Skip to main content

Functional and Pharmacological Aspects of GABA Transporters

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Termination of GABAergic neurotransmission is facilitated via high-affinity GABA transporters (GATs), which use the sodium and chloride gradients to drive the active transport of GABA into both the pre- and post-synaptic neurons and neighboring astroglial cells. The GATs are members of the Solute Carrier 6 (SLC6) transporter family.

Early pharmacological studies revealed a difference between the uptake specificity between neurons and astrocytes. Moreover, glial transport is preferably inhibited since exclusive inhibition of neuronal GABA transports can lead to seizures in-vivo. Twenty-eight years after the discovery of GABA transporters the first GABA transporter designated GAT1 was cloned. Today, five GABA transporters are known, one of them being the vesicular GABA transporter and the other four GAT1, GAT2, GAT3, and GAT4 are associated with the plasma membrane. The GATs have been extensively characterized pharmacologically. The main emphasis has been put on GAT1 which is the most active among the four GATs. Moreover, a large number of studies have been focused on identifying inhibitors which selectively may inhibit astroglial GABA transport. This is related to the proposal that such inhibitors may be effective anticonvulsants.

Subcellular localization studies have shown that the GABA transporters are unevenly distributed within the synapses, GAT1 and GAT4 are primarily located on neurons and astrocytes, respectively and GAT2 and GAT3 are less widely distributed and more diverse. The GAT proteins are composed of 12 transmembrane domains (TMD) and display a high level of homology in their amino acid sequence. Functional analysis has revealed that TMD1, TMD3, Extracellular loop (EL) 2, and EL4 are involved in the binding pocket of GAT1, findings which are confirmed in the bacterial leucine transporter LeuTAa a transporter which shares 20-25 % sequence homology to the SLC transporter family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACHC:

cis-3-aminocyclohexanecarboxylic acid

BBB:

Blood-Brain barrier

BGT:

Betaine-GABA transporter

CNS:

Central nervous system

DABA:

Diaminobutyric acid

DMCM:

Methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate

EL:

Extracellular Loop

GABA:

γ-aminobutyric acid

GABA-T:

GABA aminotransferase

GAD:

Glutamate decarboxylase

GAT:

GABA transporter

HEK:

Human Embryonic Kidney

IL:

Intracellular Loop

LeuTAa :

Aquifix aeolicus Leucine transporter

MDCK:

Madin-Darby canine kidney

PKC:

Protein Kinase C

PLP:

Pyridoxal 5′-phosphate

SSADH:

Succinic semialdehyde dehydrogenase

TCA:

Tricarboxylic acid cycle

TMD:

Transmembrane domain

VGAT:

vesicular GABA transporter

References

  • Ahn J, Mundigl O, Muth TR, Rudnick G, Caplan MJ. 1996. Polarized expression of GABA transporters in Madin-Darby canine kidney cells and cultured hippocampal neurons. J Biol Chem 271: 6917–6924.

    CAS  PubMed  Google Scholar 

  • Ali FE, Bondinell WE, Dandridge PA, Frazee JS, Garvey E, et al. 1985. Orally active and potent inhibitors of gamma-aminobutyric acid uptake. J Med Chem 28: 653–660.

    CAS  PubMed  Google Scholar 

  • Andersen KE, Braestrup C, Grønwald FC, Jørgensen AS, Nielsen EB, et al. 1993. The synthesis of novel GABA uptake inhibitors. 1. Elucidation of the structure-activity studies leading to the choice of (R)-1-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic acid (tiagabine) as an anticonvulsant drug candidate. J Med Chem 36: 1716–1725.

    CAS  PubMed  Google Scholar 

  • Andersen KE, Begtrup M, Chorghade MS, Lee EC, Lau J, et al. 1994. The synthesis of novel GABA uptake inhibitors. 2. Synthesis of 5-hydroxytiagabine, a human metabolite of the GABA reuptake inhibitor Tiagabine. Tetrahedron 50: 8699–8710.

