Skip to main content

Calpain as a Target for Prevention of Neuronal Death in Injuries and Diseases of the Central Nervous System

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Multiple mechanisms are known to contribute to an increase in the intracellular free Ca2+ level. Uncontrolled upregulation of the intracellular free Ca2+ level has been implicated in the pathogenesis of injuries and diseases of the central nervous system (CNS). An increase in the intracellular free Ca2+ level activates the Ca2+-dependent cysteine protease calpain that can mediate neuronal death. Various studies demonstrated that calpain could degrade key cellular substrates so as to impair structural integrity and normal cellular function, leading to both necrotic and apoptotic neuronal death in many CNS disorders. It is now highly recognized from cell culture and animal model studies that calpain has an important role in the mediation of neuronal death in CNS injuries such as ischemic brain injury, spinal cord injury (SCI), and traumatic brain injury (TBI), and also diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), epileptic seizures, Huntington's disease (HD), Parkinson's disease (PD), and multiple sclerosis (MS). In many of these cases, use of calpain inhibitors provided neuroprotection suggesting that calpain could be a potential target for therapeutic interventions. However, currently available calpain inhibitors lack sufficient drug properties that should be addressed adequately before their clinical applications. Importantly, many investigators are now taking interest in developing clinically suitable calpain inhibitors for functional neuroprotection in CNS injuries and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer's disease

ALS:

amyotrophic lateral sclerosis

AMPAR:

α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor

CaBPs:

Ca2+-binding proteins

CANP:

Ca2+-activated neutral protease

CNS:

central nervous system

EAA:

excitatory amino acid

EAE:

experimental allergic encephalomyelitis

ER:

endoplasmic reticulum

HD:

Huntington's disease

iGluR:

ionotropic glutamate receptor

IP3 :

inositol triphosphate

IP3RP3 :

receptors

KAR:

kainate receptor

LGCC:

ligand-gated Ca2+ channels

LGIC:

ligand-gated ion channels

MAP2:

microtubule-associated protein 2

MBP:

myelin basic protein

mGluR:

metabotropic glutamate receptor

MS:

multiple sclerosis

NFP:

neurofilament protein

NMDAR:

N-methyl-d-aspartate receptor

ORP150:

oxygen-regulated protein-150 kDa

PD:

Parkinson's disease

PIP2 :

phosphoinositol biphosphate

PLA2 :

phospholipase A2

ROS:

reactive oxygen species

RyR:

ryanodine receptors

SCI:

spinal cord injury

TBI:

traumatic brain injury

VGCC:

voltage-gated Ca2+ channels

VGIC:

voltage-gated ion channels

References

  • Adamec E, Mohan P, Vonsattel JP, Nixon RA. 2002. Calpain activation in neurodegenerative diseases: Confocal immunofluorescence study with antibodies specifically recognizing the active form of calpain 2. Acta Neuropathol 104: 92–104.

    CAS  PubMed  Google Scholar 

  • Ahmed SM, Weber JT, Liang S, Willoughby KA, Sitterding HA, et al. 2002. NMDA receptor activation contributes to a portion of the decreased mitochondrial membrane potential and elevated intracellular free calcium in strain-injured neurons. J Neurotrauma 19: 1619–1629.

    PubMed  Google Scholar 

  • Alvira D, Tajes M, Verdaguer E, Acuna-Castroviejo D, Folch J, et al. 2006. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson's disease. J Pineal Res 40: 251–258.

    CAS  PubMed  Google Scholar 

  • Antel J. 1999. Multiple sclerosis—emerging concepts of disease pathogenesis. J Neuroimmunol 98: 45–48.

    CAS  PubMed  Google Scholar 

  • Arataki S, Tomizawa K, Moriwaki A, Nishida K, Matsushita M, et al. 2005. Calpain inhibitors prevent neuronal cell death and ameliorate motor disturbances after compression-induced spinal cord injury in rats. J Neurotrauma 22: 398–406.

    PubMed  Google Scholar 

  • Arikkath J, Campbell KP. 2003. Auxiliary subunits: Essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 13: 298–307.

    CAS  PubMed  Google Scholar 

  • Arlinghaus L, Mehdi S, Lee K. 1991. Improved posthypoxic recovery with a membrane-permeable calpain inhibitor. Eur J Pharmacol 209: 123–125.

    CAS  PubMed  Google Scholar 

  • Ashcroft FM. (Ed.) 2000. Ion channels and disease. New York: Academic Press.

    Google Scholar 

  • Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE. 1997. Impaired mitochondrial function, oxidative stress, and altered antioxidant enzyme activities following traumatic spinal cord injury. Brain Res 765: 283–290.

    CAS  PubMed  Google Scholar 

  • Baethmann A, Jansen M. 1986. Possible role of calcium entry blockers in brain protection. Eur Neurol 25 (Suppl 1): 102–114.

    CAS  PubMed  Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH. 1992. Calcium-binding proteins in the nervous system. Trends Neurosci 15: 303–308.

    CAS  PubMed  Google Scholar 

  • Ballough GPH, Martin LJ, Cann FJ, Graham JS, Smith CD, et al. 1995. Microtubule-associated protein 2 (MAP-2): a sensitive marker of seizure-related brain damage. J Neurosci Meth 61: 23–32.

    CAS  Google Scholar 

  • Banik NL, Shields DC. 1999. A putative role for calpain in demyelination associated with optic neuritis. Histol Histopathol 14: 649–656.

    CAS  PubMed  Google Scholar 

  • Banik NL, McAlhaney WW, Hogan EL. 1985. Calcium-stimulated proteolysis in myelin: Evidence for a Ca2+-activated neutral proteinase associated with purified myelin of rat CNS. J Neurochem 45: 581–588.

    CAS  PubMed  Google Scholar 

  • Banik NL, Shields DC, Ray SK, Hogan EL. 1999. The pathophysiological role of calpain in spinal cord injury. CALPAIN: Pharmacology and toxicology of calcium dependent protease. Wang KK, Yuen PW, editors. Philadelphia: Taylor & Francis; pp. 211–227.

    Google Scholar 

  • Barnard E. 1992. Receptor classes and the transmitter-gated ion channels. Trends Biochem Sci 17: 368–374.

    CAS  PubMed  Google Scholar 

  • Bar-Peled O, O'Brien RJ, Morrison JH, Rothstein JD. 1999. Cultured motor neurons possess calcium-permeable AMPA/kainate receptors. Neuroreport 10: 855–859.

    CAS  PubMed  Google Scholar 

  • Bartus RT, Dean RL, Cavanaugh K, Eveleth D, Carriero DL, et al. 1995a. Time-related neuronal changes following middle cerebral artery occlusion: Implications for therapeutic intervention and the role of calpain. J Cereb Blood Flow Metab 15: 969–979.

