Skip to main content

6 Branched Chain Amino Acids (BCAAs) in Brain

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

The branched chain amino acids (BCAAs) play a role in glutamate neurotransmitter synthesis by providing a ferry system to move nitrogen between astrocytes and neurons for the synthesis of glutamate. This hypothetical nitrogen cycle, the branched chain aminotransferase (BCAT) cycle, is tied to the glutamate/glutamine cycle and is an arm of the glutamate/pyruvate cycle. Immunolocalization of the BCAT isozymes in rodent brain shows that the cytosolic BCATc is localized in selected glutamatergic and GABAergic neurons whereas the mitochondrial isozyme, BCATm, is found in astroglia. These results provide support for the cycle hypothesis and suggest BCAA also play a role in γ-aminobutyric acid (GABA) metabolism. When the BCAA catabolic disposal system is genetically impaired in humans, serum BCAA and BCKA levels rise and severe neurological dysfunction occurs. In the hereditary metabolic disease that results from mutations in the branched chain α-keto acid dehydrogenase complex (BCKD), maple syrup urine disease, the most obvious symptoms are neurological. Useful animal models for the human condition are not yet available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCAA:

branched chain amino acid

BCAT:

branched chain aminotransferase

BCATc:

cytosolic branched chain aminotransferase

BCATm:

mitochondrial branched chain aminotransferase

BCKA:

branched chain α-keto acid

BCKD:

branched chain α-keto acid dehydrogenase

E1:

branched chain α-keto acid decarboxylase

E2:

dihydrolipoly transacylase

E3:

dihydrolipoyl dehydrogenase

GABA:

γ-aminobutyric acid

GABA-T, GABA:

aminotransferase

GAD:

glutamate decarboxylase

αKG:

α-ketoglutarate

KIC:

α-ketoisocaproate

KIV:

α-ketoisovalerate

KMV:

α-keto-β-methylvalerate

MSUD:

Maple Syrup Urine Disease

PC:

pyruvate carboxylase

TCA:

tricarboxylic acid

References

  • Anthony JC, Anthony TG, Kimball SR, Vary TC, Jefferson LS. 2000. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increase eIF4F formation. J Nutr 130: 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Bixel MG, Hamprecht B. 1995. Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem 65: 2450–2461.

    Article  CAS  PubMed  Google Scholar 

  • Bixel MG, Hutson S, Hamprecht B. 1995. Cellular distribution of branched-chain aminotransferases in rat brain cells. Biol Chem Hoppe Seyler 376: S86

    Google Scholar 

  • Bixel MG, Hutson SM, Hamprecht B. 1997. Cellular distribution of branched-chain amino acid aminotransferase isoenzymes among rat brain glial cells in culture. J Histochem Cytochem 45: 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Bixel M, Shimomura Y, Hutson S, Hamprecht B. 2001. Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture. J Histochem Cytochem 49: 407–418.

    Article  CAS  PubMed  Google Scholar 

  • Bledsoe RK, Dawson PA, Hutson SM. 1997. Cloning of the rat and human mitochondrial branched chain aminotransferases (BCATm). Biochim Biophys Acta 1339: 9–13.

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Araldi J, Sgarbi MB, Testa CG, Durigon K, et al. 2003. Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci 21: 327–332.

    Article  CAS  PubMed  Google Scholar 

  • Bridi R, Latini A, Braum CA, Zorzi GK, Moacir W, et al. 2005. Evaluation of the mechanisms involved in leucine-induced oxidative damage in cerebral cortex of young rats. Free Radic Res 39: 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Brosnan ME, Lowry A, Wasi Y, Lowry M, Brosnan JT. 1985. Regional and subcellular distribution of enzymes of branched-chain amino acid metabolism in brains of normal and diabetic rats. Can J Physiol Pharmacol 63: 1234–1238.

    Article  CAS  PubMed  Google Scholar 

  • Chaplin ER, Goldberg AL, Diamond I. 1976. Leucine oxidation in brain slices and nerve endings. J Neurochem 26: 701–707.

    Article  CAS  PubMed  Google Scholar 

  • Christgau S, Aanstoot HJ, Schierbeck H, Bergley K, Tullin S, et al. 1992. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J Cell Biol 118: 309–320.