    CAS  Google Scholar 

  • Andersen KE, Sørensen JL, Huusfeldt PO, Knutsen LJ, Lau J, et al. 1999. Synthesis of novel GABA uptake inhibitors. 4. Bioisosteric transformation and successive optimization of known GABA uptake inhibitors leading to a series of potent anticonvulsant drug candidates. J Med Chem 42: 4281–4291.

    CAS  PubMed  Google Scholar 

  • Andersen KE, Lau J, Lundt BF, Petersen H, Huusfeldt PO, et al. 2001a. Synthesis of novel GABA uptake inhibitors. Part 6: Preparation and evaluation of N-Omega asymmetrically substituted nipecotic acid derivatives. Bioorg Med Chem 9: 2773–2785.

    CAS  Google Scholar 

  • Andersen KE, Sørensen JL, Lau J, Lundt BF, Petersen H, et al. 2001b. Synthesis of novel gamma-aminobutyric acid (GABA) uptake inhibitors. 5.(1) Preparation and structure-activity studies of tricyclic analogues of known GABA uptake inhibitors. J Med Chem 44: 2152–2163.

    CAS  Google Scholar 

  • Awapara J, Landua AJ, Fuerst R, Seale B. 1950. Free gamma-aminobutyric acid in brain. J Biol Chem 187: 35–39.

    CAS  PubMed  Google Scholar 

  • Balazs R, Machiyama Y, Hammond BJ, Julian T, Richter D. 1970. The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro. Biochem J 116: 445–461.

    CAS  PubMed  Google Scholar 

  • Beckman ML, Bernstein EM, Quick MW. 1999. Multiple G protein-coupled receptors initiate protein kinase C redistribution of GABA transporters in hippocampal neurons. Protein kinase C regulates the interaction between a GABA transporter and syntaxin 1A. J Neurosci 19: 1–6.

    Google Scholar 

  • Beleboni RO, Carolino RO, Pizzo AB, Castellan-Baldan L, Coutinho-Netto J, et al. 2004. Pharmacological and biochemical aspects of GABAergic neurotransmission: Pathological and neuropsychobiological relationships. Cell Mol Neurobiol 24: 707–728.

    CAS  PubMed  Google Scholar 

  • Bennett ER, Kanner BI. 1997. The membrane topology of GAT-1, a (Na+ + Cl)-coupled gamma-aminobutyric acid transporter from rat brain. J Biol Chem 272: 1203–1210.

    CAS  PubMed  Google Scholar 

  • Bernstein EM, Quick MW. 1999. Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J Biol Chem 274: 889–895.

    CAS  PubMed  Google Scholar 

  • Bismuth Y, Kavanaugh MP, Kanner BI. 1997. Tyrosine 140 of the gamma-aminobutyric acid transporter GAT-1 plays a critical role in neurotransmitter recognition. J Biol Chem 272: 16096–16102.

    CAS  PubMed  Google Scholar 

  • Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, et al. 1999. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur J Pharmacol 375: 367–374.

    CAS  PubMed  Google Scholar 

  • Borden LA. 1996. GABA transporter heterogeneity: Pharmacology and cellular localization. Neurochem Int 29: 335–356.

    CAS  PubMed  Google Scholar 

  • Borden LA, Smith KE, Hartig PR, Branchek TA, Weinshank RL. 1992. Molecular heterogeneity of the gamma-aminobutyric acid (GABA) transport system. Cloning of two novel high affinity GABA transporters from rat brain. J Biol Chem 267: 21098–21104.

    CAS  PubMed  Google Scholar 

  • Borden LA, Dhar TG, Smith KE, Branchek TA, Gluchowski C, et al. 1994. Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Receptors Channels 2: 207–213.