    CAS  Google Scholar 

  • Bartus RT, Elliott PJ, Hayward NJ, Dean RL, Harbeson S, et al. 1995b. Calpain as a novel target for treating acute neurodegenerative disorders. Neurol Res 17: 249–258.

    CAS  Google Scholar 

  • Bartus RT, Hayward NJ, Elliott PJ, Sawyer SD, Baker KL, et al. 1994. Calpain inhibitor AK295 protects neurons from focal brain ischemia: Effects of postocclusion intraarterial administration. Stroke 25: 2265–2270.

    CAS  PubMed  Google Scholar 

  • Beal MF. 1992. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31: 119–130.

    CAS  PubMed  Google Scholar 

  • Beal MF, Kowall NW, Ellison DW, Mazurek MF, Swartz KJ, et al. 1986. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321: 168–171.

    CAS  PubMed  Google Scholar 

  • Beer R, Franz G, Srinivasan A, Hayes RL, Pike BR, et al. 2000. Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury. J Neurochem 75: 1264–1273.

    CAS  PubMed  Google Scholar 

  • Bennett MV, Pellegrini-Giampietro DE, Gorter JA, Aronica E, Connor JA, et al. 1996. The GluR2 hypothesis: Ca2+-permeable AMPA receptors in delayed neurodegeneration. Cold Spring Harb Symp Quant Biol 61: 373–384.

    CAS  PubMed  Google Scholar 

  • Berridge MJ. 1993. Inositol trisphosphate and calcium signaling. Nature 361: 315–325.

    CAS  PubMed  Google Scholar 

  • Bertolino M, Llinas RR. 1992. The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol 32: 399–421.

    CAS  PubMed  Google Scholar 

  • Bi XN, Chang V, Siman R, Tocco G, Baudry M. 1996. Regional distribution and time course of calpain activation following kainate-induced seizure activity in adult rat brain. Brain Res 726: 98–108.

    CAS  PubMed  Google Scholar 

  • Blaustein MP. 1988. Calcium transport and buffering in neurons. Trends Neurosci 11: 438–443.

    CAS  PubMed  Google Scholar 

  • Blomgren K, Hallin U, Andersson AL, Puka-Sundvall M, Bahr BA, et al. 1999. Calpastatin is upregulated in response to hypoxia and is a suicide substrate to calpain after neonatal cerebral hypoxia–ischemia. J Biol Chem 274: 14046–14052.

    CAS  PubMed  Google Scholar 

  • Blomgren K, McRae A, Bona E, Saido TC, Karlsson JO, et al. 1995. Degradation of fodrin and MAP 2 after neonatal cerebral hypoxic-ischemia. Brain Res 684: 136–142.

    CAS  PubMed  Google Scholar 

  • Blomgren K, Zhu CL, Wang XY, Karlsson JO, Leverin AL, et al. 2001. Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia–ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 276: 10191–10198.

    CAS  PubMed  Google Scholar 

  • Braughler JM, Hall ED. 1992. Involvement of lipid peroxidation in CNS injury. J Neurotrauma 9: S1–S7.

    PubMed  Google Scholar 

  • Carafoli E. 1987. Intracellular calcium homeostasis. Annu Rev Biochem 56: 395–433.

    CAS  PubMed  Google Scholar 

  • Carafoli E, Molinari M. 1998. Calpain: a protease in search of a function? Biochem Biophys Res Commun 247: 193–203.

    CAS  PubMed  Google Scholar 

  • Charles AC, Dirksen ER, Merrill JE, Sanderson MJ. 1993. Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin. Glia 7: 134–145.

    CAS  PubMed  Google Scholar 

  • Chera B, Schaecher KE, Rocchini A, Imam SZ, Ray SK, et al. 2002. Calpain upregulation and neuron death in spinal cord of MPTP-induced parkinsonism in mice. Ann N Y Acad Sci 965: 274–280.

    CAS  PubMed  Google Scholar 

  • Chera B, Schaecher KE, Rocchini A, Imam SZ, Sribnick EA, et al. 2004. Immunofluorescent labeling of increased calpain expression and neuronal death in the spinal cord of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Brain Res 1006: 150–156.

    CAS  PubMed  Google Scholar 

  • Clapham DE. 1995. Calcium signaling. Cell 80: 259–268.

    CAS  PubMed  Google Scholar 

  • Compton JS, Lee T, Jones NR, Waddell G, Teddy PJ. 1990. A double blind placebo-controlled trial of the calcium entry blocking drug, nicardipine, in the treatment of vasospasm following severe head injury. Br J Neurosurg 4: 9–15.

    CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–694.

    CAS  PubMed  Google Scholar 

  • Coyle JT, Schwarcz R. 1976. Lesion of striatal neurons with kainic acid provides a model for Huntington's chorea. Nature 263: 244–246.

    CAS  PubMed  Google Scholar 

  • Croall DE, DeMartino GN. 1991. Calcium-activated neutral protease (calpain) system: Structure, function, and regulation. Physiol Rev 71: 813–847.

    CAS  PubMed  Google Scholar 

  • Das A, Sribnick EA, Wingrave JM, Del Re AM, Woodward JJ, et al. 2005. Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: Calpain inhibition provides functional neuroprotection. J Neurosci Res 81: 551–562.

    CAS  PubMed  Google Scholar 

  • de Rosbo NK, Ben-Nun A. 1998. T-cell responses to myelin antigens in multiple sclerosis; relevance of the predominant autoimmune reactivity to myelin oligodendrocyte glycoprotein. J Autoimmun 11: 287–299.

    CAS  PubMed  Google Scholar 

  • de Rosbo NK, Bernard CC. 1989. Multiple sclerosis brain immunoglobulins stimulate myelin basic protein degradation in human myelin: a new cause of demyelination. J Neurochem 53: 513–518.

    CAS  PubMed  Google Scholar 

  • Deshpande RV, Goust JM, Hogan EL, Banik NL. 1995. Calpain secreted by activated human lymphoid cells degrades myelin. J Neurosci Res 42: 259–265.

    CAS  PubMed  Google Scholar 

  • Di Rosa G, Odrljin T, Nixon RA, Arancio O. 2002. Calpain inhibitors: a treatment for Alzheimer's disease. J Mol Neurosci 19: 135–141.

    CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF. 1999. The glutamate receptor ion channels. Pharmacol Rev 51: 7–61.

