Skip to main content

Neuroendocrinology of Stress

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

The response to stress involves the active release of hormones and other mediators that produce adaptation in the aftermath of acute stress (allostasis) and yet can lead to pathophysiology when the same mediators are not shut off or are dysregulated over weeks and months (allostatic load). The brain is the key organ of stress since it interprets what is potentially threatening and therefore stressful and it determines the behavioral and physiological responses of the individual. Behavioral responses include fighting or fleeing, eating too much of the wrong things, smoking, drinking and losing sleep at night. Behavioral responses may also include health promoting behaviors such as regular moderate exercise. Hence lifestyle and behavior are key contributors or “being stressed out” and hence to allostatic load. The brain also is a target of stress and remodeling of dendrites and formation or down-regulation of synapses is a key aspect. In hippocampus and prefrontal cortex, repeated stress causes dendrites to shrink and spine synapses to decrease in number whereas in basolateral amygdala stress causes increased dendritic branching and synapse density. Mediators of structural remodeling include not only adrenal steroids but endogenous neurotransmitters, neurotrophins, the extracellular protease, tissue plasminogen activator, and cell surface adhesion molecules. Remodeling of neural circuitry under repeated stress leads to impaired memory, increased anxiety and aggression and impaired attention. Changes of this type may occur in depression and anxiety disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADX:

adrenalectomy

EAA:

excitatory amino acids

LTP:

long term potentiation

LTD:

long term depression

PBP:

primed burst potentiation

GRE:

glucocorticoid response element

NMDA:

N-methyl-D-aspartate

HPA:

hypothalamo-pituitary-adrenal

CRF:

corticotrophin releasing factor

AVP:

arginine vasopressin

Acg:

anterior cingulated

PL:

prelimbic

IL:

infralimbic

CE:

central amygdala

B:

basal amygdala

AB:

anterior basal amygdala

References

  • Abe K. 2001. Modulation of hippocampal long-term potentiation by the amygdala: a synaptic mechanism linking emotion and memory. Jpn J Pharmacol 86: 18–22.

    Article  CAS  PubMed  Google Scholar 

  • Aberg MA, Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS. 2000. Peripheral infusion of IGF-1 selectively induces neurogenesis in the adult rat hippocampus. J Neurosci 20: 2896–2903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham WC, Bear MF. 1996. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19: 126–130.

    Article  CAS  PubMed  Google Scholar 

  • Adamec RE, Burton P, Shallow T, Budgell J. 1999. NMDA receptors mediate lasting increases in anxiety-like behavior produced by the stress of predator exposure—implications for anxiety associated with posttraumatic stress disorder. Physiol Behav 65: 723–737.

    Article  CAS  PubMed  Google Scholar 

  • Akana S, Jacobson L, Cascio C, Shinsako J, Dallman M. 1988. Constant corticosterone replacement normalizes basal adrenocorticotropin (ACTH) but permits sustained ACTH hypersecretion after stress in adrenalectomized rats. Endocrinology 122: 1337–1342.

    Article  CAS  PubMed  Google Scholar 

  • Akirav I, Richter-Levin G. 1999. Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat. J Neurosci 19: 10530–10535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfarez DN, Wiegert O, Joels M, Krugers HJ. 2002. Corticosterone and stress reduce synaptic potentiation in mouse hippocampal slices with mild stimulation. Neurosci 115: 1119–1126.

    Article  CAS  Google Scholar 

  • Arendt T, Stieler J, Strijkstra AM, Hut RA, Rudiger J, et al. 2003. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23: 6972–6981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. 2004. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61: 661–666.

    Article  PubMed  Google Scholar 

  • Bartanusz V, Aubry JM, Pagliusi S, Jezova D, Baffi J. 1995. Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience 66: 247–252.

    Article  CAS  PubMed  Google Scholar 

  • Beck SG, List TJ, Choi KC. 1994. Long- and short-term administration of corticosterone alters CA1 hippocampal neuronal properties. Neuroendocrinology 60: 261–272.

    Article  CAS  PubMed  Google Scholar 

  • Bennur S, Chattarji S. 2004. Effects of chronic stress on intrinsic and synaptic plasticity in principal neurons of the basolateral amygdala. Soc for Neurosci Abst 30: 511.2.