    Article  CAS  PubMed  Google Scholar 

  • Chuang DI, Shih VE. 2001. Disorders of branched chain amino acid and keto acid metabolism. The Metabolic Basis of Inherited Disease. Shriver CR, Beaudet AL, Sly S, Vaile D, editors. New York: McGraw Hill; pp. 1239–1277.

    Google Scholar 

  • Cole J, Sweatt AJ, Wallin R, La Noue KF, Lynch CJ, et al. 2005. Branched-chain keto-acid dehydrogenase is a neuronal enzyme in brain. J Neurochem vol 94 (suppl 1): 39.

    Google Scholar 

  • Condie BG, Bain G, Gottlieb DI. 1997. Cleft palate in mice with a targeted mutation in the gamma-aminobutyric acid-producing enzyme glutamic acid decarboxylase 67. Proc Natl Acad Sci USA 94: 11451–11455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn AR, Steele RD. 1982. Transport of α-keto analogues of amino acids across blood-brain barrier in rats. Am J Physiol 243: E272–E277.

    CAS  PubMed  Google Scholar 

  • Conti F, De Biasi S, Minelli A, Rothstein JD, Melone M. 1998. EAAC1, a high-affinity glutamate transporter, is localized to astrocytes and gabaergic neurons besides pyramidal cells in the rat cerebral cortex. Cereb Cortex 8: 108–116.

    Article  CAS  PubMed  Google Scholar 

  • Daikhin Y, Yudkoff M. 2000. Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130: 1026S–1031S.

    Article  CAS  PubMed  Google Scholar 

  • Dodd PR, Williams SH, Gundlach AL, Harper PA, Healy PJ, et al. 1992. Glutamate and gamma-aminobutyric acid neurotransmitter systems in the acute phase of maple syrup urine disease and citrullinemia encephalopathies in newborn calves. J Neurochem 59: 582–590.

    Article  CAS  PubMed  Google Scholar 

  • Funchal C, Pessutto FDB, de Almeida LMV, de Lima Pelaez P, Loureiro SO, et al. 2004. α−Keto-β-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. J Neurol Sci 217: 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Gamberino WC, Berkich DA, Lynch CJ, Xu B, La Noue KF. 1997. Role of pyruvate carboxylase in facilitation of synthesis of glutamate and glutamine in cultured astrocytes. J Neurochem 69: 2312–2325.

    Article  CAS  PubMed  Google Scholar 

  • Garber AJ, Karl IE, Kipnis DM. 1976. Alanine and glutamine synthesis and release from skeletal muscle. II. The precursor role of amino acids in alanine and glutamine synthesis. J Biol Chem 251: 836–843.

    Article  CAS  PubMed  Google Scholar 

  • Goto M, Miyahara I, Hirotsu K, Conway M, Yennawar N, 2005. Structural determinants for branched-chain aminotransferase isozyme specific inhibition by the anticonvulsant drug gabapentin. J Biol Chem, accepted for publication Nov 4; 280(44): 37246-56.

    Google Scholar 

  • Grill V, Bjorkhem M, Gutniak M, Lindqvist M. 1992. Brain uptake and release of amino acids in nondiabetic and insulin-dependent diabetic subjects: Important role of glutamine release for nitrogen balance. Metabolism 41: 28–32.

    Article  CAS  PubMed  Google Scholar 

  • Hall TR, Wallin R, Reinhart GD, Hutson SM. 1993. Branched chain aminotransferase isoenzymes. Purification and characterization of the rat brain isoenzyme. J Biol Chem 268: 3092–3098.

    Article  CAS  PubMed  Google Scholar 

  • Harper AE. 1989. Thoughts of the role of branched-chain α-keto acid dehydrogenase complex in nitrogen metabolism. Ann N Y Acad Sci 573: 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Harper AE, Miller RH, Block KP. 1984. Branched-chain amino acid metabolism. Annu Rev Nutr 4: 409–454.

    Article  CAS  PubMed  Google Scholar 

  • Harper PA, Dennis JA, Healy PJ, Brown GK. 1989. Maple syrup urine disease in calves: A clinical, pathological and biochemical study. Aust Vet J 66: 46–49.

    Article  CAS  PubMed  Google Scholar 

  • Harris RA, Paxton R, Powell SM, Goodwin GW, Kuntz MJ, et al. 1986. Regulation of branched-chain alpha-ketoacid dehydrogenase complex by covalent modification. Adv Enzyme Regul 25: 219–237.