    CAS  PubMed  Google Scholar 

  • Borden LA, Smith KE, Gustafson EL, Branchek TA, Weinshank RL. 1995. Cloning and expression of a betaine/GABA transporter from human brain. J Neurochem 64: 977–984.

    CAS  PubMed  Google Scholar 

  • Braestrup C, Nielsen EB, Sonnewald U, Knutsen LJ, Andersen KE, et al. 1990. (R)-N-[4,4-bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid binds with high affinity to the brain gamma-aminobutyric acid uptake carrier. J Neurochem 54: 639–647.

    CAS  PubMed  Google Scholar 

  • Clark JA. 1997. Analysis of the transmembrane topology and membrane assembly of the GAT-1 gamma-aminobutyric acid transporter. J Biol Chem 272: 14695–14704.

    CAS  PubMed  Google Scholar 

  • Clausen RP, Moltzen EK, Perregaard J, Lenz SM, Sanchez C, et al. 2005. Selective inhibitors of GABA uptake: Synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorg Med Chem 13: 895–908.

    CAS  PubMed  Google Scholar 

  • Conti F, Melone M, De Biasi S, Minelli A, Brecha NC, et al. 1998. Neuronal and glial localization of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in human cerebral cortex: With a note on its distribution in monkey cortex. J Comp Neurol 396: 51–63.

    CAS  PubMed  Google Scholar 

  • Conti F, Zuccarello LV, Barbaresi P, Minelli A, Brecha NC, et al. 1999. Neuronal, glial, and epithelial localization of gamma-aminobutyric acid transporter 2, a high-affinity gamma-aminobutyric acid plasma membrane transporter, in the cerebral cortex and neighboring structures. J Comp Neurol 409: 482–494.

    CAS  PubMed  Google Scholar 

  • Conti F, Minelli A, Melone M. 2004. GABA transporters in the mammalian cerebral cortex: Localization, development and pathological implications. Brain Res Brain Res Rev 45: 196–212.

    CAS  PubMed  Google Scholar 

  • Croucher MJ, Meldrum BS, Krogsgaard-Larsen P. 1983. Anticonvulsant activity of GABA uptake inhibitors and their prodrugs following central or systemic administration. Eur J Pharmacol 89: 217–228.

    CAS  PubMed  Google Scholar 

  • Curtis DR, Johnston GA. 1974. Amino acid transmitters in the mammalian central nervous system. Ergeb Physiol 69: 97–188.

    CAS  PubMed  Google Scholar 

  • Dalby NO. 2003. Inhibition of gamma-aminobutyric acid uptake: Anatomy, physiology and effects against epileptic seizures. Eur J Pharmacol 479: 127–137.

    CAS  PubMed  Google Scholar 

  • Dalby NO, Mody I. 2001. The process of epileptogenesis: A pathophysiological approach. Curr Opin Neurol 14: 187–192.

    CAS  PubMed  Google Scholar 

  • Dalby NO, Thomsen C, Fink-Jensen A, Lundbeck J, Sokilde B, et al. 1997. Anticonvulsant properties of two GABA uptake inhibitors NNC 05–2045 and NNC 05–2090, not acting preferentially on GAT-1. Epilepsy Res 28: 51–61.

    CAS  PubMed  Google Scholar 

  • De Deyn PP, Marescau B, Mac Donald RL. 1990. Epilepsy and the GABA-hypothesis a brief review and some examples. Acta Neurol Belg 90: 65–81.

    CAS  PubMed  Google Scholar 

  • Deken SL, Wang D, Quick MW. 2003. Plasma membrane GABA transporters reside on distinct vesicles and undergo rapid regulated recycling. J Neurosci 23: 1563–1568.

    CAS  PubMed  Google Scholar 

  • Dhar TG, Borden LA, Tyagarajan S, Smith KE, Branchek TA, et al. 1994. Design, synthesis and evaluation of substituted triarylnipecotic acid derivatives as GABA uptake inhibitors: Identification of a ligand with moderate affinity and selectivity for the cloned human GABA transporter GAT-3. J Med Chem 37: 2334–2342.