    CAS  PubMed  Google Scholar 

  • Dragunow M, Faull RL, Lawlor P, Beilharz EJ, Singleton K, et al. 1995. In situ evidence for DNA fragmentation in Huntington's disease striatum and Alzheimer's disease temporal lobes. Neuroreport 6: 1053–1057.

    CAS  PubMed  Google Scholar 

  • Du S, Rubin A, Klepper S, Barrett C, Kim YC, et al. 1999. Calcium influx and activation of calpain I mediate acute reactive gliosis in injured spinal cord. Exp Neurol 157: 96–105.

    CAS  PubMed  Google Scholar 

  • Ebers GC, Sadovnick AD, Risch NJ. 1995. A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 377: 150–151.

    CAS  PubMed  Google Scholar 

  • Ehrlich BE. 1995. Functional properties of intracellular calcium release channels. Curr Opin Neurobiol 5: 304–309.

    CAS  PubMed  Google Scholar 

  • Ferguson B, Matyszak MK, Esiri MM, Perry VH. 1997. Axonal damage in acute multiple sclerosis lesions. Brain 120: 393–399.

    PubMed  Google Scholar 

  • Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, et al. 1997. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69: 2064–2074.

    CAS  PubMed  Google Scholar 

  • Ffrench-Constant C. 1994. Pathogenesis of multiple sclerosis. Lancet 343: 271–275.

    CAS  PubMed  Google Scholar 

  • Fill M, Copello JA. 2002. Ryanodine receptor calcium release channels. Physiol Rev 82: 893–922.

    CAS  PubMed  Google Scholar 

  • Fineman I, Hovda DA, Smith M, Yoshino A, Becker DP. 1993. Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Res 624: 94–102.

    CAS  PubMed  Google Scholar 

  • Forno LS. 1996. Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 55: 259–272.

    CAS  PubMed  Google Scholar 

  • Gafni J, Ellerby LM. 2002. Calpain activation in Huntington's disease. J Neurosci 22: 4842–4849.

    CAS  PubMed  Google Scholar 

  • Gafni J, Hermel E, Young JE, Wellington CL, Hayden MR, et al. 2004. Inhibition of calpain cleavage of huntingtin reduces toxicity: Accumulation of calpain/caspase fragments in the nucleus. J Biol Chem 279: 20211–20220.

    CAS  PubMed  Google Scholar 

  • Gary DS, Sooy K, Chan SL, Christakos S, Mattson MP. 2000. Concentration- and cell type-specific effects of calbindin D28K on vulnerability of hippocampal neurons to seizure-induced injury. Mol Brain Res 75: 89–95.

    CAS  PubMed  Google Scholar 

  • Gennarelli TA, Thiboult LE, Graham DI. 1998. Diffuse axonal injury: an important form of traumatic brain injury. Neuroscientist 4: 202–215.

    Google Scholar 

  • Goffredo D, Rigamonti D, Tartari M, De Micheli A, Verderio C, et al. 2002. Calcium-dependent cleavage of endogenous wild-type huntingtin in primary cortical neurons. J Biol Chem 277: 39594–39598.

    CAS  PubMed  Google Scholar 

  • Goodman JH, Wasterlain CG, Massarweh WF, Dean E, Sollas AL, et al. 1993. Calbindin-D28K immunoreactivity and selective vulnerability to ischemia in the dentate gyrus of the developing rat. Brain Res 606: 309–314.

    CAS  PubMed  Google Scholar 

  • Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA. 1997. Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer's disease. Brain Res 763: 145–158.

    CAS  PubMed  Google Scholar 

  • Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, et al. 1996. Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol 39: 385–389.

    CAS  PubMed  Google Scholar 

  • Gunter TE, Pfeiffer DR. 1990. Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755–C786.

    CAS  PubMed  Google Scholar 

  • Guroff G. 1964. A neutral, calcium-activated proteinase from the soluble fraction of rat brain. J Biol Chem 239: 149–155.

    CAS  PubMed  Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, et al. 1983. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306: 234–238.

    CAS  PubMed  Google Scholar 

  • Guttman RP, Johnson GVW. 1999. Calpain-mediated proteolysis of the cytoskeleton. CALPAIN: Pharmacology and toxicology of calcium dependent protease. Wang KK, Yuen PW, editors. Philadelphia: Taylor & Francis; pp. 229–249.

    Google Scholar 

  • Guyton MK, Sribnick EA, Wingrave JM, Ray SK, Banik NL. 2005a. Axonal damage and neuronal death in multiple sclerosis and experimental autoimmune encephalomyelitis: The role of calpain. Multiple sclerosis as a neuronal disease. Waxman S, editor. Amsterdam: Elsevier; pp. 293–303.

    Google Scholar 

  • Guyton MK, Wingrave JM, Yallapragada AV, Wilford GG, Sribnick EA, et al. 2005b. Upregulation of calpain correlates with increased neurodegeneration in acute experimental autoimmune encephalomyelitis. J Neurosci Res 81: 53–61.

    CAS  Google Scholar 

  • Hall ED, Braughler JM. 1989. Central nervous system trauma and stroke. II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radic Biol Med 6: 303–313.

    CAS  PubMed  Google Scholar 

  • Happel RD, Smith KP, Banik NL, Powers JM, Hogan EL, et al. 1981. Ca2+ accumulation in experimental spinal cord trauma. Brain Res 211: 476–479.

    CAS  PubMed  Google Scholar 

  • Harper PS. 1992. The epidemiology of Huntington's disease. Hum Genet 89: 365–376.

    CAS  PubMed  Google Scholar 

  • Hartley Z, Dubinsky JM. 1993. Changes in intracellular pH associated with glutamate excitotoxicity. J Neurosci 13: 4690–4699.

    CAS  PubMed  Google Scholar 

  • Henshall DC, Simon RP. 2005. Epilepsy and apoptosis pathways. J Cereb Blood Flow Metab 25: 1557–1572.

    CAS  PubMed  Google Scholar 

  • Higuchi M, Iwata N, Saido TC. 2005. Understanding molecular mechanisms of proteolysis in Alzheimer's disease: Progress toward therapeutic interventions. Biochim Biophys Acta 1751: 60–67.

    CAS  PubMed  Google Scholar 

  • Hirsch EC, Graybiel AM, Agid Y. 1989. Selective vulnerability of pigmented dopaminergic neurons in Parkinson's disease. Acta Neurol Scand 126: 19–22.

    CAS  Google Scholar 

  • Hirsch EC, Mouatt A, Thomaset M, Javoy-Agid F, Agid Y, et al. 1992. Expression of calbindin D28K-like immunoreactivity in catecholaminergic cell groups of the human midbrain: Normal distribution and distribution in Parkinson's disease. Neurodegeneration 1: 83–93.

