–805.

    PubMed  CAS  Google Scholar 

  • Toroser D, Yarian CS, Orr WC, Sohal RS. 2006. Mechanisms of gamma-glutamylcysteine ligase regulation. Biochim Biophys Acta 1760: 233–244.

    PubMed  CAS  Google Scholar 

  • Tosic M, et al. 2006. Schizophrenia and oxidative stress: Glutamate cysteine ligase modifier as a susceptibility gene. Am J Hum Genet 79: 586–592.

    PubMed  CAS  Google Scholar 

  • Trabesinger AH, Weber OM, Duc CO, Boesiger P. 1999. Detection of glutathione in the human brain in vivo by means of double quantum coherence filtering. Magn Reson Med 42: 283–289.

    PubMed  CAS  Google Scholar 

  • Traub RD, Whittington MA, Stanford IM, Jefferys JG. 1996. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383: 621–624.

    PubMed  CAS  Google Scholar 

  • Tsuchiya K, Mulcahy RT, Reid LL, Disteche CM, Kavanagh TJ. 1995. Mapping of the glutamate-cysteine ligase catalytic subunit gene (GLCLC) to human chromosome 6p12 and mouse chromosome 9D-E and of the regulatory subunit gene (GLCLR) to human chromosome 1p21-p22 and mouse chromosome 3H1–3. Genomics 30: 630–632.

    PubMed  CAS  Google Scholar 

  • Uhlhaas PJ, Singer W. 2006. Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron 52: 155–168.

    PubMed  CAS  Google Scholar 

  • Umbricht D, Javitt D, Novak G, Bates J, Pollack S, et al. 1998. Effects of clozapine on auditory event-related potentials in schizophrenia. Biol Psychiatry 44: 716–725.

    PubMed  CAS  Google Scholar 

  • Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, et al. 2000. Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: Implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 57: 1139–1147.

    PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, et al. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44–84.

    PubMed  CAS  Google Scholar 

  • Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R. 2006. A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281: 35785–35793.

    PubMed  CAS  Google Scholar 

  • Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. 2000. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57: 237–245.

    PubMed  CAS  Google Scholar 

  • Volk DW, Pierri JN, Fritschy JM, Auh S, Sampson AR, et al. 2002. Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex 12: 1063–1070.

    PubMed  Google Scholar 

  • Weinberger DR. 1987. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669.

    PubMed  CAS  Google Scholar 

  • Whishaw IQ, Pasztor TJ. 2000. Rats alternate on a dry-land but not swimming-pool (Morris task) place task: Implications for spatial processing. Behav Neurosci 114: 442–446.

    PubMed  CAS  Google Scholar 

  • Whittington MA, Faulkner HJ, Doheny HC, Traub RD. 2000. Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol Ther 86: 171–190.

    PubMed  CAS  Google Scholar 

  • Williams HJ, Glaser B, Williams NM, Norton N, Zammit S, et al. 2005. No association between schizophrenia and polymorphisms in COMT in two large samples. Am J Psychiatry 162: 1736–1738.

    PubMed  Google Scholar 

  • Williams NM, et al. 2004. Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry 55: 192–195.

    PubMed  CAS  Google Scholar 

  • Wilson FA, O’Scalaidhe SP, Goldman-Rakic PS. 1994. Functional synergism between putative gamma-aminobutyrate- containing neurons and pyramidal neurons in prefrontal cortex. Proc Natl Acad Sci USA 91: 4009–4013.

    PubMed  CAS  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. 2004. Glutathione metabolism and its implications for health. J Nutr 134: 489–492.

    PubMed  CAS  Google Scholar 

  • Yang Y, Dieter MZ, Chen Y, Shertzer HG, Nebert DW, et al. 2002. Initial characterization of the glutamate-cysteine ligase modifier subunit GCLM(−/−) knockout mouse. J Biol Chem 277: 49446–49452.

    PubMed  CAS  Google Scholar 

  • Yao J, Stanley JA, Reddy RD, Keshavan MS, Pettegrew JW. 2002. Correlations between peripheral polyunsaturated fatty acid content and in vivo membrane phospholipid metabolites. Biol Psychiatry 52: 823–830.

    PubMed  CAS  Google Scholar 

  • Yao JK, Leonard S, Reddy R. 2006. Altered glutathione redox state in schizophrenia. Dis Markers 22: 83–93.

    PubMed  CAS  Google Scholar 

  • Yao JK, Reddy R, McElhinny LG, van Kammen DP. 1998. Effects of haloperidol on antioxidant defense system enzymes in schizophrenia. J Psychiatr Res 32: 385–391.

    PubMed  CAS  Google Scholar 

  • Yao JK, Reddy R, van Kammen DP. 2000. Abnormal age-related changes of plasma antioxidant proteins in schizophrenia. Psychiatry Res 97: 137–151.

    PubMed  CAS  Google Scholar 

  • Yao JK, Reddy RD, van Kammen DP. 1999. Human plasma glutathione peroxidase and symptom severity in schizophrenia. Biol Psychiatry 45: 1512–1515.

    PubMed  CAS  Google Scholar 

  • Yao JK, Reddy RD, van Kammen DP. 2001. Oxidative damage and schizophrenia: An overview of the evidence and its therapeutic implications. CNS Drugs 15: 287–310.

    PubMed  CAS  Google Scholar 

  • Young SN, Ghadirian AM. 1989. Folic acid and psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 13: 841–863.

    PubMed  CAS  Google Scholar 

  • Zangerle L, Cuenod M, Winterhalter KH, Do KQ. 1992. Screening of thiol compounds: Depolarization-induced release of glutathione and cysteine from rat brain slices. J Neurochem 59: 181–189.

    PubMed  CAS  Google Scholar 

  • Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, et al. 2006. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 81: 291–300.

    PubMed  Google Scholar 

  • Zhang XY, Zhou DF, Su JM, Zhang PY. 2001. The effect of extract of ginkgo biloba added to haloperidol on superoxide dismutase in inpatients with chronic schizophrenia. J Clin Psychopharmacol 21: 85–88.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all the patients and controls subjects who participated in the studies. Our thanks also go to the following collaborators who were involved in the project: O. Boulat, V. Castagne, P. Deppen, F. Gheorghita, G. Grima, J. P. Hornung, M. Knyazeva, M. L. Matthey, R. Meuli, M. Murray, M. Preisig, V. Ruiz, M. Saraga, F. Schenk, A. Solida, J. Sandell and M. Tosic. We are grateful to Prof P. Magistretti for his constant support. We also thank the technical collaborators N. Ballanfat, B. Benz, M. Blanc, V. Perroud and S. Reymond. This work has been supported by the Swiss National Foundation, Novartis Research Foundation, the “Loterie Romande,” NARSAD, Foundation Pro Scientia et Arte and the Foundation Alamaya for research on schizophrenia.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Do, K.Q. et al. (2009). Redox Dysregulation in Schizophrenia: Genetic Susceptibility and Pathophysiological Mechanisms. In: Lajtha, A., Javitt, D., Kantrowitz, J. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30410-6_8

Download citation

Publish with us

Policies and ethics