    CAS  PubMed  Google Scholar 

  • During MJ, Ryder KM, Spencer DD. 1995. Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 376: 174–177.

    CAS  PubMed  Google Scholar 

  • Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, et al. 1995. Localization of messenger RNAs encoding three GABA transporters in rat brain: An in situ hybridization study. Brain Res Mol Brain Res 33: 7–21.

    CAS  PubMed  Google Scholar 

  • Elliott KA, van Gelder NM. 1958. Occlusion and metabolism of gamma-aminobutyric acid by brain tissue. J Neurochem 3: 28–40.

    CAS  PubMed  Google Scholar 

  • Erlander MG, Tobin AJ. 1991. The structural and functional heterogeneity of glutamic acid decarboxylase: A review. Neurochem Res 16: 215–226.

    CAS  PubMed  Google Scholar 

  • Falch E, Perregaard J, Frølund B, Søkilde B, Buur A, et al. 1999. Selective inhibitors of glial GABA uptake: Synthesis, absolute stereochemistry, and pharmacology of the enantiomers of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and analogues. J Med Chem 42: 5402–5414.

    CAS  PubMed  Google Scholar 

  • Feldman RS, Meyer JS, Quenzer LF. 1997. Amino acid neurotransmitters and histamine. Principles of Neuropsychopharmacology. Farley P, editor. Sunderland: Sinauer Associates; pp. 417–445.

    Google Scholar 

  • Gether U, Andersen PH, Larsson OH, Schousboe A. 2006. Neuro transmitter transporters: Molecular function of important drug targets. Trends pharmacol Sci 27: 375–383.

    PubMed  Google Scholar 

  • Gonsalves SF, Twitchell B, Harbaugh RE, Krogsgaard-Larsen P, Schousboe A. 1989. Anticonvulsant activity of intracerebroventricularly administered glial GABA uptake inhibitors and other GABAmimetics in chemical seizure models. Epilepsy Res 4: 34–41.

    CAS  PubMed  Google Scholar 

  • Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, et al. 1990. Cloning and expression of a rat brain GABA transporter. Science 249: 1303–1306.

    CAS  PubMed  Google Scholar 

  • Hösli E, Hösli L. 1976. Autoradiographic studies on the uptake of 3H-noradrenaline and 3H-GABA in cultured rat cerebellum. Exp Brain Res 26: 319–324.

    PubMed  Google Scholar 

  • Hösli L, Hösli E. 1978. Action and uptake of neurotransmitters in CNS tissue culture. Rev Physiol Biochem Pharmacol 81: 135–188.

    PubMed  Google Scholar 

  • Iversen LL, Kelly JS. 1975. Uptake and metabolism of gamma-aminobutyric acid by neurones and glial cells. Biochem Pharmacol 24: 933–938.

    CAS  PubMed  Google Scholar 

  • Iversen LL, Neal MJ. 1968. The uptake of [3H]GABA by slices of rat cerebral cortex. J Neurochem 15: 1141–1149.

    CAS  PubMed  Google Scholar 

  • Kanner BI. 1994. Sodium-coupled neurotransmitter transport: Structure, function and regulation. J Exp Biol 196: 237–249.

    CAS  PubMed  Google Scholar 

  • Kaufman DL, Houser CR, Tobin AJ. 1991. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56: 720–723.

    CAS  PubMed  Google Scholar 

  • Keynan S, Kanner BI. 1988. Gamma-aminobutyric acid transport in reconstituted preparations from rat brain: Coupled sodium and chloride fluxes. Biochemistry 27: 12–17.

    CAS  PubMed  Google Scholar 

  • Kleinberger-Doron N, Kanner BI. 1994. Identification of tryptophan residues critical for the function and targeting of the gamma-aminobutyric acid transporter (subtype A). J Biol Chem 269: 3063–3067.