    Google Scholar 

  • Hou ST, Jiang SX, Desbois A, Huang D, Kelly J, et al. 2006. Calpain-cleaved collapsin response mediator protein-3 induces neuronal death after glutamate toxicity and cerebral ischemia. J Neurosci 26: 2241–2249.

    CAS  PubMed  Google Scholar 

  • Hsu CY, Halushka PV, Hogan EL, Banik NL, Lee WA, et al. 1985. Alteration of thromboxane and prostacyclin levels in experimental spinal cord injury. Neurology 35: 1003–1009.

    CAS  PubMed  Google Scholar 

  • Huang YH, Wang KKW. 2001. The calpain family and human disease. Trends Mol Med 7: 355–362.

    CAS  PubMed  Google Scholar 

  • Hung KS, Hwang SL, Liang CL, Chen YJ, Lee TH, et al. 2005. Calpain inhibitor inhibits p35-p25-Cdk5 activation, decreases tau hyperphosphorylation, and improves neurological function after spinal cord hemisection in rats. J Neuropathol Exp Neurol 64: 15–26.

    CAS  PubMed  Google Scholar 

  • Huntington's Disease Collaborative Research Group. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971–983.

    Google Scholar 

  • Iino M, Ozawa S, Tsuzuki K. 1990. Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurons. J Physiol 424: 151–165.

    CAS  PubMed  Google Scholar 

  • Iwamoto N, Thangnipon W, Crawford C, Emson PC. 1991. Localization of calpain immunoreactivity in senile plaques and in neurons undergoing neurofibrillary degeneration in Alzheimer's disease. Brain Res 561: 177–180.

    CAS  PubMed  Google Scholar 

  • Jellinger K. 1987. Overview of morphological changes in Parkinson's disease. Adv Neurol 45: 1–18.

    CAS  PubMed  Google Scholar 

  • Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. 1993. Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology 43: 2689–2695.

    CAS  PubMed  Google Scholar 

  • Jiang SX, Lertvorachon J, Hou ST, Konishi Y, Webster J, et al. 2005. Chlortetracycline and demeclocycline inhibit calpains and protect mouse neurons against glutamate toxicity and cerebral ischemia. J Biol Chem 280: 33811–33818.

    CAS  PubMed  Google Scholar 

  • Kampfl A, Posmantur R, Nixon R, Grynspan F, Zhao X, et al. 1996. μ-Calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury. J Neurochem 67: 1575–1583.

    CAS  PubMed  Google Scholar 

  • Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, et al. 1997. Mechanisms of calpain proteolysis following traumatic brain injury: Implications for pathology and therapy: a review and update. J Neurotrauma 14: 121–134.

    CAS  PubMed  Google Scholar 

  • Keane RW, Kraydieh S, Lotocki G, Alonso OF, Aldana P, et al. 2001. Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J Cereb Blood Flow Metab 21: 1189–1198.

    CAS  PubMed  Google Scholar 

  • Khachaturian ZS. 1994. Calcium hypothesis of Alzheimer's disease and brain aging. Ann N Y Acad Sci 747: 1–11.

    CAS  PubMed  Google Scholar 

  • Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, et al. 2001. Caspase 3-cleaved N-terminal fragments of wild type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci USA 98: 12784–12789.

    CAS  PubMed  Google Scholar 

  • Kitao Y, Ozawa K, Miyazaki M, Tamatani M, Kobayashi T, et al. 2001. Expression of the endoplasmic reticulum molecular chaperone (ORP150) rescues hippocampal neurons from glutamate toxicity. J Clin Invest 108: 1439–1450.

    CAS  PubMed  Google Scholar 

  • Komatsu K, Inazuki K, Hosoya K, Satoh S. 1986. Beneficial effect of new thiol protease inhibitors, epoxide derivatives, on dystrophic mice. Exp Neurol 91: 23–29.

    CAS  PubMed  Google Scholar 

  • Kondratyev A, Gale K. 2004. Latency to onset of status epilepticus determines molecular mechanisms of seizure-induced cell death. Mol Brain Res 121: 86–94.

    CAS  PubMed  Google Scholar 

  • Kostron H, Twerdy K, Stampfl G, Mohsenipour I, Fischer J, et al. 1984. Treatment of the traumatic cerebral vasospasm with the calcium channel blocker nimodipine: a preliminary report. Neurol Res 6: 29–32.

    CAS  PubMed  Google Scholar 

  • Krieger C, Lanius RA, Pelech SL, Shaw CA. 1996. Amyotrophic lateral sclerosis: the involvement of intracellular Ca2+ and protein kinase C. Trends Pharmacol Sci 17: 114–120.

    CAS  PubMed  Google Scholar 

  • Kupina NC, Nath R, Bernath EE, Inoue J, Mitsuyoshi A, et al. 2001. The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. J Neurotrauma 18: 1229–1240.

    CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM. 1998. Parkinson's disease. First of two parts. N Engl J Med 339: 1044–1053.

    CAS  PubMed  Google Scholar 

  • Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, et al. 2000. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405: 360–364.

    CAS  PubMed  Google Scholar 

  • Lees GJ. 1991. Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res Rev 16: 283–300.

    CAS  PubMed  Google Scholar 

  • Leppik IE. 1986. Drug treatment of epilepsy. Current therapy in neurologic disease. Johnson RT, editor. Philadelphia: BC Decker; pp. 41–46.

    Google Scholar 

  • Lewen A, Matz P, Chan PH. 2000. Free radical pathways in CNS injury. J Neurotrauma 17: 871–890.

    CAS  PubMed  Google Scholar 

  • Lewy FH. 1914. Zur pathologischen Anatomie der Paralysis agitans. Dtsch Z Nervenheilk 1: 50–55.

    Google Scholar 

  • Li PA, Howlett W, He QP, Miyashita H, Siddiqui M, et al. 1998. Postischemic treatment with calpain inhibitor MDL 28170 ameliorates brain damage in a gerbil model of global ischemia. Neurosci Lett 247: 17–20.

    CAS  PubMed  Google Scholar 

  • Liebetrau M, Staufer B, Auerswald EA, Gabrijelcic-Geiger D, Fritz H, et al. 1999. Increased intracellular calpain detection in experimental focal cerebral ischemia. Neuroreport 10: 529–534.

    CAS  PubMed  Google Scholar 

  • Linington C, Berger T, Perry L, Weerth S, Hinze-Selch D, et al. 1993. T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur J Immunol 23: 1364–1372.

    CAS  PubMed  Google Scholar 

  • Lipton P. 1999. Ischemic cell death in brain neurons. Physiol Rev 79: 1431–1568.