    Google Scholar 

  • Bienenstock EL, Cooper LN, Munro PW. 1982. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2: 32–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birnstiel, S. Beck SG. 1995. Modulation of the 5-hydroxy-tryptamine4 receptor-mediated response by short-term and long-term administration of corticosterone in rat CA1 hippocampal pyramidal neurons. J Pharmacol Exp Ther 273: 1132–1138.

    CAS  PubMed  Google Scholar 

  • Bliss TVP, Lomo T. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodnoff SR, Humphreys AG, Lehman JC, Diamond DM, Rose GM, et al. 1995. Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. J Neurosci 15: 61–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, et al. 1995. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry 152: 973–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bremner, JD, Randall P, Vermetten E, Staib L, Bronen RA, et al. 1997. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse–a preliminary report. Biol Psychiatry 41: 23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brindley D, Rolland Y. 1989. Possible connections between stress, diabetes, obesity, hypertension and altered lipoprotein metabolism that may result in atherosclerosis. Clin Sci 77: 453–461.

    Article  CAS  Google Scholar 

  • Burghardt NS, Sullivan GM, McEwen BS, Gorman JM, Le Doux JE. 2004. The selective reuptake inhibitor citalopram increases fear and acute treatment but reduces fear with chronic treatment: a comparison with tianeptine. Biol Psychiatry 55: 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  • Cahill L, Prins B, Weber M, McGaugh JL. 1994. Beta-adrenergic activation and memory for emotional events. Nature 371: 702–704.

    Article  CAS  PubMed  Google Scholar 

  • Carro E, Nunez A, Busiguina S, Aleman I. 2000. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20: 2926–2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad CD, Galea LAM, Kuroda Y, McEwen BS. 1996. Chronic stress impairs rat spatial memory on the Y-maze and this effect is blocked by tianeptine pre-treatment. Behav Neurosci 110: 1321–1334.

    Article  CAS  PubMed  Google Scholar 

  • Conrad CD, Lupien SJ, McEwen BS. 1999a. Support for a bimodal role for type II adrenal steroid receptors in spatial memory. Neurobiol LearnMem 72: 39–46.

    Article  CAS  Google Scholar 

  • Conrad CD, Magarinos AM, LeDoux JE, McEwen BS. 1999b. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 113: 902–913.

    Article  CAS  PubMed  Google Scholar 

  • Convit A, Wolf OT, Tarshish C, Leon MJ. 2003. Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc Natl Acad Sci USA 100: 2019–2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corodimas KP, Le Doux JE, Gold PW, Schulkin J. 1994. Corticosterone potentiation of learned fear. Annals of the New York Acad Sci 746: 392

    Article  CAS  Google Scholar 

  • Craft S, Newcomer JW, Kanne S, Jack S, Cryer P, et al. 1995. Memory improvement following induced hyperinsulinemia in Alzheimer's disease. Neurobiol Aging 17: 123–130.

    Article  Google Scholar 

  • Dallman MF. 2003. Chronic stress and obesity: a new view of ‘comfort food’. Proc Natl Acad Sci USA 100: 11696–11701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis M. 1992. The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15: 353–375.

    Article  CAS  PubMed  Google Scholar 

  • Davis M. 2000. The role of the amygdala in conditioned and unconditioned fear and anxiety. The amygdala: a functional analysis. Anonymous: Oxford University Press; pp. 213–287.

    Google Scholar 

  • Davis M, Rainnie D, Cassell M. 1994. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17: 208.

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Shi C. 1999. The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety? Ann NY Acad Sci 877: 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Dhabhar F, McEwen B. 1999. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA 96: 1059–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond DM, Bennett MC, Fleshner M, Rose GM. 1992. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2: 421–430.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM, Fleshner M, Rose GM. 1994. Psychological stress repeatedly blocks hippocampal primed burst potentiation in behaving rats. Behav Brain Res 62: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM, Park CR, Heman KL, Rose GM. 1999. Exposing rats to a predator impairs spatial working memory in the radial arm water maze. Hippocampus 9: 542–552.