    Article  CAS  PubMed  Google Scholar 

  • Harris RA, Zhang B, Goodwin GW, Kuntz MJ, Shimomura Y, et al. 1990. Regulation of branched-chain α-ketoacid dehydrogenase and elucidation of a molecular basis for maple syrup urine disease. Adv Enzyme Regul 30: 245–263.

    Article  CAS  PubMed  Google Scholar 

  • Harris RA, Joshi M, Jeoung NH. 2004. Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun 313: 391–396.

    Article  CAS  PubMed  Google Scholar 

  • Hassel B, Sonnewald U. 1995. Glial formation of pyruvate and lactate from TCA cycle intermediates: Implications for the inactivation of transmitter amino acids? J Neurochem 65: 2227–2234.

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM. 1988. Subcellular distribution of branched-chain aminotransferase activity in rat tissues. J Nutr 118: 1475–1481.

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Harper AE. 1981. Blood and tissue branched-chain amino acid and α-keto acid concentrations: Effect of diet, starvation and disease. Am J Clin Nutr 34: 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Zapalowski C. 1981. Relationship of branched-chain amino acids to skeletal muscle gluconeogenic amino acids. Metabolism and Clinical Implications of Branched-Chain Amino and Ketoacids. Walser M, Williamson JR, editors. New York: Elsevier/North Holland, Inc.; pp. 245–250.

    Google Scholar 

  • Hutson SM, Cree TC, Harper AE. 1978. Regulation of leucine and α-ketoisocaproate metabolism in skeletal muscle. J Biol Chem 253: 8126–8133.

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Zapalowski C, Cree TC, Harper AE. 1980. Regulation of leucine and α-ketoisocaproic acid metabolism in skeletal muscle: Effects of starvation and insulin. J Biol Chem 255: 2418–2426.

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Fenstermacher D, Mahar C. 1988. Role of mitochondrial transamination in branched chain amino acid metabolism. J Biol Chem 263: 3618–3625.

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Wallin R, Hall TR. 1992. Identification of mitochondrial branched chain aminotransferase and its isoforms in rat tissues. J Biol Chem 267: 15681–15686.

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Berkich D, Drown P, Xu B, Aschner M, et al. 1998. Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism. J Neurochem 71: 863–874.

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Lieth E, La Noue KF. 2001. Function of leucine in excitatory neurotransmitter metabolism in the central nervous system. J Nutr 131: 846S–850S.

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Sweatt AJ, Lanoue KF. 2005. Branched-chain amino acid metabolism: Implications for establishing safe intakes. J Nutr 135: 1557S–1564S.

    Article  CAS  PubMed  Google Scholar 

  • Ichihara A. 1985. Aminotransferases of branched-chain amino acids. Transaminases. Christen P, Metzler DE, editors. New York: John Wiley and Sons; pp. 430–438.

    Google Scholar 

  • Jouvet P, Rustin P, Taylor DL, Pocock JM, Felderhoff-Muesser U, et al. 2000. Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: Implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell 11: 1919–1932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamori K, Ross BD, Kondrat RW. 1998. Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15N NMR. J Neurochem 70: 1304–1315.

    Article  CAS  PubMed  Google Scholar 

  • Killian DM, Chikhale PJ. 2001. Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci Lett 306: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Laake JH, Takumi Y, Eidet J, Torgner IA, Rodberg B, et al. 1999. Postembedding immunogold labeling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 99: 1137–1151.

    Article  Google Scholar 

  • LaNoue K, Hutson SM. 2005. Interaction of mitochondria with cytosol and other organelles. In: Brain energeties: Integration of molecular and cellular processes. Handbook of neurochemistry and molecular neurobiology, 3rd ed. Berlin Heidelberg New York: Springer-Verlag; in press.

    Google Scholar 

  • LaNoue KF, Berkich DA, Conway M, Barber AJ, Hu LY, et al. 2001. Role of specific aminotransferases in de novo glutamate synthesis and redox shuttling in the retina. J Neurosci Res 66: 914–922.

    Article  CAS  PubMed  Google Scholar 

  • Lieth E, La Noue KF, Berkich DA, Xu B, Ratz M, et al. 2001. Nitrogen shuttling between neurons and glial cells during glutamate synthesis. J Neurochem 76: 1712–1723.