    CAS  PubMed  Google Scholar 

  • Lipton SA, Rosenberg PA. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330: 613–622.

    CAS  PubMed  Google Scholar 

  • Liu CW, Giasson BI, Lewis KA, Lee VM, DeMartino GN, et al. 2005. A precipitating role for truncated α-synuclein and the proteasome in α-synuclein aggregation: Implications for pathogenesis of Parkinson's disease. J Biol Chem 280: 22670–22678.

    CAS  PubMed  Google Scholar 

  • Liu DX, Liu J, Wen J. 1999. Elevation of hydrogen peroxide after spinal cord injury detected by using the Fenton reaction. Free Radic Biol Med 27: 478–482.

    CAS  PubMed  Google Scholar 

  • Liu MC, Akle V, Zheng W, Dave JR, Tortella FC, et al. 2006. Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochem J 394: 715–725.

    CAS  PubMed  Google Scholar 

  • MacKrill JJ. 1999. Protein–protein interactions in intracellular Ca2+-release channel function. Biochem J 337: 345–361.

    CAS  PubMed  Google Scholar 

  • MacMillan J, Quarrell O. 1996. The neurobiology of Huntington's disease. Huntington's disease. Harper PS, editor. Cambridge: Saunders; pp. 317–358.

    Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, et al. 1996. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506.

    CAS  PubMed  Google Scholar 

  • Margolis RL, Ross CA. 2003. Diagnosis of Huntington's disease. Clin Chem 49: 1726–1732.

    CAS  PubMed  Google Scholar 

  • Markgraf CG, Velayo NL, Johnson MP, McCarty DR, Medhi S, et al. 1998. Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 29: 152–158.

    CAS  PubMed  Google Scholar 

  • Martin R, McFarland HF. 1995. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit Rev Clin Lab Sci 32: 121–182.

    CAS  PubMed  Google Scholar 

  • Mattson MP, Rychlik B, Chu C, Christakos S. 1991. Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-D28K in cultured hippocampal neurons. Neuron 6: 41–51.

    CAS  PubMed  Google Scholar 

  • Mayer M, Westbrook G, Guthrie PB. 1984. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309: 261–263.

    CAS  PubMed  Google Scholar 

  • Mayer ML, Armstrong N. 2004. Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66: 161–181.

    CAS  PubMed  Google Scholar 

  • McCleskey EW. 1994. Calcium channels: Cellular roles and molecular mechanisms. Curr Opin Neurobiol 4: 304–312.

    CAS  PubMed  Google Scholar 

  • McCracken E, Hunter AJ, Patel S, Graham DI, Dewar D. 1999. Calpain activation and cytoskeletal protein breakdown in the corpus callosum of head-injured patients. J Neurotrauma 16: 749–761.

    CAS  PubMed  Google Scholar 

  • McDonough JH, Shih TM. 1997. Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci Biobehav Rev 21: 559–579.

    CAS  PubMed  Google Scholar 

  • McIntosh TK, Saatman KE, Raghupathi R. 1997. Calcium and the pathogenesis of traumatic CNS injury: Cellular and molecular mechanisms. Neuroscientist 3: 169–175.

    CAS  Google Scholar 

  • Mellgren RL, Mericle MT, Lane RD. 1986. Proteolysis of the calcium-dependent protease inhibitor by myocardial calcium-dependent protease. Arch Biochem Biophys 246: 233–239.

    CAS  PubMed  Google Scholar 

  • Mendez MF. 2004. Huntington's disease: Update and review of neuropsychiatric aspects. Int J Psychiatry Med 24: 189–208.

    Google Scholar 

  • Meyer WL, Fischer EH, Krebs EG. 1964. Activation of skeletal muscle phosphorylase B kinase by Ca. Biochemistry 3: 1033–1039.

    CAS  PubMed  Google Scholar 

  • Miller RJ. 1987. Multiple calcium channels and neuronal function. Science 235: 46–52.

    CAS  PubMed  Google Scholar 

  • Moore GR, Traugott U, Farooq M, Norton WT, Raine CS. 1984. Experimental autoimmune encephalomyelitis: Augmentation of demyelination by different myelin lipids. Lab Invest 51: 416–424.

    CAS  PubMed  Google Scholar 

  • Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC. 1996. Increased m-calpain expression in the mesencephalon of patients with Parkinson's disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience 73: 979–987.

    CAS  PubMed  Google Scholar 

  • Mouatt-Prigent A, Karlsson JO, Yelnik J, Agid Y, Hirsch EC. 2000. Calpastatin immunoreactivity in the monkey and human brain of control subjects and patients with Parkinson's disease. J Comp Neurol 419: 175–192.

    CAS  PubMed  Google Scholar 

  • Nachshen DA. 1985. The early time course of potassium-stimulated calcium uptake in presynaptic nerve terminals isolated from rat brain. J Physiol (London) 361: 251–268.

    CAS  Google Scholar 

  • Nagao S, Saido TC, Akita Y, Tsuchiya T, Suzuki K, et al. 1994. Calpain–calpastatin interactions in epidermoid carcinoma KB cells. J Biochem 115: 1178–1184.

    CAS  PubMed  Google Scholar 

  • Nagy GG, Al-Ayyan M, Andrew D, Fukaya M, Watanabe M, et al. 2004. Widespread expression of the AMPA receptor GluR2 subunit at glutamatergic synapses in the rat spinal cord and phosphorylation of GluR1 in response to noxious stimulation revealed with an antigen-unmasking method. J Neurosci 24: 5766–5777.

    CAS  PubMed  Google Scholar 

  • Nakamura M, Inomata M, Imajoh S, Suzuki K, Kawashima S. 1989. Fragmentation of an endogenous inhibitor upon complex formation with high- and low-Ca2+-requiring forms of calcium-activated neutral proteases. Biochemistry 28: 449–455.

    CAS  PubMed  Google Scholar 

  • Nash MS, Saunders R, Young KW, Challiss RA, Nahorski SR. 2001. Reassessment of the Ca2+-sensing property of a type I metabotropic glutamate receptor by simultaneous measurement of inositol-1,4,5-trisphosphate and Ca2+ in single cells. J Biol Chem 276: 19286–19293.

    CAS  PubMed  Google Scholar 

  • Neumar RW, Meng FH, Mills AM, Xu YA, Zhang C, et al. 2001. Calpain activity in the rat brain after transient forebrain ischemia. Exp Neurol 170: 27–35.

    CAS  PubMed  Google Scholar 

  • Nicotera P, Bellemo G, Orrenius S. 1992. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32: 449–470.