    Article  CAS  PubMed  Google Scholar 

  • Diamond DM, Park CR, Woodson JC. 2004. Stress generates emotional memories and retrograde amnesia by inducing an endogenous form of hippocampal LTP. Hippocampus 14: 281–291.

    Article  PubMed  Google Scholar 

  • Diorio D, Viau V, Meaney MJ. 1993. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13: 3839–3847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drevets WC. 2000. Neuroimaging studies of mood disorders. Biol Psychiatry 48: 813–829.

    Article  CAS  PubMed  Google Scholar 

  • Dunn J, Orr S. 1984. Differential plasma corticosterone responses to hippocampal stimulation. Exp Brain Res 54: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H, Otto T. 1992. The hippocampus - what does it do? Behav Neural Biol 57: 2–36.

    Article  CAS  PubMed  Google Scholar 

  • Evans RM, Arriza, JL. 1989, A molecular framework for the actions of glucocorticoid hormones in the nervous system. Neuron 2: 1105–1112.

    Article  CAS  PubMed  Google Scholar 

  • Frodl T, Meisenzahl E, Zetzsche T, Bottlender R, Born C, et al. 2002. Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry 51: 708–714.

    Article  PubMed  Google Scholar 

  • Frodl T, Meisenzahl EM, Zetzsche T, Born C, Jager M, et al. 2003. Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biol Psychiatry 53: 338–344.

    Article  PubMed  Google Scholar 

  • Funder J, Pearce P, Smith R, Smith A. 1988. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242: 583–585.

    Article  CAS  PubMed  Google Scholar 

  • Herman J, Schafer M, Young E, Thompson R, Douglass J, et al. 1989. Evidence for hippocampal regulation of neuroendocrine neurons of hypothalamo-pituitary-adrenocortical axis. J Neurosci 9: 3072–3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JP, Cullinan, WE. 1997. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20: 78–84.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Patel PD, Akil H, Watson SJ. 1989. Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol Endocrinol 3: 1886–1894.

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Prewitt CMF, Cullinan WE. 1996. Neuronal circuit regulation of the hypothalamo-pituitary-adrenocortical stress axis. Crit RevNeurobiol 10: 371–394.

    CAS  Google Scholar 

  • Hesen W, Joels, M. 1996a. Carbachol responsiveness of rat CA1 hippocampal neurons in vitro: modulation by corticosterone and stress. Stress 1: 63–72.

    Article  Google Scholar 

  • Hesen W, Joels M. 1996b. Modulation of 5HT1A responsiveness in CA1 pyramidal neurons by in vivo activation of corticosteroid receptors. J Neuroendocrinol 8: 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Ikegaya Y, Saito H, Abe K. 1994. Attenuated hippocampal long-term potentiation in basolateral amygdala-lesioned rats. Brain Res 656: 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Ikegaya Y, Saito H, Abe K. 1995. High-frequency stimulation of the basolateral amygdala facilitates the induction of long-term potentiation in the dentate gyrus in vivo. Neurosci Res 22: 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson L, Akana SF, Cascio CS, Shinsako J, Dallman MF. 1988. Circadian Variations in Plasma Corticosterone Permit Normal Termination of Adrenocorticotropin Responses to Stress. Endocrinology 122: 1343–1348.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson L, Sapolsky R. 1991. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr Rev 12: 118–134.

    Article  CAS  PubMed  Google Scholar 

  • Joels M. 1997. Steroid hormones and excitability in the mammalian brain. Front Neuroendocrinol 18: 2–48.

    Article  CAS  PubMed  Google Scholar 

  • Joels M, Bosma A, Hendriksen H, Diegenbach P, Kamphuis W. 1996. Corticosteroid actions on the expression of kainate receptor subunit mRNAs in rat hippocampus. Mol Brain Res 37: 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Joels M, De Kloet ER. 1994. Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Progr Neurobiol 43: 1–36.

    Article  CAS  Google Scholar 

  • Joels M, Vreugdenhil E. 1998. Corticosteroids in the brain. Mol Neurobiol 17: 87–198.