    Article  CAS  PubMed  Google Scholar 

  • Lynch CJ. 2001. Role of leucine in the regulation of mTOR by amino acids: Revelations from structure-activity studies. J Nutr 131: 861S–865S.

    Article  CAS  PubMed  Google Scholar 

  • Lynch CJ, Patson BJ, Anthony J, Vaval A, Jefferson LS, et al. 2002. Leucine is a direct-acting nutrient signal that regulates protein synthesis in adipose tissue. Am J Physiol Endocrinol Metab 283: E503–E513.

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. 1999. Energy on demand. Science 283: 496–497.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Hernandez A, Bell KP, Norenberg MD. 1977. Glutamine synthetase: Glial localization in brain. Science 195: 1356–1358.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo Y, Yagi M, Walser M. 1993. Ateriovenous differences and tissue concentrations of branched-chain ketoacids. J Lab Clin Med 121: 779–784.

    CAS  PubMed  Google Scholar 

  • Matthews DE, Motil KJ, Rohrbaugh DK, Burke JF, Young VR, et al. 1980. Measurement of leucine metabolism in man from a primed continuous infusion of L-[1-13C]leucine. Am J Physiol 238: E473–E479.

    CAS  PubMed  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Huang X, Kingwell KG. 1995. Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem Res 20: 1491–1501.

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR. 1996a. Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66: 386–393.

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Huang X. 1996b. New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes. Dev Neurosci 18: 380–390.

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Sonnewald U, Huang X, Stevenson J, Johnsen SF, et al. 1998a. Alpha-ketoisocaproate alters the production of both lactate and aspartate from [U-13C]glutamate in astrocytes: A 13C NMR study. J Neurochem 70: 1001–1008.

    Article  CAS  PubMed  Google Scholar 

  • McKenna MC, Tildon JT, Stevenson JH, Hopkins IB, Huang X, et al. 1998b. Lactate transport by cortical synaptosomes from adult rat brain: Characterization of kinetics and inhibitor specificity. Dev Neurosci 20: 300–309.

    Article  CAS  PubMed  Google Scholar 

  • Minchin MCW, Beart PM. 1975. Compartmentation of amino acid metabolism in the rat dorsal root ganglion; A metabolic and autoradiographic study. Brain Res 83: 437–449.

    Article  CAS  PubMed  Google Scholar 

  • Murthy CR, Hertz L. 1987. Acute effect of ammonia on branched-chain amino acid oxidation and incorporation into proteins in astrocytes and in neurons in primary cultures. J Neurochem 49: 735–741.

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD. 1979. Distribution of glutamine synthetase in rat central nervous system. J Histochem Cytochem 27: 756–762.

    Article  CAS  PubMed  Google Scholar 

  • Odessey R, Khairallah EA, Goldberg AL. 1974. Origin and possible significance of alanine production by skeletal muscle. J Biol Chem 249: 7623–7629.

    Article  CAS  PubMed  Google Scholar 

  • Oldendorf WH. 1971. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol 221: 1629–1639.

    Article  CAS  PubMed  Google Scholar 

  • Patel MS. 1989. CO2-fixing enzymes. Neuromethods: Carbohydrate and Energy Metabolism. Boulton AA, Baker GD, editors. Clifton, NJ: Humana Press, Inc.; pp. 309–340.

    Chapter  Google Scholar 

  • Pellerin L, Magistretti PJ. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91: 10625–10629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piérard C, Pérès M, Satabin P, Guezennec CY, Lagarde D. 1999. Effects of GABA-transaminase inhibition on brain metabolism and amino-acid compartmentation: An in vivo study by 2D 1H-NMR spectroscopy coupled with microdialysis. Exp Brain Res 127: 321–327.

    Article  PubMed  Google Scholar 

  • Rao VL, Murthy CR. 1993. Uptake and metabolism of glutamate and aspartate by astroglial and neuronal preparations of rat cerebellum. Neurochem Res 18: 647–654.

    Article  CAS  PubMed  Google Scholar 

  • Rogawski M, Loscher W. 2004. The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nat Med 10: 685–692.

    Article  CAS  PubMed  Google Scholar 

  • Sakai R, Cohen DM, Henry JF, Burrin DG, Reeds PJ. 2004. Leucine-nitrogen metabolism in the brain of conscious rats: Its role as a nitrogen carrier in glutamate synthesis in glial and neuronal metabolic compartments. J Neurochem 88: 612–622.