    CAS  PubMed  Google Scholar 

  • Knutsen LJ, Andersen KE, Lau J, Lundt BF, Henry RF, et al. 1999. Synthesis of novel GABA uptake inhibitors. 3. Diaryloxime and diarylvinyl ether derivatives of nipecotic acid and guvacine as anticonvulsant agents. J Med Chem 42: 3447–3462.

    CAS  PubMed  Google Scholar 

  • Krnjevic K, Schwartz S. 1967. The action of gamma-aminobutyric acid on cortical neurones. Exp Brain Res 3: 320–336.

    CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P. 1981. Gamma-aminobutyric acid agonists, antagonists, and uptake inhibitors. Design and therapeutic aspects. J Med Chem 24: 1377–1383.

    CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Johnston GA. 1975. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J Neurochem 25: 797–802.

    CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Johnston GA, Curtis DR, Game CJ, McCulloch RM. 1975. Structure and biological activity of a series of conformationally restricted analogues of GABA. J Neurochem 25: 803–809.

    CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Frølund B, Frydenvang K. 2000. GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects. Curr Pharm Des 6: 1193–1209.

    CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Frølund B, Liljefors T, Ebert B. 2004. GABA(A) agonists and partial agonists: THIP (Gaboxadol) as a non-opioid analgesic and a novel type of hypnotic. Biochem Pharmacol 68: 1573–1580.

    CAS  PubMed  Google Scholar 

  • Larsson OM, Thorbek P, Krogsgaard-Larsen P, Schousboe A. 1981. Effect of homo-beta-proline and other heterocyclic GABA analogues on GABA uptake in neurons and astroglial cells and on GABA receptor binding. J Neurochem 37: 1509–1516.

    CAS  PubMed  Google Scholar 

  • LarssonOM, Johnston GA, SchousboeA. 1983. Differences in uptake kinetics of cis-3-aminocyclohexane carboxylic acid into neurons and astrocytes in primary cultures. Brain Res 260: 279–285.

    CAS  PubMed  Google Scholar 

  • LarssonOM, Griffiths R, Allen IC, Schousboe A. 1986. Mutual inhibition kinetic analysis of gamma-aminobutyric acid, taurine, and beta-alanine high-affinity transport into neurons and astrocytes: Evidence for similarity between the taurine and beta-alanine carriers in both cell types. J Neurochem 47: 426–432.

    CAS  PubMed  Google Scholar 

  • Larsson OM, Falch E, Krogsgaard-Larsen P, Schousboe A. 1988. Kinetic characterization of inhibition of gamma-aminobutyric acid uptake into cultured neurons and astrocytes by 4,4-diphenyl-3-butenyl derivatives of nipecotic acid and guvacine. J Neurochem 50: 818–823.

    CAS  PubMed  Google Scholar 

  • Law RM, Stafford A, Quick MW. 2000. Functional regulation of gamma-aminobutyric acid transporters by direct tyrosine phosphorylation. J Biol Chem 275: 23986–23991.

    CAS  PubMed  Google Scholar 

  • Liu QR, Mandiyan S, Nelson H, Nelson N. 1992. A family of genes encoding neurotransmitter transporters. Proc Natl Acad Sci USA 89: 6639–6643.

    CAS  PubMed  Google Scholar 

  • Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N. 1993. Molecular characterization of four pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain [corrected]. J Biol Chem 268: 2106–2112.

    CAS  PubMed  Google Scholar 

  • Lloyd KG, Morselli PL. 1987. Psychopharmacology of GABAergic drugs. Psychopharmacology: The Third Generation of Progress. Meltzer HY, editor. New York: Raven Press; pp. 183–195.

    Google Scholar 

  • Madsen K, Larsson OM, Schousboe A. 2006. Regulation of excitation by GABA neurotransmission: Focus on metabolism and transport. MG, Inhibitory Regulation of Excitatory Neurotransmission. Darlison editor. London: Springer-Verlag, in press.