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Williams S, Jaffe D, Gray R. 1992. NMDA-receptor-independent long-term potentiation. Ann Rev Physiol 54: 489–505.

    Article  CAS  Google Scholar 

  • Keller-Wood M, Dallman M. 1984. Corticosteroid inhibition of ACTH secretion. Endocr Rev 5: 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Kerr D, Campbell L. 1992. Hippocampal glucocorticoid receptor activation enhances voltage-dependent ca2+ conductances: relevance to brain aging. Proc Natl Acad Sci USA 89: 8527–8531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Diamond DM. 2002. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3: 453–462.

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Lee HJ, Han J-S, Packard MG. 2001. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J Neurosci 21: 5222–5228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Yoon KS. 1998. Stress: metaplastic effects in the hippocampus. TINS 21: 505–509.

    CAS  PubMed  Google Scholar 

  • Knigge K. 1961. Adrenocortical response to stress in rats with lesions in hippocampus and amygdala. Proc Soc Exp Biol Med 180: 18–20.

    Article  Google Scholar 

  • Kole MHP, Costoli T, Koolhaas JM, Fuchs E. 2004a. Bidirectional shift in the cornu ammons 3 pyramidal dendritic organization following brief stress. Neuroscience 125: 337–347.

    Article  CAS  PubMed  Google Scholar 

  • Kole MHP, Czeh B, Fuchs E. 2004b. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress. Hippocampus 14: 742–751.

    Article  PubMed  Google Scholar 

  • Kole MHP, Swan L, Fuchs E. 2002. The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural-associational synapse in chronically stressed rats. Eur J Neurosci 16: 807–816.

    Article  PubMed  Google Scholar 

  • Korte M, De Boer SF. 2003. A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol 463: 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA. 2002. Effects of dendritic morphology on CA3 pyramidal cell electrophysiology. Brain Res 941: 11–28.

    Article  CAS  PubMed  Google Scholar 

  • Le Doux JE. 1994. The amygdala: contributions to fear and stress. Sem Neurosci 6: 231–237.

    Article  Google Scholar 

  • Leibowitz SF, Hoebel BG. 1997. Behavioral neuroscience of obesity. Handbook of obesity. Bray GA, Bouchard C, James WPT, editors. New York: Marcel Dekker; pp. 313–358.

    Google Scholar 

  • Liang KC, Hon W, Davis M. 1994. Pre-and posttraining infusion of N-methyl-D-aspartate receptor antagonists into the amygdala impair memory in an inhibitory avoidance task. Behav Neurosci 108: 241–253.

    Article  CAS  PubMed  Google Scholar 

  • Luine V, Villegas M, Martinez C, McEwen BS. 1994. Repeated stress causes reversible impairments of spatial memory performance. Brain Res 639: 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Lupien SJ, McEwen BS. 1997. The acute effects of corticosteroids on cognition: integration of animal and human model studies. Brain Res Rev 24: 1–27.

    Article  CAS  PubMed  Google Scholar 

  • MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, et al. 2003. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 100: 1387–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magarinos AM, McEwen BS. 1995a. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69: 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Magarinos AM, McEwen BS. 1995b. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69: 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Mainen Z, Sejnowski T. 1996. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382: 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Makara GB, Haller J. 2001. Non-genomic effects of glucocorticoids in the neural system. Evidence, mechanisms and implications. Prog Neurobiol 65: 367–390.

    Article  CAS  PubMed  Google Scholar 

  • Manuck SB, Kaplan JR, Adams MR, Clarkson TB. 1995. Studies of psychosocial influences on coronary artery atherosclerosis in cynomolgus monkeys. Health Psychol 7: 113–124.

    Article  Google Scholar 

  • Manuck SB, Kaplan JR, Muldoon MF, Adams MR, Clarkson TB. 1991. The behavioral exacerbation of atherosclerosis and its inhibition by propranolol. Stress, coping and disease. McCabe PM, Schneiderman N, Field TM, Skyler JS, editors. Hove and London: Lawrence Erlbaum Associates; pp. 51–72.

    Google Scholar 

  • Martin SJ, Grimwood PD, Morris RGM. 2000. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23: 649–711.