    CAS  PubMed  Google Scholar 

  • Nilsson E, Alafuzoff I, Blennow K, Blomgren K, Hall CM, et al. 1990. Calpain and calpastatin in normal and Alzheimer-degenerated human brain tissue. Neurobiol Aging 11: 425–431.

    CAS  PubMed  Google Scholar 

  • Nixon RA. 2000. A “protease activation cascade” in the pathogenesis of Alzheimer's disease. Ann N Y Acad Sci 924: 117–131.

    CAS  PubMed  Google Scholar 

  • Nowycki MC, Fox AP, Tsien RW. 1985. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440–443.

    Google Scholar 

  • Oksenberg JR, Seboun E, Hauser SL. 1996. Genetics of demyelinating diseases. Brain Pathol 6: 289–302.

    CAS  PubMed  Google Scholar 

  • Olanow CW. 1990. Oxidation reactions in Parkinson's disease. Neurology 40: 32–37.

    PubMed  Google Scholar 

  • Patel MN. 2002. Oxidative stress, mitochondrial dysfunction, and epilepsy. Free Rad Res 36: 1139–1146.

    CAS  Google Scholar 

  • Paulson GW, Aotsuka A. 1993. Parkinsonian syndromes. Semin Neurol 13: 359–364.

    CAS  PubMed  Google Scholar 

  • Petersen A, Mani K, Brundin P. 1999. Recent advances on the pathogenesis of Huntington's disease. Exp Neurol 157: 1–18.

    CAS  PubMed  Google Scholar 

  • Peterson JW, Bo L, Mork S, Chang A, Trapp BD. 2001. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50: 389–400.

    CAS  PubMed  Google Scholar 

  • Pike BR, Flint J, Dutta S, Johnson E, Wang KKW, et al. 2001. Accumulation of nonerythroid αII-spectrin and calpain-cleaved αII-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 78: 1297–1306.

    CAS  PubMed  Google Scholar 

  • Pike BR, Zhao XR, Newcomb JK, Posmantur RM, Wang KKW, et al. 1998. Regional calpain and caspase-3 proteolysis of α-spectrin after traumatic brain injury. Neuroreport 9: 2437–2442.

    CAS  PubMed  Google Scholar 

  • Portera-Cailliau C, Hedreen JC, Price DL, Koliatsos VE. 1995. Evidence for apoptotic cell death in Huntington's disease and excitotoxic animal models. J Neurosci 15: 3775–3787.

    CAS  PubMed  Google Scholar 

  • Posmantur R, Kampfl A, Siman R, Liu J, Zhao X, et al. 1997. A calpain inhibitor attenuates cortical cytoskeletal protein loss after experimental traumatic brain injury in the rat. Neuroscience 77: 875–888.

    CAS  PubMed  Google Scholar 

  • Raine CS. 1997. Demyelinating diseases. Textbook of Neuropathology, 3rd ed. Davis RL, Robertson DM, editors. Baltimore: Williams & Wilkins; pp. 627–714.

    Google Scholar 

  • Rami A, Agarwal R, Botez G, Winckler J. 2000. μ-Calpain activation, DNA fragmentation, and synergistic effects of caspase and calpain inhibitors in protecting hippocampal neurons from ischemic damage. Brain Res 866: 299–312.

    CAS  PubMed  Google Scholar 

  • Ray SK, Banik NL. 2002. Calpain: Molecular organization, mechanism of activation, and mediation of neurodegeneration in diseases and disorders of the central nervous system. Curr Top Neurochem 3: 69–81.

    Google Scholar 

  • Ray SK, Dixon CE, Banik NL. 2002. Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol 17: 1137–1152.

    CAS  PubMed  Google Scholar 

  • Ray SK, Fidan M, Nowak MW, Wilford GG, Hogan EL, et al. 2000a. Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res 852: 326–334.

    CAS  Google Scholar 

  • Ray SK, Hogan EL, Banik NL. 2003. Calpain in the pathophysiology of spinal cord injury: Neuroprotection with calpain inhibitors. Brain Res Rev 42: 169–185.

    CAS  PubMed  Google Scholar 

  • Ray SK, Matzelle DC, Wilford GG, Eng LF, Hogan EL, et al. 2001c. Pathophysiology of central nervous system trauma: Proteolytic mechanisms and related therapeutic approaches. Lajtha A, Banik NL, editors. Role of proteases in the pathophysiology of neurodegenerative diseases. New York: Kluwer Academic/Plenum; pp. 199–226.

    Google Scholar 

  • Ray SK, Matzelle DC, Wilford GG, Hogan EL, Banik NL. 2000b. E-64-d prevents both calpain upregulation and apoptosis in the lesion and penumbra following spinal cord injury in rats. Brain Res 867: 80–89.

    CAS  Google Scholar 

  • Ray SK, Matzelle DC, Wilford GG, Hogan EL, Banik NL. 2001a. Inhibition of calpain-mediated apoptosis by E-64-d reduced immediate early gene (IEG) expression and reactive astrogliosis in the lesion and penumbra following spinal cord injury in rats. Brain Res 916: 115–126.

    CAS  Google Scholar 

  • Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL. 2001b. Cell death in spinal cord injury (SCI) requires de novo protein synthesis: Calpain inhibitor E-64-d provides neuroprotection in SCI lesion and penumbra. Ann N Y Acad Sci 939: 436–449.

    CAS  Google Scholar 

  • Ray SK, Wilford GG, Ali SF, Banik NL. 2000c. Calpain upregulation in spinal cords of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease. Ann N Y Acad Sci 914: 275–283.

    CAS  Google Scholar 

  • Ray SK, Wilford GG, Crosby CV, Hogan EL, Banik NL. 1999. Diverse stimuli induce calpain overexpression and apoptosis in C6 glioma cells. Brain Res 829: 18–27.

    CAS  PubMed  Google Scholar 

  • Reynolds IJ, Hastings TG. 1995. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15: 3318–3327.

    CAS  PubMed  Google Scholar 

  • Robinson MJ, Teasdale GM. 1990. Calcium antagonists in the management of subarachnoid hemorrhage. Cerebrovasc Brain Metab Rev 2: 205–226.

    CAS  PubMed  Google Scholar 

  • Rogers M, Dani JA. 1995. Comparison of quantitative calcium flux through NMDA, ATP, and ACh receptor channels. Biophys J 68: 501–506.

    CAS  PubMed  Google Scholar 

  • Rothstein JD, Martin LJ, Kuncl RW. 1992. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. New Engl J Med 326: 1464–468.

    CAS  PubMed  Google Scholar 

  • Rowland LP. 1995. Hereditary and acquired motor neuron diseases. Merritt's Textbook of Neurology. Rowland LP, editor. Philadelphia: Williams & Wilkins; pp. 742–749.