    Google Scholar 

  • Melamed N, Kanner BI. 2004. Transmembrane domains I and II of the gamma-aminobutyric acid transporter GAT-4 contain molecular determinants of substrate specificity. Mol Pharmacol 65: 1452–1461.

    CAS  PubMed  Google Scholar 

  • Miller JW, Kleven DT, DominBA, Fremeau RT Jr. 2002. Cloned sodium- (and chloride-) dependent high-affinity transporters for GABA, glycine, proline, betaine, taurine, and creatine. Neurotransmitter Transporters: Structure, Function, and Regulation. Reith MEA, editor. Totowa, New Jersey: Humana Press; pp. 101–150.

    Google Scholar 

  • Minelli A, De Biasi S, Brecha NC, Zuccarello LV, Conti F. 1996. GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16: 6255–6264.

    CAS  PubMed  Google Scholar 

  • Mody I. 2001. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res 26: 907–913.

    CAS  PubMed  Google Scholar 

  • Nelson H, Mandiyan S, Nelson N. 1990. Cloning of the human brain GABA transporter. FEBS Lett 269: 181–184.

    CAS  PubMed  Google Scholar 

  • Nicholls DG. 1989. Release of glutamate, aspartate, and gamma-aminobutyric acid from isolated nerve terminals. J Neurochem 52: 331–341.

    CAS  PubMed  Google Scholar 

  • Nissen J, Schousboe A, Halkier T, Schousboe I. 1992. Purification and characterization of an astrocyte GABA-carrier inducing protein (GABA-CIP) released from cerebellar granule cells in culture. Glia 6: 236–243.

    CAS  PubMed  Google Scholar 

  • Olsen M, Sarup A, Larsson OM, Schousboe A. 2005. Effect of hyperosmotic conditions on the expression of the betaine-GABA-transporter (BGT-1) in cultured mouse astrocytes. Neurochem Res 30: 855–865.

    CAS  PubMed  Google Scholar 

  • Pantanowitz S, Bendahan A, Kanner BI. 1993. Only one of the charged amino acids located in the transmembrane alpha-helices of the gamma-aminobutyric acid transporter (subtype A) is essential for its activity. J Biol Chem 268: 3222–3225.

    CAS  PubMed  Google Scholar 

  • Pavia MR, Lobbestael SJ, Nugiel D, Mayhugh DR, Gregor VE, et al. 1992. Structure-activity studies on benzhydrol-containing nipecotic acid and guvacine derivatives as potent, orally-active inhibitors of GABA uptake. J Med Chem 35: 4238–4248.

    CAS  PubMed  Google Scholar 

  • Pietrini G, Suh YJ, Edelmann L, Rudnick G, Caplan MJ. 1994. The axonal gamma-aminobutyric acid transporter GAT-1 is sorted to the apical membranes of polarized epithelial cells. J Biol Chem 269: 4668–4674.

    CAS  PubMed  Google Scholar 

  • Radian R, Bendahan A, Kanner BI. 1986. Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem 261: 15437–15441.

    CAS  PubMed  Google Scholar 

  • Radian R, Ottersen OP, Storm-Mathisen J, Castel M, Kanner BI. 1990. Immunocytochemical localization of the GABA transporter in rat brain. J Neurosci 10: 1319–1330.

    CAS  PubMed  Google Scholar 

  • Rasola A, Galietta LJ, Barone V, Romeo G, Bagnasco S. 1995. Molecular cloning and functional characterization of a GABA/betaine transporter from human kidney. FEBS Lett 373: 229–233.

    CAS  PubMed  Google Scholar 

  • Roberts E. 1971. The GABA system in brain development. Chemistry and Brain Development. Paoletti R, Davison AN, editors. New York: Plenum Press; pp. 207–214.