    Article  CAS  PubMed  Google Scholar 

  • Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, et al. 2001. A transgenic model of visceral obesity and the metabolic syndrome. Science 294: 2166–2170.

    Article  CAS  PubMed  Google Scholar 

  • Matys T, Pawlak R, Matys E, Pavlides C, McEwen BS, et al. 2004. Tissue plasminogen activator promotes the effects of corticotropin releasing factor on the amygdala and anxiety-like behavior. Proc Natl Acad Sci USA 101: 16345–16350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald AJ. 1982. Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J Comp Neurol 212: 293–312.

    Article  CAS  PubMed  Google Scholar 

  • McDonald AJ. 1992. Cell types and intrinsic connections of the amygdala. The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Aggleton JP, editor. Wiley-Liss Inc NY; pp. 67–96.

    Google Scholar 

  • McEwen BS. 1977. Adrenal steroid feedback on neuroendocrine tissues. Ann NY Acad Sci 297: 568–579.

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS. 1997. Possible mechanisms for atrophy of the human hippocampus. Mol Psychiatry 2: 255–262.

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS. 1998. Protective and damaging effects of stress mediators. New England J Med 338: 171–179.

    Article  CAS  Google Scholar 

  • McEwen BS. 1999. Stress and hippocampal plasticity. Annu Rev Neurosci 22: 105–122.

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Chattarji S. 2004. Molecular mechanisms of neu-roplasticity and pharmacological implications: the example of tianeptine. Eur Neuropsychopharmacol 14: 5497-5502.

    Google Scholar 

  • McEwen BS, Reagan LP. 2004. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 490: 13–24.

    Article  CAS  PubMed  Google Scholar 

  • McGaugh JL, Roozendaal B. 2002. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12: 205–210.

    Article  CAS  PubMed  Google Scholar 

  • Miner JN, Yamamoto KR. 1991. Regulatory crosstalk at composite response elements. Trends Biochem Sci 16: 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan R, Narayan A, Chattarji S. 2004. A probabilistic framework for region-specific remodeling of dendrites in three-dimensional neuronal reconstructions. Neural Comput 17: 1–22.

    Google Scholar 

  • O'Keefe J, Nadel L. 1978. The hippocampus as a cognitive map. Oxford: Oxford University Press.

    Google Scholar 

  • Oitzl MS, Reichardt HM, Joels M, de Kloet ER. 2001. Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proc Natl Acad Sci USA 98: 12790–12795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orchinik M, Carroll SS, Li Y-H, McEwen BS, Weiland NG. 2001. Heterogeneity of hippocampal GABAA receptors: regulation by corticosterone. J Neurosci 21: 330–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlides C, Kimura A, Magarinos AM, McEwen BS. 1994. Type I adrenal steroid receptors prolong hippocampal long-term potentiation. Neuroreport 5: 2673–2677.

    Article  CAS  PubMed  Google Scholar 

  • Pavlides C, Kimura A, Magarinos AM, McEwen BS. 1995. Hippocampal homosynaptic long-term depression/depotentiation induced by adrenal steroids. Neuroscience 68: 379–385.

    Article  CAS  PubMed  Google Scholar 

  • Pavlides C, McEwen BS. 1999. Effects of mineralocorticoid and glucocorticoid receptors on long-term potentiation in the CA3 hippocampal field. Brain Res 851: 204–214.

    Article  CAS  PubMed  Google Scholar 

  • Pavlides C, Nivon LG, McEwen BS. 2002. Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 12: 245–257.

    Article  PubMed  Google Scholar 

  • Pavlides C, Ogawa S, Kimura A, McEwen B. 1996. Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Res 738: 229–235.

    Article  CAS  PubMed  Google Scholar 

  • Pavlides C, Watanabe Y, Magarinos AM, McEwen BS. 1995. Opposing role of adrenal steroid Type I and Type II receptors in hippocampal long-term potentiation. Neuroscience 68: 387–394.

    Article  CAS  PubMed  Google Scholar 

  • Pavlides C, Watanabe Y, McEwen BS. 1993. Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus 3: 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S. 2003. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nature Neurosci 6: 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF. 2004. Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145: 3754–3762.