    Google Scholar 

  • Saatman KE, Bozyczko-Coyne D, Marcy V, Siman R, McIntosh TK. 1996a. Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J Neuropathol Exp Neurol 55: 850–860.

    CAS  Google Scholar 

  • Saatman KE, Murai H, Bartus RT, Smith DH, Hayward NJ, et al. 1996b. Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental brain injury in the rat. Proc Natl Acad Sci USA 93: 3428–3433.

    CAS  Google Scholar 

  • Sadovnick AD, Ebers GC, Dyment DA, Risch NJ. 1996. Evidence for genetic basis of multiple sclerosis. The Canadian Collaborative Study Group. Lancet 347: 1728–1730.

    CAS  Google Scholar 

  • Saido TC, Kawashima S, Tani E, Yokota M. 1997. Up- and downregulation of calpain inhibitor polypeptide, calpastatin, in postischemic hippocampus. Neurosci Lett 227: 75–78.

    CAS  PubMed  Google Scholar 

  • Saito K, Elce JS, Hamos JE, Nixon RA. 1993. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci USA 90: 2628–2632.

    CAS  PubMed  Google Scholar 

  • Sato K, Kawashima S. 2001. Calpain function in the modulation of signal transduction molecules. Biol Chem 382: 743–751.

    CAS  PubMed  Google Scholar 

  • Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N, et al. 1996. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 13: 464–468.

    CAS  PubMed  Google Scholar 

  • Schaecher KE, Shields DC, Banik NL. 2001. Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem Res 26: 731–737.

    CAS  PubMed  Google Scholar 

  • Schneggenburger R, Tempia F, Konnerth A. 1993. Glutamate- and AMPA-mediated calcium influx through glutamate receptor channels in medial septal neurons. Neuropharmacology 32: 1221–1228.

    CAS  PubMed  Google Scholar 

  • Schoepp DD, Sacaan AI. 1994. Metabotropic glutamate receptors and neuronal degenerative disorders. Neurobiol Aging 15: 261–263.

    CAS  PubMed  Google Scholar 

  • Schumacher PA, Siman RG, Fehlings MG. 2000. Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurological function, and enhances axonal survival after traumatic spinal cord injury. J Neurochem 74: 1646–1655.

    CAS  PubMed  Google Scholar 

  • Seboun E, Robinson MA, Doolittle TH, Ciulla TA, Kindt TJ, et al. 1989. A susceptibility locus for multiple sclerosis is linked to the T cell receptor β chain complex. Cell 57: 1095–1100.

    CAS  PubMed  Google Scholar 

  • See V, Loeffler JP. 2001. Oxidative stress induces neuronal death by recruiting a protease and phosphatase-gated mechanism. J Biol Chem 276: 35049–35059.

    CAS  PubMed  Google Scholar 

  • Selkoe DJ. 2004. Alzheimer's disease: Mechanistic understanding predicts novel therapies. Ann Intern Med 140: 627–638.

    CAS  PubMed  Google Scholar 

  • Shapira Y, Yadid G, Cotev S, Shohami E. 1989. Accumulation of calcium in the brain following head trauma. Neurol Res 11: 169–192.

    CAS  PubMed  Google Scholar 

  • Shaw PJ, Ince PG. 1997. Glutamate, excitotoxicity, and amyotrophic lateral sclerosis. J Neurol 244 (Suppl 2): S3–S14.

    PubMed  Google Scholar 

  • Shields DC, Banik NL. 1998. Upregulation of calpain activity and expression in experimental allergic encephalomyelitis: a putative role for calpain in demyelination. Brain Res 794: 68–74.

    CAS  PubMed  Google Scholar 

  • Shields DC, Schaecher KE, Saido TC, Banik NL. 1999. A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc Natl Acad Sci USA 96: 11486–11491.

    CAS  PubMed  Google Scholar 

  • Shields DC, Tyor WR, Deibler GE, Hogan EL, Banik NL. 1998. Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 95: 5768–5772.

    CAS  PubMed  Google Scholar 

  • Shimohama S, Suenaga T, Araki W, Yamaoaka Y, Shimizu K, et al. 1991. Presence of calpain II immunoreactivity in senile plaques in Alzheimer's disease. Brain Res 558: 105–108.

    CAS  PubMed  Google Scholar 

  • Siman R, Card JP, Davis LG. 1990. Proteolytic processing of β-amyloid precursor by calpain I. J Neurosci 10: 2400–2411.

    CAS  PubMed  Google Scholar 

  • Sloane JA, Hinman JD, Lubonia M, Hollander W, Abraham CR. 2003. Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem 84: 157–168.

    CAS  PubMed  Google Scholar 

  • Smith ME. 1979. Neutral protease activity in lymphocytes of Lewis rats with acute experimental allergic encephalomyelitis. Neurochem Res 4: 689–702.

    CAS  PubMed  Google Scholar 

  • Smith ME, van der Maesen K, Somera FP. 1998. Macrophage and microglial responses to cytokines in vitro: Phagocytic activity, proteolytic enzyme release, and free radical production. J Neurosci Res 54: 68–78.

    CAS  PubMed  Google Scholar 

  • Snutch TP, Reiner PB. 1992. Ca2+ channels: Diversity of form and function. Curr Opin Neurobiol 2: 247–253.

    CAS  PubMed  Google Scholar 

  • Sorensen TL, Ransohoff RM. 1998. Etiology and pathogenesis of multiple sclerosis. Semin Neurol 18: 287–294.

    CAS  PubMed  Google Scholar 

  • Sorimachi H, Ishiura S, Suzuki K. 1997. Structure and physiological function of calpains. Biochem J 328: 721–732.

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, et al. 1997. α-Synuclein in Lewy bodies. Nature 388: 839–840.

    CAS  PubMed  Google Scholar 

  • Stokes BT, Fox P, Hollinden G. 1983. Extracellular calcium activity in the injured spinal cord. Exp Neurol 80: 561–572.

    CAS  PubMed  Google Scholar 

  • Stracher A. 1999. Calpain inhibitors as therapeutic agents in nerve and muscle degeneration. Ann N Y Acad Sci 884: 52–59.

    CAS  PubMed  Google Scholar 

  • Stys PK. 1998. Anoxic and ischemic injury of myelinated axons in CNS white matter: from mechanistic concepts to therapeutics. J Cereb Blood Flow Metab 18: 2–25.

    CAS  PubMed  Google Scholar 

  • Stys PK, Waxman SG, Ransom BR. 1992. Ionic mechanisms of anoxic injury in mammalian CNS white matter: Role of Na+ channels and Na+/Ca2+ exchanger. J Neurosci 12: 430–439.