    Google Scholar 

  • Roberts E, Frankel S. 1950. Gamma-aminobutyric acid in brain: Its formation from glutamic acid. J Biol Chem 187: 55–63.

    CAS  PubMed  Google Scholar 

  • Roberts E, Kuriyama K. 1968. Biochemical-physiological correlations in studies of the gamma-aminobutyric acid system. Brain Res 8: 1–35.

    CAS  PubMed  Google Scholar 

  • Robinson MB. 2002. Regulated trafficking of neurotransmitter transporters: Common notes but different melodies. J Neurochem 80: 1–11.

    CAS  PubMed  Google Scholar 

  • Sarup A, Larsson OM, Bolvig T, Frølund B, Krogsgaard-Larsen P, et al. 2003a. Effects of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazol (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters. Neurochem Int 43: 445–451.

    CAS  Google Scholar 

  • Sarup A, Larsson OM, Schousboe A. 2003b. GABA transporters and GABA-transaminase as drug targets. Curr Drug Target CNS Neurol Disord 2: 269–277.

    CAS  Google Scholar 

  • Schousboe A. 1979. Effects of GABA analogues on the high-affinity uptake of GABA in astrocytes in primary cultures. GABA-Biochemistry and CNS Function. Mandel P, De Feudis FV, editors. New York: Plenum Publishing Corp.; pp. 219–237.

    Google Scholar 

  • Schousboe A. 1990. Neurochemical alterations associated with epilepsy or seizure activity. Comprehensive Epileptology. Dam M, Gram L, editors. New York: Raven Press, Ltd.; pp. 1–16.

    Google Scholar 

  • Schousboe A. 2000. Pharmacological and functional characterization of astrocytic GABA transport: A short review. Neurochem Res 25: 1241–1244.

    CAS  PubMed  Google Scholar 

  • Schousboe A, Thorbek P, Hertz L, Krogsgaard-Larsen P. 1979. Effects of GABA analogues of restricted conformation on GABA transport in astrocytes and brain cortex slices and on GABA receptor binding. J Neurochem 33: 181–189.

    CAS  PubMed  Google Scholar 

  • Schousboe A, Larsson OM, Wood JD, Krogsgaard-Larsen P. 1983. Transport and metabolism of gamma-aminobutyric acid in neurons and glia: Implications for epilepsy. Epilepsia 24: 531–538.

    CAS  PubMed  Google Scholar 

  • Schousboe A, Larsson OM, Sarup A, White HS. 2004a. Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur J Pharmacol 500: 281–287.

    CAS  Google Scholar 

  • Schousboe A, Sarup A, Larsson OM, White HS. 2004b. GABA transporters as drug targets for modulation of GABAergic activity. Biochem Pharmacol 68: 1557–1563.

    CAS  Google Scholar 

  • Suzdak PD, Jansen JA. 1995. A review of the preclinical pharmacology of tiagabine: A potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36: 612–626.

    CAS  PubMed  Google Scholar 

  • Suzdak PD, Frederiksen K, Andersen KE, Sorensen PO, Knutsen LJ, et al. 1992. NNC-711, a novel potent and selective gamma-aminobutyric acid uptake inhibitor: Pharmacological characterization. Eur J Pharmacol 224: 189–198.

    CAS  PubMed  Google Scholar 

  • Tamura S, Nelson H, Tamura A, Nelson N. 1995. Short external loops as potential substrate binding site of gamma-aminobutyric acid transporters. J Biol Chem 270: 28712–28715.

    CAS  PubMed  Google Scholar 

  • Thomsen C, Sorensen PO, Egebjerg J. 1997. 1-(3-(9H-carbazol-9-yl)-1-propyl)-4-(2-methoxyphenyl)-4-piperidinol, a novel subtype selective inhibitor of the mouse type II GABA-transporter. Br J Pharmacol 120: 983–985.