    Article  CAS  PubMed  Google Scholar 

  • Petrovich GD, Canteras NS, Swanson LW. 2001. Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Rev 38: 247–289.

    Article  CAS  PubMed  Google Scholar 

  • Phillips RG, Le Doux JE. 1992. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106: 274–285.

    Article  CAS  PubMed  Google Scholar 

  • Pitkanen A, Amaral DG. 1994. The distribution of GABAergic cells, fibers, and terminals in the monkey amygdaloid complex: an immunohistochemical and in situ hybridization study. J Neurosci 14: 2200–2224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A. 2000. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. Ann NY Acad Sci 911: 369–391.

    Article  CAS  PubMed  Google Scholar 

  • Pompei P, Riftina F, McEwen BS. 1995. Effect of adrenal steroids on preproneurokinin-A gene expression in discrete regions of the rat brain. Mol Brain Res 33: 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Popov VI, Bocharova LS. 1992. Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 48: 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Popov VI, Bocharova LS, Bragin AG. 1992. Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 48: 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Pugh CR, Fleshner M, Rudy JW. 1997a. Type II glucocorticoid receptor antagonists impair contextual but not auditory-cue fear conditioning in juvenile rats. Neurobiol Learn Mem 67: 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Pugh CR, Tremblay D, Fleshner M, Rudy JW. 1997b. A selective role for corticosterone in contextual-fear conditioning. Behav Neurosci 111: 503–511.

    Article  CAS  PubMed  Google Scholar 

  • Radley JJ, Rocher AB, Miller M, Janssen WGM, Liston C, Hof PR, et al. 2006. Chronic behavioral stress induces apical dendritic spine loss in pyramidal neurons of the rat medial prefrontal cortex. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16: 313-320.

    Google Scholar 

  • Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, et al. 2004. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Rainnie DG, Bergeron R, Sajdyk TJ, Patil M, Gehlert DR, Shekhar A. 2004. Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J Neurosci 24: 3471–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichardt HM, Schutz G. 1998. Glucocorticoid signalling—multiple variations of a common theme. Mol Cell Endocrinol 146: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Roozendaal B. 2000. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology 25: 213–238.

    Article  CAS  PubMed  Google Scholar 

  • Sandeep TC, Yau JLW, MacLullich AMJ, Noble J, Deary IJ, et al. 2004. 11β-Hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proc Natl Acad Sci USA 101: 6734–6739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini E, Ge H, Ren K, Pena de Ortiz S, Quirk GJ. 2004. Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 24: 5704–5710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapolsky R. 1992. Stress, the aging brain and the mechanisms of neuron death. Cambridge: MIT Press; pp. 1–423.

    Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS. 1986. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7: 284–301.

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM, Zola-Morgan S, Squire LR. 1991. Inhibition of glucocorticoid secretion by the hippocampal formation in the primate. J Neurosci 11: 3695–3704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seckl JR, Walker BR. 2001. Minireview: 11β -Hydroxysteroid dehydrogenase type 1—a tissue-specific amplifier of glucocorticoid action. Endocrinology 142: 1371–1376.

    Article  CAS  PubMed  Google Scholar 

  • Sheline YI, Sanghavi M, Mintun MA, Gado MH. 1999. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 19: 5034–5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheline YI, Wang PW, Gado MH, Csernansky JC, Vannier MW. 1996. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93: 3908–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shors TJ, Mathew PR. 1998. NMDA receptor antagonism in the lateral–basolateral but not central nucleus of the amygdala prevents the induction of facilitated learning in response to stress. Learn Mem 5: 220–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shors TJ, Weiss C, Thompson RF. 1992. Stress-induced facilitation of classical conditioning. Science 257: 537–539.

    Article  CAS  PubMed  Google Scholar 

  • Sousa N, Lukoyanov NV, Madeira MD, Almeida OFX, Paula- Barbosa MM. 2000. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97: 253–266.

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Zola-Morgan S. 1991. The medial temporal lob memory system. Science 253: 1380–1386.