    CAS  PubMed  Google Scholar 

  • Sugiyama H, Ito I, Hirono C. 1987. A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325: 531–533.

    CAS  PubMed  Google Scholar 

  • Tamai M, Matsumoto K, Omura S, Koyama I, Ozawa Y, et al. 1986. In vitro and in vivo inhibition of cysteine proteinases by EST, a new analog of E-64. J Pharmacobiodyn 9: 672–677.

    CAS  PubMed  Google Scholar 

  • Tamai M, Omura S, Kimura M, Hanada K, Sugita H. 1987. Prolongation of life span of dystrophic hamster by cysteine proteinase inhibitor, loxistation (EST). J Pharmacobiodyn 10: 678–681.

    CAS  PubMed  Google Scholar 

  • Taniguchi S, Fujita Y, Hayashi S, Kakita A, Takahashi H, et al. 2001. Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett 489: 46–50.

    CAS  PubMed  Google Scholar 

  • Teasdale G, Bailey I, Bell A, Gray J, Gullan R, et al. 1992. A randomized trial of nimodipine in severe head injury: HIT I. British/Finnish Cooperative Head Injury Trial Group. J Neurotrauma 9: S545–S550.

    PubMed  Google Scholar 

  • Thomas LB, Gates DJ, Richfield EK, O'Brien TF, Schweitzer JB, et al. 1995. DNA end-labeling (TUNEL) in Huntington's disease and other neuropathological conditions. Exp Neurol 133: 65–272.

    Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, et al. 1998. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338: 278–285.

    CAS  PubMed  Google Scholar 

  • Triggle DJ. 1994. Molecular pharmacology of voltage-gated calcium channels. Ann N Y Acad Sci 747: 267–281.

    CAS  PubMed  Google Scholar 

  • Turski L, Bressler K, Rettig KJ, Loschmann PA, Wachtel H. 1991. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature 349: 414–418.

    CAS  PubMed  Google Scholar 

  • Tymianski M, Tator CH. 1996. Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery 38: 1176–1195.

    CAS  PubMed  Google Scholar 

  • Ueyama H, Kumamoto T, Fujimoto S, Murakami T, Tsuda T. 1998. Expression of three calpain isoform genes in human skeletal muscles. J Neurol Sci 155: 163–169.

    CAS  PubMed  Google Scholar 

  • Utz U, Biddison WE, McFarland HF, McFarlin DE, Flerlage M, et al. 1993. Skewed T cell receptor repertoire in genetically identical twins correlates with multiple sclerosis. Nature 364: 243–247.

    CAS  PubMed  Google Scholar 

  • Van den Bosch L, Van Damme P, Vleminckx V, Van Houtte E, Lemmens G, et al. 2002. An α-mercaptoacrylic acid derivative (PD150606) inhibits selective motor neuron death via inhibition of kainate-induced Ca2+ influx and not via calpain inhibition. Neuropharmacology 42: 706–713.

    CAS  PubMed  Google Scholar 

  • Vanderklish PW, Bahr BA. 2000. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 81: 323–339.

    CAS  PubMed  Google Scholar 

  • Vonsattel JP, DiFiglia M. 1998. Huntington's disease. J Neuropathol Exp Neurol 57: 369–384.

    CAS  PubMed  Google Scholar 

  • Wakabayashi K, Matsumoto K, Takayama K, Yoshimoto M, Takahashi H. 1997. NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson's disease. Neurosci Lett 239: 45–48.

    CAS  PubMed  Google Scholar 

  • Wang KK, Nath R, Posner A, Raser KJ, Buroker-Kilgore M, et al. 1996. An α-mercaptoacrylic acid derivative is a selective nonpeptide cell-permeable calpain inhibitor and is neuroprotective. Proc Natl Acad Sci USA 93: 6687–6692.

    CAS  PubMed  Google Scholar 

  • Waterhouse NJ, Finucane DM, Green DR, Elce JS, Kumar S, et al. 1998. Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 5: 1051–1061.

    CAS  PubMed  Google Scholar 

  • Wei EP, Lamb RG, Kontos HA. 1982. Increased phospholipase C activity after experimental brain injury. J Neurosurg 56: 695–698.

    CAS  PubMed  Google Scholar 

  • White RJ, Reynolds IJ. 1995. Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 15: 1318–1328.

    CAS  PubMed  Google Scholar 

  • Williams KC, Ulvestad E, Hickey WF. 1994. Immunology of multiple sclerosis. Clin Neurosci 2: 229–245.

    CAS  PubMed  Google Scholar 

  • Xu JA, Hsu CY, Liu TH, Hogan EL, Perot PL, et al. 1990. Leukotriene B4 release and polymorphonuclear cell infiltration in spinal cord injury. J Neurochem 55: 907–912.

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Ishikawa T, Sakabe T, Taguchi T, Kawai S, et al. 1998. The hydroxyl radical scavenger Nicaraven inhibits glutamate release after spinal injury in rats. Neuroreport 9: 1655–1659.

    CAS  PubMed  Google Scholar 

  • Yamashima T. 2000. Implication of cysteine proteases calpain, cathepsin, and caspase in ischemic neuronal death of primates. Prog Neurobiol 62: 273–295.

    CAS  PubMed  Google Scholar 

  • Yaouanq J, Semana G, Eichenbaum S, Quelvennec E, Roth MP, et al. 1997. Evidence for linkage disequilibrium between HLA-DRB1 gene and multiple sclerosis. The French Research Group on Genetic Susceptibility to MS. Science 276: 664–665.

    CAS  PubMed  Google Scholar 

  • Zamvil SS, Steinman L. 1990. The T lymphocyte in experimental allergic encephalomyelitis. Ann Rev Immunol 8: 579–621.

    CAS  Google Scholar 

  • Zhang C, Siman R, Xu YA, Mills AM, Frederick JR, et al. 2002. Comparison of calpain and caspase activities in the adult rat brain after transient forebrain ischemia. Neurobiol Dis 10: 289–305.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the R01 grants (CA-91460, NS-31622, NS-38146, NS-41088, NS-45967, and NS-57811) from the National Institutes of Health and also a Spinal Cord Injury Research Foundation grant (SCIRF-0803 and SC9RF-1205) from the state of South Carolina.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Ray, S.K., Guyton, M.K., Sribnick, E.A., Banik, N.L. (2007). Calpain as a Target for Prevention of Neuronal Death in Injuries and Diseases of the Central Nervous System. In: Lajtha, A., Banik, N. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30379-6_15

Download citation

Publish with us

Policies and ethics