    CAS  PubMed  Google Scholar 

  • Udenfriend S. 1950. Identification of gamma-aminobutyric acid in brain by the isotope derivative method. J Biol Chem 187: 65–69.

    CAS  PubMed  Google Scholar 

  • Waagepetersen HS, Sonnewald U, Schousboe A. 2003. Compartmentation of glutamine, glutamate, and GABA metabolism in neurons and astrocytes: Functional implications. Neuroscientist 9: 398–403.

    CAS  PubMed  Google Scholar 

  • Wang D, Quick MW. 2005. Trafficking of the plasma membrane gamma-aminobutyric acid transporter GAT1. Size and rates of an acutely recycling pool. J Biol Chem 280: 18703–18709.

    CAS  PubMed  Google Scholar 

  • Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. 2002. GABA and GABA receptors in the central nervous system and other organs. A Survey of Cell Biology. Jeon KW, editor. San Diego: Academic Press, Inc.; pp. 1–47.

    Google Scholar 

  • White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, et al. 2002. Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. J Pharmacol Exp Ther 302: 636–644.

    CAS  PubMed  Google Scholar 

  • White HS, Watson WP, Hansen SL, Slough S, Perregaard J, et al. 2005. First demonstration of a functional role for central nervous system betaine/{gamma}-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 312: 866–874.

    CAS  PubMed  Google Scholar 

  • Wood JD, Johnson DD, Krogsgaard-Larsen P, Schousboe A. 1983. Anticonvulsant activity of the glial-selective GABA uptake inhibitor, THPO. Neuropharmacology 22: 139–142.

    CAS  PubMed  Google Scholar 

  • Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. 2005. Crystal structure of a bacterial homologue of Na+/Cl dependent neurotransmitter transporters. Nature 437: 215–223.

    CAS  PubMed  Google Scholar 

  • Yamauchi A, Uchida S, Kwon HM, Preston AS, Robey RB, et al. 1992. Cloning of a Na(+)- and Cl(–)-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem 267: 649–652.

    CAS  PubMed  Google Scholar 

  • Yu N, Cao Y, Mager S, Lester HA. 1998. Topological localization of cysteine 74 in the GABA transporter, GAT1, and its importance in ion binding and permeation. FEBS Lett 426: 174–178.

    CAS  PubMed  Google Scholar 

  • Yunger LM, Fowler PJ, Zarevics P, Setler PE. 1984. Novel inhibitors of gamma-aminobutyric acid (GABA) uptake: Anticonvulsant actions in rats and mice. J Pharmacol Exp Ther 228: 109–115.

    CAS  PubMed  Google Scholar 

  • Zhou Y, Bennett ER, Kanner BI. 2004. The aqueous accessibility in the external half of transmembrane domain I of the GABA transporter GAT-1 is modulated by its ligands. J Biol Chem 279: 13800–13808.

    CAS  PubMed  Google Scholar 

  • Zhu XM, Ong WY. 2004a. A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus. J Neurocytol 33: 233–240.

    CAS  Google Scholar 

  • Zhu XM, Ong WY. 2004b. Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: Decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J Neurosci Res 77: 402–409.

    CAS  Google Scholar 

  • Zomot E, Kanner BI. 2003. The interaction of the gamma-aminobutyric acid transporter GAT-1 with the neurotransmitter is selectively impaired by sulfhydryl modification of a conformationally sensitive cysteine residue engineered into extracellular loop IV. J Biol Chem 278: 42950–42958.

    CAS  PubMed  Google Scholar 

  • Zomot E, Zhou Y, Kanner BI. 2005. Proximity of transmembrane domains 1 and 3 of the gamma-aminobutyric acid transporter GAT-1 inferred from paired cysteine mutagenesis. J Biol Chem 280: 25512–25516.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Madsen, K. et al. (2007). Functional and Pharmacological Aspects of GABA Transporters. In: Lajtha, A., Reith, M.E.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30380-2_14

Download citation

Publish with us

Policies and ethics