    Article  CAS  PubMed  Google Scholar 

  • Starkman MN, Gebarski SS, Berent S, Schteingart DE. 1992. Hippocampal formation volume, memory dysfunction, and cortisol levels in partiens with Cushing's syndrome. Biol Psychiatry 32: 756–765.

    Article  CAS  PubMed  Google Scholar 

  • Starkman MN, Giordani B, Gebarski SS, Schteingart DE. 2003. Improvement in learning associated with increase in hippocampal formation volume. Biol Psychiat 53: 233–238.

    Article  PubMed  Google Scholar 

  • Starkman MN, Giordani B, Gebrski SS, Berent S, Schork MA, et al. 1999. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's disease. Biol Psychiat 46: 1595–1602.

    Article  CAS  PubMed  Google Scholar 

  • Sterling P, Eyer J. 1988. Allostasis: a new paradigm to explain arousal pathology. Handbook of life stress, cognition and health. Fisher S, Reason J, editors. New York: John Wiley & Sons; pp. 629–649.

    Google Scholar 

  • Stutzmann GE, McEwen BS, Le Doux JE. 1998. Serotonin modulation of sensory inputs to the lateral amygdala: dependency on corticosterone. J Neuroscience 18: 9529–9538.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan RM, Gratton A. 1999. Lateralized effects of medial prefrontal cortex lesions on neuroendocrine and autonomic stress responses in rats. J Neurosci 19: 2834–2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapp T, Rupprecht R, Castren M, Reul JMHM, Holsboer F. 1994. Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron 13: 1457–1462.

    Article  CAS  PubMed  Google Scholar 

  • van Ooyen A, Duijnhouwer J, Remme MW, van Pelt J. 2002. The effect of dendritic topology on ring patterns in model neurons. Network: Computation in Neural Systems 13: 311–325.

    Article  Google Scholar 

  • van Steensel B. 1995. Steroid receptors and nuclear structure. PhD Thesis. Amsterdam: University of Amsterdam; pp. 1–94.

    Google Scholar 

  • Vetter M. 2001. A turn of the helix: preventing the glial fate. Neuron 29: 559–562.

    Article  CAS  PubMed  Google Scholar 

  • Vyas A, Bernal S, Chattarji S. 2003a. Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 965: 290–294.

    Article  CAS  PubMed  Google Scholar 

  • Vyas A, Chattarji S. 2004. Modulation of different states of anxiety-like behavior by chronic stress. Behav Neurosci 118: 1450-1454.

    Google Scholar 

  • Vyas A, Mitra R, Chattarji S. 2003b. Enhanced anxiety and hypertrophy in basolateral amygdala neurons following chronic stress in rats. Ann NY Acad Sci 985: 554–555.

    Article  Google Scholar 

  • Vyas A, Mitra R, Rao BSS, Chattarji S. 2002. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22: 6810–6818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyas A, Pillai AG, Chattarji S. 2004. Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128: 667–673.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Gould E, McEwen BS. 1992. Stress induces atrophy of apical dendrites of hippocampus CA3 pyramidal neurons. Brain Res 588: 341–344.

    Article  CAS  PubMed  Google Scholar 

  • Weiland NG, Orchinik M, McEwen BS. 1995. Corticosterone regulates mRNA levels of specific subunits of the NMDA receptor in the hippocampus but not in cortex of rats. Abstracts, Soc Neurosci 21: #207.12-pp. 502.

    Google Scholar 

  • Wellman CL. 2001. Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 49: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Wellman CL. 2004. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60: 236–248.

    Article  PubMed  Google Scholar 

  • Yau JLW, Noble J, Kenyon CJ, Hibberd C, Kotelevtsev Y, et al. 2001. Lack of tissue glucocorticoid reactivation in 11β-hydroxysteroid dehydrogenase type 1 knockout mice ameliorates age-related learning impairments. Proc Natl Acad Sci USA 98: 4716–4721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research support has come from the National Institute of Mental Health Grants MH 41256 and MH58911. S.C. is supported by an International Senior Research Fellowship from The Wellcome Trust.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

McEwen, B.S., Chattarji, S. (2007). Neuroendocrinology of Stress. In: Lajtha, A., Blaustein, J.D. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30405-2_14

Download citation

Publish with us

Policies and ethics