    Article  CAS  PubMed  Google Scholar 

  • Schmoll D, Hamprecht B. 1994. Glyconeogenesis via a gluconeogenic pathway in astrogial cells. J Neurochem 63: 66c (abstract).

    Google Scholar 

  • Shank RP, Aprison MH. 1981. Present status and significance of the glutamine cycle in neural tissues. Life Sci 28: 837–842.

    Article  CAS  PubMed  Google Scholar 

  • Shank RP, Bennett GS, Freytag SO, Campbell GL. 1985. Pyruvate carboxylase: An astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329: 364–367.

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Westergaard N, Petersen SB, Unsgård G, Schousboe A. 1993. Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: Incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61: 1179–1182.

    Article  CAS  PubMed  Google Scholar 

  • Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, et al. 1996. Metabolism of [U-13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: First evidence of astrocytic pyruvate recycling. J Neurochem 67: 2566–2572.

    Article  CAS  PubMed  Google Scholar 

  • Su TZ, Lunney E, Campbell G, Oxender DL. 1995. Transport of gabapentin, a gamma-amino acid drug, by system l alpha-amino acid transporters: A comparative study in astrocytes, synaptosomes, and CHO cells. J Neurochem 64: 2125–2131.

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, et al. 1998. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68: 72–81.

    Article  CAS  PubMed  Google Scholar 

  • Sweatt A, Wood M, Suryawan A, Wallin R, Willingham MC, et al. 2004a. Branched-chain amino acid catabolism: Unique segregation of pathway enzymes in organ systems and peripheral nerves. Am J Physiol 286: E64–E76.

    CAS  Google Scholar 

  • Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM. 2004b. Branched-chain amino acids and neurotransmitter metabolism: Expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comp Neurol 477: 360–370.

    Article  CAS  PubMed  Google Scholar 

  • Westergaard N, Sonnewald U, Schousboe A. 1995. Metabolic trafficking between neurons and astrocytes: The glutamate/glutamine cycle revisited. Dev Neurosci 17: 203–211.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Oz G, La Noue KF, Keiger CJ, Berkich DA, et al. 2004. Whole brain glutamate metabolism evaluated by steady state kinetics using a double isotope procedure, effects of gabapentin. J Neurochem 90: 1104–1116.

    Article  CAS  PubMed  Google Scholar 

  • Yu AC, Drejer J, Hertz L, Schousboe A. 1983. Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41: 1484–1487.

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M. 1997. Brain metabolism of branched-chain amino acids. Glia 21: 92–98.

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Nissim I, Kim S, Pleasure D, Hummeler K, et al. 1983. [15N]leucine as a source of [15N]glutamate in organotypic cerebellar explants. Biochem Biophys Res Commun 115: 174–179.

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Nissim I, Daikhin Y, Lin ZP, Nelson D, et al. 1993. Brain glutamate metabolism: Neuronal-astroglial relationships. Dev Neurosci 15: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Lin Z-P, Nissim I, Stern J, et al. 1994. Interrelationships of leucine and glutamate metabolism in cultured astrocytes. J Neurochem 62: 1192–1202.

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Grunstein L, Nissim I, Stern J, et al. 1996a. Astrocyte leucine metabolism: Significance of branched-chain amino acid transamination. J Neurochem 66: 378–385.

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nelson D, Nissim I, Erecinska M. 1996b. Neuronal metabolism of branched-chain amino acids: Flux through the aminotransferase pathway in synaptosomes. J Neurochem 66: 2136–2145.

    Article  CAS  PubMed  Google Scholar 

  • Yudkoff M, Daikhin Y, Nissim I, Horyn O, Lazarow A, et al. 2003. Metabolism of brain amino acids following pentylenetetrazole treatment. Epilepsy Res 53: 151–162.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work reported here was supported by Grants NS-38641 and DK-34738 from the US National Institutes of Health.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Hutson, S.M., Sweatt, A.J., LaNoue, K.F. (2007). 6 Branched Chain Amino Acids (BCAAs) in Brain. In: Lajtha, A., Oja, S.S., Schousboe, A., Saransaari, P. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30373-4_6

Download citation

Publish with us

Policies and ethics